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Editorial on the Research Topic

Applications of statistical methods and machine learning in the space
sciences

The fully virtual conference, Applications of Statistical Methods and Machine Learning in the
Space Sciences, hosted by Space Science Institute’s (SSI) Center for Data Science (CDS) and
sponsored by the National Science Foundation (NSF), was held during 17–21 May 2021
(http://spacescience.org/workshops/mlconference2021.php). This event brought together
experts in various disciplines of the space sciences (such as solar physics and aeronomy,
planetary and exoplanetary sciences, geology, astrobiology, and astronomy) and industry to
leverage the advancements in statistics, data science, methods of artificial intelligence (AI),
and information theory with the aim of improving the analytic models and their predictive
capabilities utilizing the enormous volume of data in these fields.

This multidisciplinary conference provided a vibrant forum for industry professionals,
senior scientists, early career researchers, and students to present their latest results using a
wide variety of techniques and methods in advanced statistics, to enhance their knowledge
on the recent trends in AI and to participate in a platform for future collaborations.
The conference covered a wide range of Research Topics, such as advanced statistical
methods, deep learning and neural networks, time series analysis, Bayesianmethods, feature
identification and feature extraction, physics-basedmodels combinedwithmachine learning
(ML) techniques and surrogatemodels, spaceweather prediction and other domainResearch
Topics where AI is applied, model validation and uncertainty quantification, turbulence
and non-linear dynamics in space plasma, physics informed neural networks, information
theory, and data reconstruction and data assimilation.

AI methods have already been applied to various problems in the field of solar-
terrestrial physics since the 1990s (Newell et al., 1991; Lundstedt, 1992; Lundstedt,
1996; Wintoft and Lundstedt, 1997; Wing et al., 2005; Lundstedt, 2006). These included
classifications of auroral particle precipitation, predictions of solar wind velocity,
geomagnetic disturbances, and the planetary K-index Kp, used to characterize the
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magnitude of geomagnetic storms (https://www.gfz-potsdam.
de/en/section/geomagnetism/data-products-services/geomagnetic-
kp-index). Information theory has proved useful in establishing
linear and non-linear relationships and causalities in the studies
of solar and space physics (Wing et al., 2016; Wing et al., 2018).
Early attempts to apply ML techniques involve the forecasting
of geomagnetic indices (e.g., Wu and Lundstedt, 1996; Wu and
Lundstedt, 1997), the relativistic electrons at geosynchronous orbits
(e.g., Stringer et al., 1996), and solar eruptions (Fozzard et al.,
1988; Camporeale et al., 2019). A summary of current efforts
on applying ML methods in the field of space sciences in
comparison with those efforts in other fields of natural sciences
and recommendations for ML in planetary science to funding
agencies and the planetary community can be found in Azari et al.
(2021). Figure 1 of Azari et al. (2021) illustrated that heliophysics
and space physics had the highest percentage of published
works discussing ML in 2020, followed by astrophysics and
Earth science, and they concluded with recommendations for
the next decade for supporting a data-rich future for planetary
science.

The “International Workshop on Artificial Intelligence
Applications in Solar-Terrestrial Physics,” held in 1993, was
one of the first of its kind which focused on “neural network
applications of Multi-Layer-Error-Back-Propagation (MLBP)
and Self-Organizing Map (SOM) neural nets and traditional
expert systems and fuzzy expert systems” (Joselyn et al., 1993).
Unlike this and other conferences on ML (Camporeale and SOC-
ML-Helio, 2020), the SSI virtual conference had an emphasis
on understanding the physics and dynamics of systems while
seeking accurate solutions using ML methods (“black box” versus
“interpretable” models). Furthermore, this virtual conference
highlighted the interdisciplinary nature of ML applications in
space sciences, the main theme of the conference. The research
works presented revealed close collaborations among researchers in
space science, statistics, computer science, and AI, showcasing how
these experts can collaborate to soundly improve their models and
predictions.

The virtual conference served as an initiative of SSI/CDS to
bring together domain experts in space sciences and highly skilled
corporate talents sharing a common interest in data science and
ML. The CDS aims to inspire the scientific community to utilize
key insights on emerging technologies, transforming this possibility
into reality. SSI hosted 219 registered participants from more than
25 countries over Zoom for this event. Though participants were
not asked to provide their demographic information, based on 103
of the conference registrants for whom the conference organizers
could reasonably determine their backgrounds, we understand
that there were 32 female participants, 43 from underrepresented
minorities, and 45 early career (within 5 years after earning their
Ph.D.s) scientists. We had 79 oral and 28 e-poster presentations
in addition to interactive sessions demonstrating data processing
and ML methods. The virtual conference featured 14 keynote
speakers, 50% of whom were female scientists and 5 early career
scientists. Links to these presentation slides and the recordings
are available at the conference website (http://spacescience.org/
workshops/mlconference2021.php).

