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Introduction: For the last several decades, continuous monitoring of the solar
wind has been carried out by spacecraft at the first Earth-Sun Lagrange point
(L1). Due to computational expense or model limitations, those data often must
be propagated to some point closer to the Earth in order to be usable by
those studying the interaction between Earth’s magnetosphere and the solar
wind. The current most widely used tool to propagate measurements from L1
(roughly 235 RE upstream) to Earth is the planar propagation method, which
includes a number of known limitations. Motivated by these limitations, this study
introduces a new algorithm called the Probabilistic Regressor for Input to the
Magnetosphere Estimation (PRIME).

Methods: PRIME is based on a novel probabilistic recurrent neural network
architecture, and is capable of incorporating solar wind time history from L1
monitors to generate predictions of near-Earth solar wind as well as estimate
uncertainties for those predictions.

Results: A statistical validation shows PRIME’s predictions better match
MMS magnetic field and plasma measurements just upstream of the bow
shock than measurements from Wind propagated to MMS with a minimum
variance analysis-based planar propagation technique. PRIME’s continuous rank
probability score (CRPS) is 0.214σ on average across all parameters, compared
to the minimum variance algorithm’s CRPS of 0.350σ. PRIME’s performance
improvement over minimum variance is dramatic in plasma parameters, with
an improvement in CRPS from 2.155 cm−3 to 0.850 cm−3 in number density and
16.15 km/s to 9.226 km/s in flow velocity VX GSE.

Discussion: Case studies of particularly difficult to predict or extreme conditions
are presented to illustrate the benefits and limitations of PRIME. PRIME’s
uncertainties are shown to provide reasonably reliable predictions of the
probability of particular solar wind conditions occurring.

Conclusion: PRIME offers a simple solution to common limitations of solar wind
propagation algorithms by generating accurate predictions of the solar wind at
Earth with physically meaningful uncertainties attached.

KEYWORDS

solar wind-magnetosphere interaction, solar wind, uncertainty, magnetosphere,
machine learning, neural network, Bayesian, magnetospheric multiscale (MMS)
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1 Introduction

Earth’s geospace system is a dynamic ecosystem in which the
majority of the energy input is extracted from the flowing solar
wind (Dungey, 1961; Axford, 1964). In order to connect physical
processes in the magnetosphere to their energy sources in the solar
wind it is necessary to obtain a continuous historical record of what
solar wind has impacted the Earth’s magnetosphere. Since orbital
dynamics preclude placing a continuous monitor just upstream of
the bow shock, the solar wind is primarily monitored by spacecraft
at the L1 position roughly 235RE (1,500,000 km) ahead of the
Earth. These measurements then need to be propagated to the
Earth to account for the travel time of the solar wind plasma
and interplanetary magnetic field (IMF), generally on the order
30–60 min.

The problem of how to propagate these measurements has many
possible solutions. Calculating the delay time from dividing the
distance from the solar wind monitor to the earth by the solar
wind velocity, also known as ballistic propagation, has been shown
to be insufficient. Studies correlating measurements between ISEE
3 at L1 and ISEE 1 and IMP 8 at the Earth showed that ballistic
propagation between the spacecraft results in good correlations
(Pearson’s r > 0.8) only 25{%} of the time and can produce delay time
errors of an hour or more 30{%} of the time (Crooker et al., 1982;
Richardson et al., 1998). A more accurate method is to assume that
the solar wind advances in a series of large “phase fronts”, or planes
in which the plasma and IMF conditions are constant (Collier et al.,
1998), the orientation of which can be determined with minimum
variance analysis (MVA) (Weimer, 2003; Bargatze, 2005; King, 2005;
Weimer and King, 2008). This propagation technique is often called
MVA planar propagation, distinct from ballistic planar propagation
that assumes that phase fronts are normal to the Earth-Sun line.
For some cases, MVA planar propagation produces more accurate
delay times than ballistic propagation (Mailyan et al. 2008; Case and
Wild 2012). However, the method still has some shortcomings. If
an L1 monitor measures one apparent phase front, then measures
a faster or more strongly inclined phase front some time later,
it is possible that the MVA planar propagation algorithm would
predict the later plane would arrive at the Earth first, essentially
passing through the first plane unmodified. This is unphysical, as
such a situation in the supersonic flow of the solar wind would
result in a shock (Gosling et al., 1993). Complicating the central
assumption of any flavor of planar propagation is evidence that the
solar wind is made up of bundles of flux tubes on the order of
50–70RE in diameter (Borovsky, 2008; Neugebauer and Giacalone,
2015). Since the orbit of L1 monitors can often be 100RE or more
away from the streamline from the Sun to the Earth, it could be
often the case that a given L1 monitor is measuring a different
flux tube (and therefore different plasma) than the one that will
impact the Earth (Borovsky, 2018), violating planar propagation’s
assumption that the solarwind is an infinite plane. Indeed, spacecraft
in the solar wind often observe very different magnetic fields
and plasma, whether they are located near to the Earth or at
the L1 point (Chang and Nishida 1973; Paularena et al. (1997);
Paularena et al. (1998); Zastenker et al., 2000; Walsh et al., 2019).
It is also well observed that correlations between MVA planar
propagation shifted data decrease as transverse distance between

