
TYPE Original Research
PUBLISHED 23 June 2023
DOI 10.3389/fspas.2023.1177550

OPEN ACCESS

EDITED BY

Fadil Inceoglu,
National Centers for Environmental
Information (NCEI) at National
Atmospheric and Oceonographic
Administration (NOAA), United States

REVIEWED BY

Sabrina Guastavino,
University of Genoa, Italy
Varad Deshmukh,
Meta Platforms Inc., United States

*CORRESPONDENCE

Yanmei Cui,
ymcui@nssc.ac.cn

RECEIVED 01 March 2023
ACCEPTED 02 June 2023
PUBLISHED 23 June 2023

CITATION

Li M, Cui Y, Luo B, Wang J and Wang X
(2023), Deep neural networks of solar
flare forecasting for complex active
regions.
Front. Astron. Space Sci. 10:1177550.
doi: 10.3389/fspas.2023.1177550

COPYRIGHT

© 2023 Li, Cui, Luo, Wang and Wang.
This is an open-access article distributed
under the terms of the Creative
Commons Attribution License (CC BY).
The use, distribution or reproduction in
other forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution
or reproduction is permitted which does
not comply with these terms.

Deep neural networks of solar
flare forecasting for complex
active regions

Ming Li1,2,3, Yanmei Cui1,3*, Bingxian Luo1,2,3, Jingjing Wang1,3 and
Xin Wang1,2,3

1State Key Laboratory of Space Weather, National Space Science Center, Chinese Academy of
Sciences, Beijing, China, 2University of Chinese Academy of Sciences, Beijing, China, 3Key Laboratory
of Science and Technology on Environmental Space Situation Awareness Chinese Academy of
Sciences, Beijing, China

Solar flare forecasting is one of major components of operational space weather
forecasting. Complex active regions (ARs) are the main source producing major
flares, but only a few studies are carried out to establish flare forecasting models
for these ARs. In this study, four deep learning models, called Complex Active
Region Flare ForecastingModel (CARFFM)-1, −2, −3, and −4, are established. They
take AR longitudinal magnetic fields, AR vector magnetic fields, AR longitudinal
magnetic fields and the total unsignedmagnetic flux in the neutral line region, AR
vector magnetic fields and the total unsigned magnetic flux in the neutral region
as input, respectively. These four models can predict the production of M-class
or above flares in the complex ARs for the next 48 h. Through comparing the
performance of the models, CARFFM-4 has the best forecasting ability, which
has the most abundant input information. It is suggested that more valuable and
rich input can improve the model performance.
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1 Introduction

A solar flare is a violent eruption in a localized region of the solar atmosphere, and is
characterized by an almost full-band increase in electromagnetic radiation and streams of
particles with energy ranging from 103 eV to 1011 eV (Knipp, 2005). Many studies show
that the greater a flare’s intensity, the more likely it is to be accompanied by a solar proton
event or coronal mass ejection (CME), along with more serious space environment effects
(Kahler, 1992; Harrison, 1995; Yashiro and Gopalswamy, 2009). Therefore, it is important
and necessary to forecast whether or not a flare may happen and what its intensity will be.

Solar flares are mainly produced in solar active regions (ARs), especially in complex
ARs (Ataç, 1987; Sammis et al., 2000; Chen et al., 2011; Lee et al., 2012; Eren et al.,
2017). Sammis et al. (2000)found that ARs with more complex magnetic field structures
have a higher flare production probability. Meanwhile, it is found that AR samples
with simple magnetic types hardly produce large flares. Lee et al. (2012) calculated
the relationship between the McIntosh classification of sunspot groups and the flare
productivity and found that the flare productivity increases significantly with increasing
complexity of the group, especially for large flares. Eren et al. (2017) found that sunspot
groups with large areas and complex structures have about eight times higher flare
yields than small and simple sunspot groups. In the operational flare forecasting,
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forecasters usually pay more attention to those ARs with complex
structures or large areas, by using their long-term forecasting
experience. For instance, when there are only Alpha type ARs in
the solar disk, forecasters can easily predict “flares will not happen”.
When one ormoreARswith Beta-Gamma-Delta types or large areas
appear, forecasters have to spend a lot of time analyzing these ARs’
structure, evolution, and movements, before providing prediction
results. However, there are no research on building a flare prediction
model for complex ARs so far.