The highlight of the conference was the lively discussion
sessions. The virtual conference designated 45 min each day for live

discussion sessions to discuss AI and ML trends in specific domains
of space science and to encourage cross-disciplinary approaches to
problems in different fields. Discussions were distributed among
different Research Topics and centered around the applicability of
Statistical Methods and ML in Astronomy, Aeronomy, Heliophysics,
Magnetospheric Studies, Planetary Sciences and Exoplanets, and
Turbulence and Non-linear Dynamics. Moreover, these sessions
highlighted the importance and the impact of a few fundamental
aspects in all the space science domains, such as the interpretability
and explainability of ML models, reproducibility, and the need and
availability of AI-ready data. These designated sessions addressed:
the challenges of big data and small data sets; how to handle
overfitting; uncertainties and gaps in the data sets and how they
are incorporated into the models; supervised and unsupervised
ML; and how to compare models. These discussions defined and
emphasized the necessity of AI-ready data in all the disciplines
of space sciences, and the participants shared information on the
various data sets currently available and what are the steps to
be taken to create better and more concise AI-ready data. We
believe that these discussion sessions were particularly helpful for
the students, early career researchers, and early ML practitioners
who constituted a substantial fraction of the conference attendees,
because these sessions covered links and access to a number
of educational, software, and data resources. These discussions
revealed the interdisciplinary nature of ML applications in the
space sciences and how this virtual conference presented itself
as a platform for connecting the various components of this fast
emerging, dynamical trend of AI applications.

This topical collection compiles the works presented at the
above virtual conference, along with new contributions from the
broader scientific community in the form of original research
articles, reviews/mini-reviews, brief reports and commentaries on
the present scenario of AI applications in the space sciences, and
scope of statistical and ML methods in the various fields of space
sciences.

Active galactic nuclei (AGNs) are very bright, compact regions at
the center of certain galaxies, the brightness of which arise from the
accretion disks around supermassive black holes. Implementation
of ML techniques in the redshift estimation of AGNs is becoming a
common practice in astrophysics, but the data gaps in large-scale
galactic surveys are often a hindrance to the smooth and reliable
application of ML —a common problem in ML applications in
general. Gibson et al. presents a technique for rectifying the missing
data problem called Multivariate Imputation by Chained Equations
(MICE) following Dainotti et al. (2021).

Outliers, observations that appear to differ considerably from
others in the sample, are of great significance, especially in scientific
data, for at least two reasons: 1) they may imply bad data,
or a mistake in the experiment, code, or observation which, if
detected, needs to be eliminated from the analysis, and 2) they
may instead be scientifically interesting, indicating, for example, a
random variation, and thereby, need to be detected and analyzed
separately. In either case, detection of outliers is not an easy task,
especially if the data set is enormously huge. Kerner et al. present a
technique, Domain-agnostic Outlier Ranking Algorithms (DORA),
for the automatic detection of outliers. DORA is a configurable
pipeline for evaluation of outlier detection methods in different
domains, supporting different data types such as image, raster, time
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series, or feature vector and outlier detection methods including
Isolation Forest, DEMUD, PCA, RX detector, Local RX, negative
sampling, and probabilistic autoencoder. They experimented with
various data sets and algorithms, and report their findings in
Kerner et al.

In a Perspective article, Delzanno and Borovsky brings out the
need for and the importance of a combined system science approach
to global magnetospheric models and to spacecraft magnetospheric
data. They opine that this approach provides statistical validation
of global magnetospheric models without directly comparing with
spacecraft data in addition to revealing the drawbacks of the model
while providing the physics support to system analysis performed
on the magnetospheric system. They emphasize that the question in
this context is in fact, “Do simulations behave in the same manner
as the magnetosphere does?”, instead of the standard question,
“How well do simulations reproduce spacecraft data?”. The authors
consider that this approach will provide statistical validation of
global magnetospheric models without a direct comparison with
spacecraft data and expose the deficiencies of the models, while
providing physics support to the system analysis conducted on the
magnetospheric system.