themonitors increases (Crooker et al., 1982;Milan et al., 2022), with
sharp decreases in accuracy around the scale size of a typical solar
wind flux tube.

One solution to these issues is the use of a physical model to
propagate solar wind conditions from one monitor to the other.
Hydrodynamic (Kömle et al., 1986) and magnetohydrodynamic
(Cameron and Jackel, 2019) solvers have been used to conduct
physics-based simulations of solar wind flow over large distances.
This approach has been shown to far more accurately propagate
shocks and other discontinuities than planar propagation does.
However, it does have the disadvantage of being computationally
expensive and difficult to implement which motivates the continued
use of simpler MVA planar propagation approaches. Additionally,
since these methods are typically implemented in 1 or 1.5
dimensions transverse separation of the points being propagated
between can still affect the accuracy of the propagation. Another
solution is to use a flexible machine learning algorithm rather
than the MVA technique’s physical assumptions to calculate time
delays for data from L1 monitors (Baumann and McCloskey,
2021). This method has been shown to be computationally
lightweight and more accurate than the MVA planar propagation
algorithm.

Uncertainty estimation is another crucial aspect of solar
wind prediction and propagation that current algorithms do not
address. It is recognized that there are uncertainties attached to
propagated solar wind measurements that are often used as inputs
to simulations or physical models that are greater than instrument
errors, and that those uncertainties limit physical understanding
that can be derived from solar wind inputs (Borovsky, 2021).
There is evidence that correlation studies of the cross polar
cap potential (Sivadas et al., 2022), development of solar wind-
magnetosphere coupling functions (Lockwood et al., 2019), and
global MHD simulation outputs (Al Shidi et al., 2023) are affected
by these uncertainties, but the development of some method
to systematically estimate physically motivated uncertainties for
solar wind inputs has not been developed. A standard technique
for terrestrial weather prediction is ensemble modeling, where
a single model generates many predictions of a single event by
taking many samples from predicted probability distributions of
its input parameters (Slingo and Palmer, 2011). In order to do
the same for space weather models, modelers must find some
estimate of their input uncertainties on their own (Morley et al.,
2018).

The aim of this study is to develop a new algorithm to
determine the solar wind plasma and IMF conditions at the
Earth from upstream measurements by L1 monitors, as well as
to assign physically meaningful uncertainties to those conditions.
This algorithm, called Probabilistic Regressor for Input to the
Magnetosphere Estimation (PRIME), requires solar wind plasma
and IMF data from a spacecraft close to the Earth for training
and solar wind plasma and IMF data at the L1 point for
prediction (Section 2) and a sufficiently representative probabilistic
propagation algorithm (Section 3) in order to be developed.
Predictions from the algorithmmust be compared to anMVAplanar
propagation algorithm (Section 4), after which the results can be
discussed in the context of the problemsmentioned in the preceding
paragraphs (Section 5).
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2 Data

2.1 MMS target dataset

Plasma and magnetic field data from the Magnetospheric
Multi Scale 1 (MMS-1) spacecraft’s (Burch et al., 2016) Fast
Plasma Investigation (FPI) (Pollock et al., 2016) and Fluxgate
Magnetometer (FGM) (Russell et al., 2016) instruments are utilized
as targets for the algorithm to be optimized against. MMS is
a constellation of four spacecraft designed to study magnetic
reconnection at Earth’s magnetopause and neutral sheet, but has had
numerous campaigns in its extended mission that have brought it
outside of the magnetosheath into the solar wind in order to study
physics such as solar wind turbulence and collisionless shocks. This
means that its apogee has been raised twice, first from 12RE to 25RE
in 2017 and then to 29RE in 2019, allowing it to regularly measure
the solar wind1. Additionally, since a large volume of data is brought
down fromMMS, a number of automated tools have been developed
to partition and cluster MMS data. These factors combine to make
MMS data a good choice for assembling large target databases of
solar wind data despite the fact thatMMS is not specifically designed
to measure the solar wind.