A lot of machine learning methods have been used in flare
forecasting because of their excellent ability to “learn” data,
especially deep learning methods (Wang et al., 2008; Yuan et al.,
2010; Guerra et al., 2015; Raboonik et al., 2016; Benvenuto et al.,
2017; Nishizuka et al., 2017; Huang et al., 2018; Nishizuka et al.,
2018; Liu et al., 2019; Wang et al., 2020; Chen et al., 2022;
Guastavino et al., 2022; Sun et al., 2022; Guastavino et al., 2023).
These work are basically aimed at all types of ARs with simple
or complex structures. In the previous work of constructing deep
learning solar flare predictionmodels (Li et al., 2022), we found that
the fusionmodel of two AR sub-models based on different magnetic
type sample grouping has a better performance than the model with
all types of ARs. That is to say, a model based on a certain type
of ARs is more efficient. In order to improve the flare forecasting
performance for complex ARs, this study aims to establish flare
prediction models for complex ARs, using deep neural networks
and more effective AR information.

AR vector magnetic fields contain more information than
the longitudinal magnetic fields, but they are less used in the
flare forecasting (Bobra and Couvidat, 2015; Jonas et al., 2018;
Chen et al., 2021; Deshmukh et al., 2022). Meanwhile, more studies
have shown that the physical quantities in AR magnetic neutral
regions are very effective in determining the production of solar
flares (Georgoulis et al., 2012; Török et al., 2014; Liu et al., 2017;
Georgoulis, 2018). Cicogna et al. (2021) proposed a new topological
parameter D of the neutral region and built a flare prediction
model using a hybrid lasso supervised algorithm. Sun et al. (2021)
constructed two interpretable sets of spatial statistical features and
topological features of neutral regions, and significantly improved
flare predictions.

In this study, AR vector magnetic fields and the total unsigned
magnetic flux in the neutral region are used as input. The detailed
data selection, parameter calculation and sample labeling are
presented in Section 2. Deep learning flare prediction models
for complex ARs are presented in Section 3. Model evaluation is
presented in Section 4. Section 5 summarizes the paper.

2 Data selection and processing

2.1 Selection of complex AR samples

Based on ARMountWilson magnetic classifications, we classify
AR magnetic classifications into three types: the unipolar group
Alpha, the bipolar group Beta, and other complex groups, called as
Beta-x, including the types of Gamma, Beta-Gamma, Delta, Beta-
Delta, Beta-Gamma-Delta, and Gamma-Delta. The three kinds of
magnetic types have different flare production potential (Li et al.,
2022): Alpha type ARs hardly produce flares of ≥M-class, Beta

type ARs have a moderate probability of producing ≥ M-class
flares, and Beta-x type ARs have a relatively highest probability of
producing ≥M-class flares. Here, the Beta-x type ARs are defined as
complex ARs.

The Solar Region Summary, compiled by NOAA/SWPC,
provides a detailed AR description containing magnetic types,
locations, areas, etc. Using these files during 1 May 2010 to 31
December 2018, we get 8901 complex AR samples.

2.2 Selecting and processing of AR vector
magnetograms

SHARP vector magnetograms (Bobra et al., 2014) observed by
SDO/HMI (Pesnell and Chamberlin, 2012; Scherrer et al., 2012)
are used, which have a pixel size of 0.5and a 12-min cadence.
According to above selected AR samples with Beta-x type, the
corresponding SHARP vector magnetic field files are chosen during
the period of 1 May 2010 to 31 December 2018. Besides, the
chosen magnetograms satisfy the following conditions: 1) In order
to ensure the enough variations between the successive AR samples,
the SHARP vector magnetograms are taken every 96 min; 2) To
reduce the effect of projection effects, only magnetograms locating
within ±30 heliolongitude degrees of the solar disk are employed
(Cui et al. (2007); and 3) The quality of magnetograms is very
high.

A vector magnetogram measures three quantities: the intensity
of the longitudinal component, the intensity of the transverse
component, and the direction of the transverse component. Here,
only the intensities of the longitudinal and transverse component
are considered. Tomeet the input requirements of the convolutional
neural network (CNN) introduced in Section 3, the magnetic
graphs of transverse and longitudinal fields are converted into
grayscale images with a uniform size of ×160160 pixels. A schematic
diagram of the uniform magnetogram size is given in Figure 1.

