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Establishing the Sun-Earth connection requires overcoming the challenges of
exploring the data from past and current missions and leveraging tools and
models (data mining) to create an efficient system treatment of the Sun and
heliosphere. However, solar and heliospheric environment data constitute a vast
source of information whose potential is far from being optimally exploited. In
the next decade, the solar and heliospheric community will have to manage
the increasing amount of information coming from new missions, improve re-
analysis of data from past and current missions, and create new data products
from the application of new methodologies. This complex task is further
complicated by practical challenges such as different datasets and catalogs in
different formats that may require different pre-processing and analysis tools,
and the need for numerous analysis approaches that are not all fully optimized
for large volumes of data. While several ongoing efforts aim at addressing these
problems, the available datasets and tools are not always used to their full
potential often due to lack of awareness of available resources. In this paper, we
summarize the issues raised and goals discussed by members of the community
during recent conference sessions focused on data mining for science.
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1 Introduction

Increasingly, diverse data sets are being used to understand the Sun-Earth connection.
Data analysis tools applied to remote-sensing solar measurements, e.g., GOES/X-ray flux
(Hanser and Sellers, 1996); RHESSI (Lin et al., 2002); SDO (Pesnell et al., 2012); STEREO
(Kaiser et al., 2008), and in situ heliospheric measurements, e.g., ACE (McComas et al.,
1998); Wind (Harten and Clark, 1995); SOHO (Domingo et al., 1995), contribute
crucial information to our understanding of the Sun/Corona/Heliosphere as a single
physical system. This includes understanding the response of the Earth’s magnetosphere-
ionosphere-thermosphere system further supported by satellite constellations (e.g.,
Cluster, Escoubet et al., 1997; THEMIS, Angelopoulos, 2008; MMS, Burch et al., 2016),
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geostationary and low-Earth-orbit satellites (e.g., GOES, Sullivan,
2020; Swarm, Friis-Christensen et al., 2006), and ground
based assets [e.g., magnetometers (Gjerloev, 2012) and radars
(Greenwald et al., 1995)]. The examples of solar-terrestrial missions
are hardly exhaustive or representative of past, current, and future
missions and ground-based assets across many international
agencies. Figure 1 shows NASA’s Heliophysics fleet of spacecraft
from the Sun to the Earth, ESA’s fleet in the Solar System andNOAA’s
fleet of satellite missions. The availability of multiple datasets from
these missions (and concluded missions not shown) is matched
by a plethora of analysis and processing techniques, all of which
extract useful information from the observations (Paschmann and
Schwartz, 2000; Ireland and Young, 2009; Dunlop and Lühr, 2020).
These include advanced image processing techniques to reveal
structural detail, inversionmethods for physical values (e.g., density,
temperature), robust statistical approaches, feature recognition and
tracking, and processing of data for use as boundary conditions
for models. Moreover, increases in processor speed and massively
parallel computational techniques have enabled improvements
in the possible spatio-temporal resolution of analysis methods
and models (Camporeale, 2019). The consequent improvements
in physics-based numerical simulations have also furthered our
understanding of the underlying heliosphere physical processes.
On the other hand, robust statistical approaches to data analysis
can give new insight into new and historical datasets (e.g.,
Di Matteo and Sivadas, 2022; Lockwood et al., 2022; Sivadas and
Sibeck, 2022). These arguments point to the increasing need for
improved standardization for analysis tools particularly those that
combine multiple-source data (Burrell et al., 2018). Overcoming
the challenges of past/current missions and exloiting past (historic)
and current data, tools and models will set the basis for a system
treatment of the heliosphere and thus create the synergy between
different Heliophysics fields enabling solar-terrestrial science.
However, current datasets and tools are not always used to their
full potential often due to lack of awareness of available resources.
This paper describes some of the challenges raised and future goals
discussed in recent conference sessions focused on data mining for
solar-terrestrial science.Theprimary questionwe aim to highlight is:
How can our community of scientists, engineers, computer scientists
work together to improve the various datasets/tools/models
available, in order to maximize the information extracted from
observations/measurements/simulations/etc., and to study the
Sun-Earth connection as a single system?

2 Current challenges and needs

2.1 Data and computational challenges and
needs

Data mining (turning raw data into useful information)
is fundamental for integration of key parameters in models,
comparison of model output with data and fostering the
development of new tools, as needed. Among the various data
and computational challenges in Heliophysics, here we provide
examples specific to solar remote sensing observations but relatable
across solar-terrestrial disciplines.

Extraction of useful information from remote sensing
observations is essential for exploring the physical properties of
the plasma to then be compared with models and, when possible, in
situ measurements. For example, emission from spectral lines from
different charge states of the same element serve as a diagnostic
for electron temperature (e.g., Habbal et al., 2010). Other examples
include the use of polarimetric observations in select spectral lines
for coronal magnetometry (see Judge, 1998; Lin et al., 2000).