To assemble a solar wind dataset using MMS, an automatic tool
developed by Olshevsky et al. (2021) is used to classify all MMS-1
FPI 3D ion distributions from 2 September 2015 to 1 January 2023.
The classifier is capable of discriminating between magnetospheric,
magnetosheath, (non-foreshock) solar wind, and ion foreshock
plasma through the shape of the ion distribution function, and
outputs a normalized probability that a given distribution belongs
to each class. Periods of time where MMS-1 is in the solar wind
with probability p > 0.7 are found using the classifier, all other
time periods are removed (thereby removing the magnetosphere,
magnetosheath, and foreshock from the dataset), then remaining
FGMmagnetic field and FPI ion and electronmoments are averaged
in 100 s bins. The foreshock is removed from the dataset since
including it could complicate the use of PRIME’s outputs as inputs
to models of magnetospheric response to solar wind driving (for
instance, a simulation looking to produce foreshock structures given
some solar wind conditions should not have foreshock structures
included in its inputs). Since the classifier is trained only on data
from the dayside orbits, any data on the nightside (GSE X < 0) are
removed. The full spatial distribution of the solar wind data as well
as similarly binned magnetosheath data are shown in Figure 1.

As previously mentioned, MMS is not specifically designed to
measure the solar wind.This introduces some features to its FPI data
that must be taken into account. Since solar wind ions are typically
concentrated in a narrow beam, they tend to be measured in only a
few pixels on the detector, saturating them.This saturation primarily
affects calculation of the zeroth and second moments of the plasma
distribution function (density and temperature). The first moment
(velocity) has been shown to not be as affected by saturation through
comparison to moments from the Wind spacecraft, but constant

1 For more information on past, present, and future MMS mission phases
and campaigns see the MMS FPI Data Users and Products Guide https://
lasp.colorado.edu/galaxy/display/MFDPG/1.3+Mission+Phases+and+Science
+Regions+of+Interest

FIGURE 1
3D spatial distribution of the 78,109 solar wind MMS-1 data points split
into 80{%} training/validation (orange) and 20{%} test (green) subsets.
Magnetosheath data (grey) also shown to highlight the ability of the
classification algorithm to discern the two regions. The ion foreshock
and magnetosphere data have been omitted for clarity. Data consists
of B⃗GSM, V⃗GSE, and ne from 2 September 2015 to 1 January 2022.
Train/validation/test split is as used in the optimized dataset (see
Section 3.2).

offsets arising from the coarseness of the FPI energy-azimuth table
have been observed (Roberts et al., 2021). The ion density and
temperature are therefore excluded from the target dataset. The FPI
electron density has been shown to be more accurate than the ion
density (Roberts et al., 2021), and may be used as a proxy for ion
density by assuming quasineutrality. For timescales such as the ones
considered here (100 s) quasineutrality is a fair assumption, and any
overcounting due to heavy solar wind ions is smaller than other
uncertainties affecting the density. As for the bulk velocities, the
offsets are removed according to which energy-azimuth table was
used to obtain each measurement. This leaves seven parameters
as part of the target dataset: IMF B⃗ in Geocentric Solar Magnetic
(GSM) coordinates, plasma flow velocity v⃗ in Geocentric Solar
Ecliptic (GSE) coordinates, and ne.

2.2 Wind input dataset

The input solar wind data at L1 comes from the Magnetic
Field Investigation (MFI) (Lepping et al., 1995) and Solar Wind
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Experiment (SWE) (Ogilvie et al., 1995) aboard the Wind
spacecraft. Wind was launched in 1994 and inserted into orbit
around the L1 point in 2004, and is one of three currently operating
in-situ solar wind monitors at L1. Wind was selected for this study
because it had the best coverage over the time period of the MMS-
1 dataset. Specifically the Wind key parameter (KP) moments
data are utilized, resulting in time series of plasma flow velocity
v⃗ in GSE coordinates, ion density nion, ion temperature T⊥ion, and
IMF B⃗ in GSM coordinates at a variable, roughly 100 s cadence.
Data from other L1 monitors are not included in this study due
to the difficulty involved with spacecraft intercalibration (King,
2005). To prepare it for use as input data, the Wind spacecraft
position in GSE coordinates is added, as well as the MMS-1
spacecraft position in GSE coordinates at each time in the input
dataset. This allows the algorithm to have information about
where the data are being propagated from and to, and therefore
enables it to output predictions at any position it was trained
on. Missing data is linearly interpolated and flagged so that they
can be excluded if necessary. The precise windows of time in
the Wind dataset that are assigned to each MMS target heavily
influence the performance of the optimized algorithm; therefore
these and other parameters pertaining to the exact construction
of the dataset are optimized through hyperparameter search (see
Section 3.2).