2.3 Calculation of the total unsigned
magnetic flux in the neutral line

Statistical results and forecasting experience show that most
major flares are observed in the vicinity of neutral lines (Schrijver,
2007; Mason and Hoeksema, 2010; Welsch et al., 2011; Moore et al.,
2012; Vasantharaju et al., 2018). Based on this fact, Schrijver (2007)
introduced the quantity R, the total unsigned magnetic flux in the
neutral region. This study and subsequent studies demonstrated
that R is a very important parameter determining whether a
flare is produced in one AR. Ji et al. (2020) trained interval-based
time series classifiers for All-Clear flare forecasting by using the
quantity of R and total unsigned flux. Tang et al. (2021) built a solar
flare prediction model with SHARP magnetograms and magnetic
parameters including the quantity of R. Here, applying the method
of Schrijver (2007), we calculate the quantity R.

First, two bitmaps are generated from the magnetogram,
containing a positive mapping and a negative mapping, with a
positive field of 1 in the positive mapping (where B ≥ 200 G) and
the rest of the pixels as 0; and a negative field of −1 in the negative
mapping (where B ≤ −200 G) and the remaining pixels are 0. Then,
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we generate the neutral line mask by multiplying the positive and

negative mappings, which are convolved using a Gaussian kernel.

After that, the R value is calculated by summing the absolute values

of the magnetic intensity values in the neutral region. Figure 2

gives an example of the extracted neutral line in AR 1465. a) is the

longitudinal magnetic field, b) is the mask of positive field derived,

c) is themask of negative field derived, and d) is the extracted neutral

region with the non-zero magnetic field values.

The relationship between R and solar flare productivities is

analyzed. We split the range of R values into 25 equal-sized bins

FIGURE 1
Example of the uniform magnetogram size. (A), (B), (C) are the transverse magnetograms. (A) is the original transverse magnetogram, (B) is the filled
square transverse magnetogram, and (C) is the final input transverse magnetogram with the size of ×160 160 pixels. (D), (E), and (F) provide the process
of the conversion for the corresponding longitudinal magnetogram.

FIGURE 2
An example of the extracted neutral line in AR 1465 observed by SDO/HMI at 16:00 UT, 2012 April 25. (A) is the longitudinal magnetic field, (B) is the
mask of positive field derived, (C) is the mask of negative field derived, and (D) is the extracted neutral region with the non-zero magnetic field values.
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FIGURE 3
Distributions of R values (A) and the corresponding flare productivities (B). X-axis is the value of R. In (A), the red, blue and green dots indicate the
number of total samples, non-flare samples, and flare samples, respectively.

from itsmaximum tominimum, and then count the numbers of flare
samples, non-flare samples, and total samples, shown in Figure 3A.
Based on the numbers of flare samples and total samples in each bin,
the flare productivities are calculated. Since the number of samples
with R greater than 1E7 Gs× pixel2 is small, those bins greater than
1E7 Gs× pixel2 are combined into one bin. From Figure 3B, it can
be seen that the flare productivity increases with the increase of R
values. Based on this relationship, the R value is normalized, which
is used as the deep learning model input.

2.4 Labeling for flare and non-flare samples

These AR samples are labeled based on the occurrence of M-
class or larger flares within the next 48 h. When an AR produced
one or more M-class or larger flares in the next 48 h, the sample is
a flare sample. Conversely, it is a non-flare sample when AR did not
produce any of M-class or larger flare in the next 48 h. The AR flare
list is provided by NOAA/SWPC. Through the above series of data
selection and processing, there are 1842 flare samples and 6988 non-
flare samples for complex ARs.

3 Deep learning flare prediction
models for complex ARs

3.1 Processing of the imbalance dataset

The number of flare samples is much smaller than the number
of non-flare samples. Faced with the imbalanced data set, machine
learning models typically predict the majority of samples, which
means that flare samples are more probably to be misclassified
than more non-flare samples. How to deal with the imbalance
dataset is an important research in the field of machine learning.
A series of methods have been proposed. Among them, resampling
is a widely adopted method, which consists of undersampling
(removing samples from the majority class) and oversampling
(adding more examples to the minority class). Which method is

better in the flare forecasting is still inconclusive. Here, we use
a undersampling method to randomly select 1842 samples from
the 6,988 non-flare samples. In the other study, we focused on
tackling with the unbalanced dataset in the flare forecasting models
(Liu et al., 2023). Thus, there are 3684 samples in total. In order
to further expand the sample set, we flip the AR magnetograms
horizontally and vertically. In this way, the number of samples
has been increased by three times, to 11,052 cases. Figure 4
shows an example of the flipping process of an AR longitudinal
magnetogram.