Fully extracting useful information from observational data
requires advanced image/signal processing techniques. For example,
both visible-light and extreme ultraviolet (EUV) observations
benefit from recent advances in image processing algorithms, to
separate the faint scientific signal from much brighter backgrounds
from stray light and other non-solar signals; this separation is
made more difficult by the observed steep decreases in plasma
density/emission with heliocentric distance from the Sun. For
example, previous studies (Stenborg et al., 2008;Morgan et al., 2013;
Alzate and Morgan, 2016, 2017; Alzate et al., 2023a, 2021) have
focused on the application of advanced image processing techniques
to EUV and coronagraph data to reveal fine-scale signatures in the
low corona that have an impact on the structure of the extended
corona, which would otherwise go unnoticed.

Unraveling the physics of the Sun-Earth connection requires
multi-point and multi-spacecraft observations supported by
numerical simulations and models. For example, currently no
instrument independently spans an uninterrupted FOV from the
low corona out to several solar radii. One way is to combine
remote sensing data from different instrument suites to create
“maps” to reveal the connection among activity at various
heights in the corona and the heliosphere (e.g., DeForest et al.,
2013; Alzate et al., 2023a, 2021). Other commonly used tools for
extracting information from dynamic events include, for example,
J-maps (Sheeley et al., 1999), Huygens plotting (Wills-Davey and
Thompson, 1999) and persistent mapping (Thompson and Young,
2016). Developing techniques for application on current datasets
will prove valuable in interpreting future datasets. For example,
both Solar Orbiter (SO; Müller et al., 2013) and the Daniel K.
Inouye Solar Telescope (DKIST; Tritschler et al., 2016) would
benefit from contextual imagery and modeling to fully utilize their
capabilities and expand their science outcomes. Current missions in
development, such as PUNCHPolarimeter toUNify the Corona and
Heliosphere (PUNCH), 2023 extend remote sensing data to wide
distances from the Sun out to Earth through wide-field observations
of the tenuous solar wind plasma.

Indeed, new missions present new challenges to the data
analysis capabilities of the solar and heliospheric community. The
spatial/temporal resolution of observations continues to improve
with new instrumentation. This leads to high, petabyte-sized,
volumes of data, which test the limits of current computational
capabilities, and require compromises between the amount of
information that can be gathered in time and space versus the
amount of information actually used for science. For example, SO
is an “encounter” mission that strictly limits the duration of data
collection forcing the intrument teams into protracted and complex
planning exercises to optimize the science return.TheDKIST, on the
other hand, will produce up to 15 Tb per day (https://dkist.nso.edu/
node/1819), with respect to a very small region of the Sun.
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FIGURE 1
Example showing space fleet of three space agencies. Top) NASA’s Heliophysics fleet of solar, heliospheric, geospace and planetary spacecraft. Only
currently operating missions are shown here. Credit: NASA’s Goddard Space Flight Center: https://svs.gsfc.nasa.gov/30822. Middle) ESA’s fleet in the
Solar System. Credit: ESA: https://www.esa.int/About_Us/ESAC/Extended_life_for_ESA_s_science_missions. Bottom) NOAA’s fleet of satellite missions.
Credit: NOAA: https://nesdis-prod.s3.amazonaws.com/2023-01/NOAA_Satellite_System.2023.01.04_0.png. Other examples include: JAXA’s fleet and
ISRO’s fleet.

Frontiers in Astronomy and Space Sciences 03 frontiersin.org

https://doi.org/10.3389/fspas.2023.1151785
https://svs.gsfc.nasa.gov/30822
https://www.esa.int/About_Us/ESAC/Extended_life_for_ESA_s_science_missions
https://nesdis-prod.s3.amazonaws.com/2023-01/NOAA_Satellite_System.2023.01.04_0.png
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Alzate et al. 10.3389/fspas.2023.1151785

The emerging data science and parallel computing capabilities,
combined with the large amount of data that will be available
from near future and future missions, will provide unprecedented
opportunities and challenges (Camporeale, 2019). Coordination
between missions is necessary to ensure that mission-specific
tools are interoperable and can be used to merge output from
complementary efforts; this enables breakthrough cross-mission
science, that is, necessarily outside the narrowly defined scientific
scope of each mission, as well as improving the costs for software
development within each mission. However, future missions in
isolation will not fully solve science and problems but developing
tools to seamlessly merge output from complementary efforts will
greatly enhance the performance of future missions.