3 Algorithm methodology

The overall class of algorithm selected for PRIME is a neural
network. Neural networks are an extensible set of algorithms under
the large umbrella of machine learning capable of approximating
complex data representation with arbitrary accuracy (Leshno et al.,
1993; Nielsen, 2015), which makes them suitable for the task of
solar wind propagation where the underlying data representation
is still not fully determined. Furthermore, the task of solar wind
propagation is a regression task, for which neural networks are well
suited. Neural networks have also been used in prior studies tomake
probabilistic estimates and predictions of geospace quantities with
good results (Camporeale et al. (2019); Huang et al. (2022); Hu et al.
(2022), e.g.).

One potential pitfall of neural networks is also their
representational power: special care must be taken to ensure that
they do not “overfit” and simply store the data used to optimize
them as information in their tuning parameters. This study seeks
to be transparent about the efforts taken with data preparation and
network optimization to ensure this does not occur (Lugaz et al.,
2021). For more information on the concepts in this section, see
Pankaj Mehta’s excellent review of machine learning for physicists
(Mehta et al., 2019).

3.1 Network architecture

Two main considerations guided the selection of PRIME’s
network architecture: the fact that information about the time
history of solar wind at L1 is important to predicting it at the
Earth, and that it is desirable to quantify the uncertainty of the
algorithm’s output in a physically meaningful way (Camporeale,

2019). The first consideration is addressed through a sequence
of Gated Recurrent Units (GRU) that step through the input
timeseries of Wind data to identify important features. GRUs (See
Cho et al. (2014)) are a simple class of recurrent neural network
(RNN) that show good performance relative to other recurrent
network architectures (Chung et al., 2014). The vector size of the
measurements at each timestep is 14: three units for ion flowvelocity,
one unit for ion number density, one unit for ion temperature,
three units for magnetic field, three units for the Wind spacecraft
positon, and three units for the MMS spacecraft postion. The
amount of timesteps used to make a single prediction is a tunable
parameter, the optimal value of which is determined in Section 3.2.
The output of the GRU sequence is then fed into three layers
of fully-connected neurons (Bebis and Georgiopoulos, 1994) in
order to reduce the dimensionality of the features identified by
the GRU sequence. In order to address the second consideration
(uncertainty quantification), the last layer of neurons are taken to
be the mean and variance of a Gaussian probability distribution
for each parameter rather than single scalar values (Nix and
Weigend, 1994; Lakshminarayanan et al., 2017). The outputs are
enforced to be the mean and variance of a Gaussian probability
distribution by the selection of a suitable loss function. In order to
mitigate overfitting, layer normalization (Ba et al., 2016) and train-
time dropout (Srivastava et al., 2014) are added at locations in the
network that can be varied during hyperparameter optimization.
The size of each layer, the locations of layer normalization and
dropout, and the optimization routine and its learning rate are
all determined via hyperparameter tuning (see Section 3.2). The
general architecture of PRIME is shown in Figure 2. The algorithm
is implemented in the Keras high-level API for tensorflow (https://
keras.io/api/).

The loss criterion used to optimize the algorithmduring training
is chosen to be the continuous rank probability score (CRPS)
(Matheson and Winkler, 1976; Hersbach, 2000). While not yet
a common tool in space weather applications, the CRPS is a
common scoring metric used to compare probabilistic forecasts for
weather prediction (Zamo and Naveau, 2018). The continuous rank
probability score is given by

CRPS = ∫
∞

−∞
[F (y) −H(y− yobs)]