3.2 CNN flare forecasting models for
complex ARs

CNN (Neubauer, 1998; Lecun et al., 2015; Schmidhuber, 2015)
is a representative network structure in the field of deep learning.
CNN can process input data with two-dimensional patterns such as
images and perform well on a raw image without preprocessing. It
is widely used in the computer visions such as image classification.
In this study, the CNN is used to establish flare forecasting models
for complex ARs. The image input of CNN generally requires
a uniform size. The AR transverse and longitudinal magnetic
graphs have been converted into the uniform size of ×160160
pixels.

The CNN includes two main parts. One part consists many
pairs of convolutional or pooling layers, called as Feature Extraction,
which separates and identifies the various features of the AR
magnetic field images for analysis. Here, the convolution part
contains four layers of convolution, the size of the convolution kernel
is 5 × 5, and the number of kernels in the four layers are 32, 64,
128, and 256 respectively. During the convolution process all-zero
padding is used with a step size of 1.The data from the convolutional
layer is activated by a nonlinear activation function (Rectified
Linear Unit) to improve the neural network’s ability to represent
the model. The activated results are fed into the pooling layer for
max pooling. During the pooling process all-zero padding is used
and a kernel size of 2 × 2 with a step size of 2. The pooled data can
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FIGURE 4
Example of flipped longitudinal magnetograms for AR 1875 observed by SDO/HMI at 08:00 UT, 2013 October 25. (A) is the AR original longitudinal
magnetogram, (B) and (C) are the magnetograms after being flipped horizontally and vertically, respectively.

TABLE 1 CNN hyperparameter settings.

Type Name Value

Model hyperparameters

Input image size 160 × 160

Convolutional Kernel size 5 × 5

layer Number of kernels 32, 64, 128, and 256

hyperparameters Step size 1

Pooling Kernel size 2 × 2

layer Step size 2

hyperparameters Pooling method Max pooling

Training hyperparameters

Batch_size 100

Iteration 2000

Learning rate 0.0005

avoid the intervention of more redundant information to prevent
overfitting.

The other part is the fully connected layers, called as
Classification, which utilizes the output from the previous process
and predicts the flare production. The fully connected layer
integrates highly abstract features after multiple convolutions
and then normalizes them to output the probability of each
classification case. In the fully connected layer, there is one hidden
layer containing 512 neurons. The output layer has two nodes each
corresponding to whether the output corresponds to an outbreak
of flares or not. When an R-value is input to the model, it enters
the fully connected layer along with the features extracted from the
magnetogram for the classification process. The output of the fully
connected neural network pass through the softmax function to
obtain the probability distribution of the classification. The results
are then compared with the data labels to get the cross entropy, so
as to gain the loss function.

The model is optimized by the gradient descent optimizer.
Before the network undergoes the optimization process, the training
hyperparameters are set empirically. The batch size of the model is
100, the number of iterations is 2000, and the learning rate is 0.0005.
Allmodel hyperparameters andtraining hyperparameters are shown

in Table 1. The corresponding loss function curve on the training
sets and the accuracy curve on the test sets are shown in Figure 5,
which denote that the models have learned some of the features and
are in a stable state after 2000 steps.

To evaluate the impact of different inputs, four models are
established by using the same CNN structure and hyperparameters,
which are named asComplexActive Region Flare ForecastingModel
(CARFFM) -1 CARFFM-2, CARFFM-3 and CARFFM-4. In the
model of CARFFM-1, the AR longitudinal magnetograms as a
single channel are input into the Feature Extraction process. In
the model of CARFFM-2, the AR longitudinal magnetograms and
the corresponding transverse magnetograms as two channels enters
the Feature Extraction process. The AR longitudinal magnetogram
and the corresponding transverse magnetogram are independent
of each other in this process. Based on the models of CARFFM-1
and -2, the parameter of R after being normalized is directly input
into the fully connected layer in the models of CARFFM-3 and -
4. These four models’ structure and inputs are shown in Figure 6
in detail.