2.2 Community challenges and needs

The challenges outlined in Section 2.1 have been the focus of
discussion sessions in recent scientific meetings [e. g., the Solar
Heliospheric and INterplanetary Environment (SHINE) Workshop
2019/2022 and the Triennial Earth-Sun Summit (TESS) Meeting
2022]. During the SHINE 2022 meeting, we ran a session
on Data Mining for Science performed in the format of open
discussion. The purpose of the session was to foster discussions
among researchers in the solar and heliospheric community on
accessibility and interoperability of various observations, analysis
tools and models for extracting information about the Sun-
Earth connection as a single system. Additionally, discussions
were held on advanced analysis and processing procedures,
including machine learning methods, and their integration into
next-generation instruments. Current limitations and challenges
faced by the community, considered to be the result of the
vast number of methods/tools/datasets that are not fully/equally
distributed/disseminated, were identified as follows.

• Different datasets and catalogs are in different formats and
might require different pre-processing and analysis tools based
on the science questions asked (e.g., Candey et al., 2018;
Antunes et al., 2022; Hurlburt et al., 2012).
• Different datasets often cover different physical regions

(see Figure 1); standardization of pre-processing method
and analysis tools might enable routine extraction
and/or inference of physical quantities of interest, from
different datasets even though covering different physical
regions, to be assimilated for modeling purposes (e.g.,
Geospace Data Assimilation Working Group GeoDAWG,
2023).
• Configurations of spacecraft and ground-based instruments are

constrained by science operations, which limits cross-mission
investigations (e.g., in situ and remote sensing observations).
• Numerous analysis approaches (e.g., image processing, time

series analysis) are not all fully optimized for petabyte-sized
data volumes.
• Even though the publicly available, open source tools

for heliophysics are increasing in number [e.g., Python
in Heliophysics Community, pyHC, Burrell et al. (2018);
Barnum et al. (2022)], there is a lack of awareness of the
available resources.

During our series of community forums, one of the main points
raised was the cataloging of observations and simulation outputs in
standardized formats of both data and metadata on an international
level. The exchange of information included in the metadata is
fundamental for data integration in models, comparison of model
output with data, and,most importantly, for the development of new
tools, as needed. During the discussions, we collected a series of key
points. Regarding data management, the main suggestions were.

• The need for standardized data formats since a unique
repository collecting large amounts of data is difficult and
expensive to maintain.
• Data should be accompanied by clear documentation, with

capabilities similar to Jupyter notebooks, with data handling
examples.
• Updates on instrument conditions, new data products, caveats,
etc., stemming from increased insight on missions over time,
should be collected in a centralized repository for easy access to
the international community and not remain behind published
paywalls.

Another identified challenge was that groups/individuals
develop and publish results using their own research software,
with rather unsophisticated approach to open-source sharing.
Most of these codes have dependencies on other software libraries,
but without careful package curation and maintenance, these
dependencies can become tuned to individual researchers’ local
libraries, and thus impede collaborations among users.

3 Current efforts

One of the first steps in addressing some of the challenges
mentioned, is the cataloging of observations and simulation
outputs in standardized formats. For example, data and metadata
already have a strong degree of uniformity for NASA missions
following NASA ISTP metadata model and NASA CDF data
format or the large effort made in recent decades to standardize
Flexible Image Transport System (FITS; Wells et al., 1981)
(Metadata standardization). However, the interoperability between
data/metadata missions is more challenging across international
agencies using different formats (e.g., ESPAS—Near-earth space
data infrastructure for e-science, Häggström, 2014). The Space
Physics Archive Search and Extract metadata model is one current
community effort toward addressing this challenge (Roberts et al.,
2018). Standardization efforts can also be focused on specific
sets of datasets like the JPL Spice kernels for spacecraft and
planetary ephemeris and the World Coordinate System (WCS;
Greisen and Calabretta, 2002) part of Solarsoft (SSW; Freeland
and Handy, 1998) for data coordinates and transforms [there is also
a Python implementation available at pyHC, Burrell et al. (2018);
Barnum et al. (2022)].

Standardization of software and tools include efforts on open-
source libraries like Solarsoft Freeland and Handy (1998) and
Sunpy Barnes et al. (2023) as well as SPEDAS (Angelopoulos et al.,
2019) and pySPEDAS (Grimes et al., 2022). These efforts have been
invaluable in research, with excellent value-for-money compared to
the overall cost of missions. Frameworks where people’s research
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analysis software can be more widely accessed, with ease-of-
use and some standardized approaches, are already available, for
example, pyHC (Burrell et al., 2018; Barnum et al., 2022) or online
repositories such as Github is used as the industry standard for code
libraries and source control.

During the TESS 2022 discussion session, members of the
community presented various tools. Each of these tools have
contributed significantly in improving how data are shared and
handled, providing valuable perspective on the future practices that
our community should pursue. Among the showcased tools were.