2dy (1)

where F(y) is the cumulative distribution function of a probabilistic
prediction for some truemeasurement yobs andH(y) is theHeaviside
step function (Wilks, 2011). The continuous rank probability score
is desirable as a loss function for several reasons. Firstly, it more
symmetrically punishes over and under confident predictions than
the negative log probability density (the most commonly used
score for probabilistic predictions) (Camporeale and Carè, 2021).
Secondly, for deterministic predictions the cumulative distribution
function of the prediction ypred is given by F(y) =H(y− ypred) which
yields

CRPS = ∫
∞

−∞
[H(y− ypred) −H(y− yobs)]

2dy = |yobs − ypred| (2)

That is to say, the CRPS reduces to the mean absolute error (MAE)
for deterministic predictions (Hersbach, 2000). For this reason, the
CRPS can be used to fairly compare deterministic and probabilistic
forecasts (Gneiting andRaftery, 2007). Lastly, the CRPS has the same
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FIGURE 2
Schematic of PRIME’s neural network architecture. Note that the Gated Recurrent Unit (GRU) sequence feeds into a Fully Connected Neural Network
(FCNN) in order to output a mean and variance for each desired parameter instead of a single value. Vector quantities such as magnetic field, flow
velocity, and spacecraft position are stacked to show that they consitute three units in the input/output but describe one physical vector quantity. Exact
layer size and additional regularization features (see Table 1) chosen via hyperparameter search.

unit as the variable of interest, making it more intuitively human-
readable. For Gaussian predictions with mean μ and variance σ2 the
CRPS is given by

CRPS(yobs,μ,σ) = σ[
yobs − μ

σ
erf(

yobs − μ
√2σ
)

+√ 2
π
e−
(yobs−μ)

2

2σ2 − 1
√π
] (3)

(Gneiting et al. 2005) This is the functional form for CRPS used
as a loss function during training, as it is negatively oriented. The
14 output units in PRIME’s last layer are taken to be the μ and σ
defining a Gaussian probability distribution for each parameter. The
CRPS over all seven parameters in the target dataset is averaged
with equal weight assigned to all parameters. The derivatives of
the CRPS with respect to μ and σ for Gaussian predictions are
given by

∂CRPS(yobs,μ,σ)
∂μ

= −erf(
yobs − μ
√2σ
) (4)

∂CRPS(yobs,μ,σ)
∂σ

= √ 2
π
e−
(yobs−μ)

2

2σ2 − 1
√π

(5)

One limitation of the CRPS for training probabilistic forecast
algorithms is the fact that it does not explicitly enforce reliability
of the algorithm’s output uncertainties (Camporeale et al., 2019).
Reliability is a property of non-deterministic forecasts thatmeasures
how well its predictions are statistically consistent with observations
(Anderson, 1996); an algorithm’s degree of reliability may also
be referred to as how well calibrated it is. It has been shown
that for probabilistic predictions with fixed mean values (i.e.,

constant error yobs − μ), uncertainties σ that maximize the reliability
of the prediction do not minimize the CRPS (Camporeale and
Carè, 2021). That is to say, accuracy and reliability are competing
metrics that must be balanced. While the fact that both μ and
σ vary simultaneously slightly complicates the picture outlined
by Camporeale and Carè (2021), it is nonetheless still the case
that simply minimizing the CRPS does not necessarily mean
that the resulting model is well-calibrated. Since reliability is
not explicitly enforced, the reliability of PRIME’s uncertainties
must be verified after training (See Section 4.4) (Tasistro-Hart 
et al., 2021).

3.2 Algorithm optimization

Optimizing the algorithm proceeds in three phases. First, the
optimal length, lead time, and composition of the input timeseries
dataset is determined. Then, the algorithm hyperparameters
are varied in order to find the optimal algorithm. Finally, an
algorithm with the optimal input shape and hyperparameters is
instantiated and fully trained, becoming the canonical version of
PRIME.

PRIME’s architecture can technically accept any length of
timeseries from any time period in the input dataset as input for
any given target. It is therefore necessary to determine the optimal
length of input time period (window), lead time ahead of the target
PRIME is attempting to predict (stride), and the maximum data gap
size that can be interpolated over. It is worth noting that unlike some
other propagation approaches, once the optimal stride (lead time)
is selected it cannot vary, thus PRIME’s lead time for operational
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TABLE 1 Detailed layer sizes and architecture parameters for the version of PRIME used to optimize the dataset parameters (left column), the canonical version of
PRIME determined by hyperparameter search (middle column), and the range of each parameter the hyperparameter search was conducted over (right column).