Besides, the cross-validation technique is used. Through cross-
validation, we can see the generalization ability and stability of the
model. During the process of cross-validation, the original data
samples are divided into several parts. The CNN model trains on
all parts, except one. And the model is tested on the remaining
part. The process continues until all parts are used once as test
data. The average of all results is calculated to evaluate the model’s
performance. Here, ten-fold cross-validation is used. The obtained
complex AR flare and non-flare samples are divided into ten equal
parts in time order.

It is need to explain why we divide samples in chronological
order, not randomly. Dividing samples in chronological order can
ensure that there are completely different active region samples in
the test and training sets. Due to the relatively slow motion of
photospheric magnetic field, adjacent images in the same AR are
very similar, although the SHARP vector magnetograms are taken
every 96 min to ensure changes between consecutive AR samples. If
the samples are divided randomly, there can be similar AR samples
in the test and training set, and the model will have a pseudo good
performance owing to the over-fitting.
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FIGURE 5
The loss function curve on the training sets (A) and the accuracy curve on the test sets (B) of the four models during the training process.

FIGURE 6
The structures of the models CARFFM −1, −2, −3, and −4.

4 Model evaluation

The model evaluation is one important process in building
models. The four flare forecasting model results are given by four
parameters of “true positive (TP)", “true negative (TN)", “false
negative (FN)" and “false positive (FP)”. TP is the number of
successfully predicted flare samples and TN is the number of
correctly predicted non-flare samples. FN is the number of flare
samples wrongly forecasted as “non-flare” and FP is the number
of non-flare samples wrongly forecasted as “flare”. The four models
CARFFM -1, −2, −3 and −4 have TP of 119 ± 22, 119 ± 22, 120 ± 25,
and 124 ± 18, TN of 143 ± 19, 148 ± 18, 144 ± 18, and 144 ± 22, FN of
65 ± 22, 65 ± 22, 64 ± 25, and 60 ± 18, and FP of 41 ± 19, 36 ± 18, 40
± 18, and 40 ± 22, respectively. The values of these four parameters
are shown in Table 2.

To further quantitatively evaluate the performance of the
models, several commonly used measures are calculated: Precision,
Recall, F1 score (Goutte and Gaussier, 2005), Accuracy (ACC),
Critical success index (CSI) (Donaldson et al., 1975), False alarm
rate (FAR), and True skill Statistics (TSS) (Hanssen and Kuipers,
1965). In operational flare forecasting, forecasters are mainly
concerned with TP, FN and FP. These three parameters need to
be taken into account simultaneously when evaluating the model.
Therefore, we choose F1 score as the main evaluation index, and
ACC, CSI, and TSS are as references. The F1 score is the harmonic
average of Precision and Recall, which includes TP, FN, and FP
at the same time. ACC measures the total correct forecasting rate.
CSI is the ratio of TP to the sum of TP, FP, and FN. TSS is the
difference between the ratio of the correctly predicted flare samples
to the total flare samples and the ratio of the incorrectly forecasted
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TABLE 2 Evaluationmeasures and values.

Evaluation measures Calculation formulae CARFFM-1 CARFFM-2 CARFFM-3 CARFFM-4

TP 119 ± 22 119 ± 22 120 ± 25 124 ± 18

TN 143 ± 19 148 ± 18 144 ± 18 144 ± 22

FN 65 ± 22 65 ± 22 64 ± 25 60 ± 18

FP 41 ± 19 36 ± 18 40 ± 18 40 ± 22

F1 score 2Precision×Recall
Precision+Recall

0.6885 ± 0.0892 0.6982 ± 0.0968 0.6924 ± 0.1025 0.7106 ± 0.0847

Precision TP
TP+FP

0.7483 ± 0.0950 0.7731 ± 0.0956 0.7550 ± 0.0916 0.7629 ± 0.0999

Recall TP
TP+FN

0.6462 ± 0.1178 0.6451 ± 0.1213 0.6500 ± 0.1359 0.6723 ± 0.0999

ACC TP+TN
TP+FP+FN+TN

0.7111 ± 0.0795 0.7255 ± 0.0800 0.7174 ± 0.0852 0.7272 ± 0.0810

CSI TP
TP+FP+FN

0.5313 ± 0.1036 0.5440 ± 0.1146 0.5381 ± 0.1225 0.5573 ± 0.1051

FAR FP
TP+FP

0.2517 ± 0.0950 0.2269 ± 0.0956 0.2450 ± 0.0916 0.2371 ± 0.0999

TSS TP
TP+FN
− FP

FP+TN
0.4223 ± 0.1590 0.4511 ± 0.1600 0.4348 ± 0.1704 0.4543 ± 0.1620

flare samples to the total non-flare samples. The higher this value
is, the better the model performance is. The measure equations
and the corresponding mean values and standard deviations for the
four models are shown in Table 2. In the ten-fold cross validation,
the large mean value and small standard deviation of the measures
(F1 score, ACC, CSI, and TSS) means that the model has a better
performance for most of the test parts.