Blandin et al. compares the predictions of the magnitude of the
north-south component of the geomagnetic field |BN| using amulti-
variate Long Short Term Memory (LSTM) neural networks with the
predictions of multivariate linear regression models. Both models
use the same input, namely, a 15-year solar wind and heliospheric
magnetic field from the NASA/GSFC’s OMNI database accessible
through https://omniweb.gsfc.nasa.gov.

For a direct comparison with the Geospace Environment
Modeling (GEM) challenge of ground magnetic field perturbations
for evaluating the predictive capabilities of empirical and first
principle models and to select a model for operational purposes
(Pulkkinen et al., 2013), Pinto et al. carried out a prediction of the
horizontal component of the ground magnetic field rate of change
(dBH/dt) over six different ground magnetometer stations utilizing
ML models based on feed-forward neural network, LSTM recurrent
network, and CNN to forecast, and present the results.

Yeakel et al. utilized particle and magnetic field instrument data
from the Cassini spacecraft mission to classify orbit segments as
magnetosphere, magnetosheath, or solar wind. They trained and
tested ML algorithms for classification, such as random forest,
support vector machine, logistic regression, and LSTM, using a
list of manually detected magnetopause and bow shock crossings
by Cassini mission scientists, and present the results of this
classification and a detailed error analysis.

Zhu et al. presents a new empirical reconstruction model
of the three-dimensional magnetic field and the associated
plasma currents, combining observations made by a constellation
of satellites and a set of physics-based equations as physical
constraints to build spatially smooth distributions. Here, the authors
implement a stochastic optimization method to minimize the
loss function characterizing the model-measurement differences
and the model departures from linear or non-linear physical
constraints. They further detail their discovery when applied to
NASA’s Magnetospheric Multiscale mission data.

Prediction of solar flares has been one of the greatest challenges
in the domain of space weather, both operationally and from
the perspective of scientific research. Pandey et al. present new

heuristics in the training and deployment of the operational solar
flare predictionmethod.They present twomodels, one based on full-
disk and the other based on active regions (AR), for the prediction
of flares belonging to classes ≥M1.0. They show that their model
could predict a full-disk flare probability for the next 24 h and
their proposed logistic regression, an ensemble model, improves on
the full-disk and AR-based models (both base learners). They also
discuss the model performances based on various metrics such as
True Skill Statistic and Heidke Skill Score.

Bayesian inference is one of the ML applications that has been
widely used in the field of space sciences in recent years and
Arregui presents an example where it has successfully applied in
coronal seismology and shows how the method can be applied to
related areas of coronal loops, prominences, and other extended
coronal regions. They point out that the Bayesian method becomes
successful in these regions mainly because information about these
regions is already incomplete and uncertain due to lack of direct
access and most of the studies involve comparison of model
predictions and remote observations, leading to the results being
interpreted in terms of probabilities.

Narock et al. explores the utility of CNN in the prediction of the
orientation of the embedded magnetic flux rope that are identified
in the in-situ solar wind. They used magnetic field vectors from
simulated flux rope data, that includes a number of possibilities in
the spacecraft trajectories and flux rope orientations, to train the
CNN. They explore different neural network topologies, the various
factors that influence the prediction accuracy, and compares with
an Interplanetary Coronal Mass Ejection (ICME) observed by Wind
spacecraft.

The mini review by Telloni highlights the author’s previous
works based on statistical analyses of interplanetary and
geomagnetic data in the context of space weather prediction. The
first two of the three papers reviewed here were on what triggers the
space weather effects, such as the geomagnetic storm; the first paper
focuses on the detection, characterization, and geo-effectiveness
of ICMEs and the second one considers other solar events, during
the same period of study as in the first paper, and focuses on the
connection between solar wind energy and geomagnetic activity.
The third paper addresses the recovery phase and explores the
reasons for the slow restoration of equilibrium conditions of the
Earth’s magnetosphere.

Verkhoglyadova et al. discuss their perspectives on
implementing a mixture method approach and a computer vision
approach in quantitatively addressing the anomalies and high
density regions (HDRs) that are present in a global ionospheric
map, and how the number of the HDRs and their intensities depend
on solar and geomagnetic activities. The article finds that they are
complementary and helpful in understanding the properties of the
global ionosphere and emphasize the importance of a consistent
definition of large-scale ionospheric structures.