• The custom model runs available through the (Hesse et al.,
2002; Community Coordinated Modeling CenterCCMC,
2016).
• The HelioCloud platform (Thomas et al., 2022), an open cloud-

based research platform for the research community to better
democratize access to very large datasets with associated
compute to enable big data research. HelioCloud can handle
multi-petabytes of science volumes and can facilitate open
science publishing and collaboration among different teams.
• Kamodo (Pembroke et al., 2022), which is an open-source

Python toolkit for access, analysis and visualization of data.
• Executable papers (Gabriel and Capone, 2011; Lasser, 2020),

which are described as Jupyter notebooks with all the software
and data necessary to reproduce the work described in the
paper.

4 Future challenges and efforts
needed

The challenges and current efforts described in Section 2
comprise only a small portion of the discussions among scientists
from different fields in the solar and heliospheric community; the
main limitation was the short amount of time available during the
meetings. In fact, the final point of the sessions was the need for
creating a venue for regular discussions and exchange of ideas on
these topics to optimize investment (e.g., NASA, NSF, ISSI, etc.,
grants opportunity), computational resources, and coordinate the
solar/heliophysics community effort. For example, previous efforts
such as the SIPWork (Solar Information Processing Workshop),
should be revived and adapted to the new needs of our community.
Similar workshops/working-groups are ongoing like the inaugural
workshopData, Analysis, and Software inHeliophysics (DASH) and
the Geospace Data Assimilation Working Group (GeoDAWG).

The Solar Information Processing Workshop (SIPWork) series
was initiated in 2003 to tackle the challenges of optimizing
the science return of solar and heliospheric missions. It ran
until 2014 and consisted of a series of workshops focusing
on the evolving data challenges as the Heliophyiscs System
Observatory (HSO) grew. SIPWork brought together different
communities (solar and space scientists, statisticians, and data and
image processing experts) to address the data analysis challenges
of these missions. These highly popular meetings stimulated
collaboration resulting in many proposals, and research papers.
Major solar community initiatives like SunPy (sunpy.org—python
open source The SunPy Community, 2015) arose from the SIPWork
collaborations together with Special Issues in journal (Young and

Ireland, 2008) and a book collecting developed tools (Ireland
and Young, 2009). Website updates are underway at: http://
www.sipwork.org/. We are currently working to organize the next
workshop and expand it to include all of Heliophysics. Thus,
the name will be SHIPWork (Solar and Heliospheric Information
Workshop). This venue could potentially provide new opportunities
including training/tutorials for scientists, for example, in designing
user-friendly software tools using online repositories such asGithub,
and showcasing specific application of old and new tools.

Community needs highlighted in Section 2.2 should be further
accompanied by community best practice to.

• Contact the instrument’s Principal Investigator for information.
• Teach new generation of young scientists the best-practices

for proper documentation of data and software while also
providing workshops to update mid-level scientists.
• Assure as much as possible the longevity of software (also

paying attention to compatibility over time with new software
versions).
• Advocate for proper referencing of software, data analysis tools

and data products used in research activities.
• Deprecate proprietary tools and encourage open source

software and toolchains to ensure reproducibility of science
results and longevity of tools (e.g., NASA Open-Source Science
Initiative). For example, the statistical language R provides a
citing package which is important both to properly credit the
developer and to allow for science reproducibility.

5 Conclusion

In the next decade, we should pursue the following.

• The continued standardization of tools and techniques for the
analysis of heliospheric data.
• The establishment of web services for collecting and cataloging

the tools themselves and their outputs; current examples are
theCommunity Coordinated Modeling Center (CCMC), 2016;
Hesse et al. (2002), Virtual Solar Observatory (VSO), 2022;
Hill et al. (2004) andHeliophysics Events Knowledgebase (HEK),
2016; Hurlburt et al. (2012).
• Targeting investment in the full use of computational resource

capabilities.
• Improving the synergy among observations, tools and models

aimed at the study of the Sun-Earth system.
• Coordinating working groups (public and private) focused

on these subjects, including computer scientists dedicated
to optimizing software tools, under the guidance of an
international dedicated core team.
• This coordination effort should also follow the Findable,

Accessible, Interoperable and Reusable (FAIR) Barker et al.
(2022) and Inclusion, Diversity, Equity and Accessibility
(IDEA) principles.

We envision the community fully engaged in using and
developing a library of open-source software tools and techniques
that would be the basis for the extensive and optimized use
of archived datasets, which set the standard for the way new
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observations are utilized. The documentation and examples from
this library would be freely hosted through a comprehensive web
interface (comparable to the current SAO/NASA Astrophysics Data
System (ADS) for publications).
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