Here, themean values and the standard deviations of F1 score for
CARFFM-1, CARFFM-2, CARFFM-3, and CARFFM-4 are 0.6885
± 0.0892, 0.6982 ± 0.0968, 0.6924 ± 0.1025, and 0.7106 ± 0.0847,
respectively. That is, CARFFM-4 has the largest mean value of F1
score, while CARFFM-1 does the smallest mean value of F1 score.
It is denoted that CARFFM-4 has the best performance, CARFFM-
2 and CARFFM-3 have better performance, CARFFM-1 has the
relatively poor performance, although the difference in the model
performance is not big. The evaluation scores of ACC, CSI and TSS
give the same conclusion, such as TSS, which scores of the four
models are 0.4223 ± 0.1590, 0.4511 ± 0.1600, 0.4348 ± 0.1704, and
0.4543 ± 0.1620, respectively.

The difference in model performance comes from the different
inputs. In the model of CARFFM-4, there are 3 types of
inputs including the AR longitudinal magnetogram, transverse
magnetogram and the parameter of R, while only AR longitudinal
magnetogram is used in the model of CARFFM-1. In the models
of CARFFM-2 and CARFFM-3, there are two types of inputs.
Therefore, it is got that more valuable inputs can improve the model
forecasting performance.

5 Summary and conclusion

Solar flares are important space weather events, which are
mainly produced in ARs, especially in complex ARs. Many studies
have been carried out on the establishment of flare prediction
models for all ARs. But so far, few studies have been carried on
establishing flare forecasting models for complex ARs.

By using the SDO/HMI SHARPmagnetic field data from 1May
2010 to 31 December 2018, four flare forecasting CNN models are

established for complex ARs, called as CARFFM −1, −2, −3 and −4.
In the model of CARFFM-1, only AR longitudinal magnetograms
are used as input for Feature Extraction in the CNN structure. In
the model of CARFFM-2, AR vector magnetograms containing the
intensity of the longitudinal and transverse components are used as
input for Feature Extraction. Based on the models of CARFFM-1
andCARFFM-2, the normalized physical quantity of R in the neutral
line is input to Classification, or the fully connected layer, in the
models of CARFFM -3 and −4. These four models can provide the
forecasting result for the occurrence ofM-class or above flares in the
complex ARs for the next 48 h.

To compare the forecasting performance of the four models,
many evaluation measures are calculated. F1 score are chosen as
the main measure, and ACC, CSI, and TSS are as references. The
mean values of F1 score for the four models of CARFFM −1, −2,
−3 and −4 are 0.6885, 0.6982, 0.6924, and 0.7106, respectively. It
is shown that the CARFFM-4 has the biggest mean value of F1
score, and the CARFFM-2 and the CARFFM-3 havemoderatemean
values of F1 score, and in the model of CARFFM-1, the mean
value of F1 score is the smallest. Other evaluation metrics also
show the same results, such as TSS. The TSS of the four models
are 0.4223 ± 0.1590, 0.4511 ± 0.1600, 0.4348 ± 0.1704, and 0.4543
± 0.1620, respectively. As a whole, the CARFFM-4 has the best
prediction performance, and the prediction performance of the
CARFFM-1 is relatively poor. Therefore, we consider that more
valuable inputs are beneficial to improve the model forecasting
performance.

In this study, we have established flare forecasting models
for complex ARs. However, in order to further improve the
operational flare forecasting performance, there are still a lot of
work to do. First, the flare forecasting models should consider AR
evolution or motion information before the flare eruption, which
is important to determine the occurrence of flares. Second, more
magnetic parameters can be used, such as current helicity and free
energy density, which have physical meanings and play an effective
role. And last but not least, how to better utilize the AR vector
magnetic map information is an important open question. Here, the
longitudinal and transverse strength information of complex ARs is
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considered merely, the directional information of transverse fields is
not included.
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