One of the mechanisms of radiation belt loss is the electron
precipitation (EP) through two known processes, wave-particle
interactions (relativistic electronprecipitation, REP) or current sheet
scattering (CSS), and which of these processes dominates is still not
fully understood (e.g., Schulz and Lanzerotti, 1974). It is well-known
that EP drives atmospheric effects that are related to space weather
adversities. Capannolo et al. developed a model based on LSTM to
identify relativistic precipitation events and, their associated driver

Frontiers in Astronomy and Space Sciences 03 frontiersin.org

https://doi.org/10.3389/fspas.2023.1163530
https://www.frontiersin.org/articles/10.3389/fspas.2022.867947/full
https://www.frontiersin.org/articles/10.3389/fspas.2022.808629/full
https://www.frontiersin.org/articles/10.3389/fspas.2022.846291/full
https://omniweb.gsfc.nasa.gov
https://www.frontiersin.org/articles/10.3389/fspas.2022.869740/full
https://www.frontiersin.org/articles/10.3389/fspas.2022.875985/full
https://www.frontiersin.org/articles/10.3389/fspas.2022.878403/full
https://www.frontiersin.org/articles/10.3389/fspas.2022.897301/full
https://www.frontiersin.org/articles/10.3389/fspas.2022.826947/full
https://www.frontiersin.org/articles/10.3389/fspas.2022.838442/full
https://www.frontiersin.org/articles/10.3389/fspas.2022.865880/full
https://www.frontiersin.org/articles/10.3389/fspas.2022.852222/full
https://www.frontiersin.org/articles/10.3389/fspas.2022.858990/full
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Poduval et al. 10.3389/fspas.2023.1163530

(REPs or CSSs) and classify them as REPs or CSSs. They find that
this large data set of REP and CSS events is useful in obtaining
the location and properties of the precipitation driven by these two
processes at all L-shells and magnetic local time sectors, thereby
improving the radiation belt models.

Solar granulation, the dark and bright granular structure visible
on the photosphere, depicts the overturning convective transport
of magnetized plasma and energy in the region right below
the photosphere (see Stix, 2002, for details). There exist specific
and systematic morphological patterns including the exploding
granules and bright points that have been extensively studied. U-
net, a CNN used for biomedical image segmentation, has been
found to be promising in the classification of solar granulation
structures as shown by Díaz Castillo making use of the continuum
intensity maps of the IMaX instrument on board Sunrise I and
corresponding segmented maps as a training set. The authors find
that U-net architecture is quite promising in identifying cellular
patterns in solar granulation images with an average accuracy above
80%.

Song et al. presents their automatic identification algorithm
to detect the magnetopause crossing events in THEMIS data
from 2007 to 2021 in a study of overshoot structure in the
magnetospheric magnetic field. They found that about half of the
identified magnetopause crossing events near the subsolar region
“appear [to have] an overshoot structure.” The rate of change of a
magnetosphericmagnetic field near themagnetopause bears a linear
relation to the magnetopause velocity, implying that the cause of
the overshoot structure can be considered as the magnetospheric
magnetic field redistribution caused by the rapid motion of the
magnetopause.

El Mir and Perinpanayagam reviews the current certification
of landing gear available for use in the aerospace industry. The
authors discuss the role of ML techniques in structural health
monitoring and points out that the non-deterministic nature
of deep learning algorithms could be a hurdle for certification
and verification in the industry. For implementing ML methods
successfully, the safe-life fatigue assessment needs to be certified
so that the remaining useful life may be accurately predicted and
trusted.They further discuss the riskmanagement and explainability
for different end user categories involved in the certification
process.

In addition to this topical collection that reveals the
interdisciplinary nature of the applications of AI and statistical
methods, as the virtual conference aimed at, the most significant
outcome is the multi-authored white paper on the AI-readiness
(Poduval et al., 2022) of the numerous space science data for AI/ML
applications that was submitted to The National Academies of
Science, Engineering, and Medicine’s Decadal Survey for Solar and
Space Physics (Heliophysics) 2024–2033. There is a strong urgency
in the space sciences to make all existing data AI-ready within a
decade, which is ambitious, not only because of the timescale and
enormity of the data sets involved, but also because AI-readiness

lacks a concrete definition within and across all fields in space
science. Poduval et al. (2022) provides a definition of AI-readiness
that conveys the widely accepted norms and concepts in the space
sciences community and recommend mitigation strategies such as
unambiguously defining AI-readiness; prioritizing certain data sets,
their storage and accessibility; and identifying the agencies, private
sector partners, or funded individuals who will be responsible. We
hope this topical collection will help the scientific community to
further advance the initiative to get the space science data AI-ready
in a timely fashion.
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