Dataset HP test Canonical algorithm HP range

GRU Layer 192 352 128–640

FCNN Layer 1 192 192 128–640

FCNN Layer 2 48 48 16–128

FCNN Layer 3 16 48 16–128

Normalization All Layers Last Layer Any Combination

Dropout Location All Layers Last Layer Any Combination

Dropout Rate 20{%} 20{%} 20{%}-50{%}

Optimizer Adam Adamax Adam, Adamax, Adagrad

Learning Rate 10–3 10–4 10–3, 10–4, 10–5

contexts is fixed. To do so, a test version of PRIME (see Table 1) is
instantiated and trained on datasets produced with various values
of these three parameters. Whichever set produces a model that can
achieve the best results on the validation dataset before overfitting is
taken as optimal. For each of these datasets and the eventual optimal
dataset, the input/target datasets are split into 60{%} training, 20{%}
validation, and 20{%} test subsets. Since temporally adjacent entries
in the input dataset are overlapping, randomly assigning points to
each subset would result in significant data leakage. To mitigate this,
the full dataset is split into independent blocks twice the length
of the timeseries window used as input (i.e., for a window size of
50 measurements/∼1 h 20 min, the dataset is split into chunks of
length 100 measurements/∼2 h 40 min) and those blocks are then
assigned to each subset in order to achieve a 60{%}-20{%}-20{%}
train-validation-test split. To ensure that no parameter dominates
others due to their absolute relative values, each subset is rescaled
to the interquartile range of the training set in order to account
for outliers without leaking information about the validation/test
sets during training. Results on the validation dataset from the
search are shown in Figure 3. The optimal window size is 50
measurements (∼ 5,000 s, ∼1 h 20 min), the optimal stride/lead time
is 18 measurements (∼1,800 s, ∼30 min). That is to say, for an MMS
measurement at time t, the input timeseries from Wind runs from
time t− 5,000s− 1,800s ≈ t− 83min to time t− 1,800s = t− 30min.
The largest data gap that can be interpolated over is 12.5 min (≤15%
of the input window).

After finding the optimal way to construct the dataset, the
optimal algorithm hyperparameters can be determined. There
are nine hyperparameters that are searched over as part of the
optimization routine. The first four are the node sizes of the GRU
layer and the following three fully-connected layers, varied from
128 to 640 for the first two layers and from 16 to 128 for the last
two layers. The fifth is where, if at all, in the sequence to perform a
layer normalization step. Layer normalization is a process designed
to stabilize neural networks during optimization to reduce the time
it takes to optimize them (Ba et al., 2016). Layer normalization
normalizes the hidden vector output by one layer before it is passed
to the next, thereby reducing the extent to which the gradients
with respect to the weights in one layer covary with the outputs of
the previous layer and allowing the gradient descent optimization
algorithm used to optimize the algorithm to more quickly converge

FIGURE 3
Results from dataset optimization trials over timeseries window
(length), stride (lead time), and permitted fraction of interpolated data.
Units for window and stride are Wind key parameter (KP) data cadence
of roughly 100 s. The optimal set (window 50, stride 18, largest interp.
Fraction ≤15%) is shown in darkest green and labelled “optimal”. Loss is
given in dimensionless units of parameter interquartile range to ensure
comparability of CRPS for each parameter.

on an optimal solution. The sixth and seventh hyperparameters are
the dropout locations and rate used during training. Dropout is
a technique to mitigate overfitting when training neural networks
that involves randomly removing some percentage of the units
from the network every training epoch, thereby disallowing the
units to co-adapt and overfit (Srivastava et al., 2014). The range
of dropout rates searched over during the hyperparameter search
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FIGURE 4
Joint distributions of MMS-1 data (x-axis) with predicted parameters from PRIME (top, green) and the MVA shifted Wind data (bottom, orange). CRPS,
the mean absolute error (MAE), and Pearson’s r correlation coefficient for each parameter shown in the top left of each distribution. For PRIME, the
MAE is calculated between the peaks of its predicted distributions and each MMS observation (thereby throwing away uncertainty information). For the
MVA shifted Wind data, the CRPS and MAE are equivalent. A perfect prediction corresponds to the line y = x, plotted overtop of each distribution for
convenience.

from 20{%} to 50{%}. The eighth and ninth hyperparameters are
the optimization algorithm used to update the weights and biases
in the network and that algorithm’s learning rate. The algorithms
included in the search are Adam, Adamax, and Adagrad, which
are all adaptive gradient descent algorithms. These algorithms are
adaptive in the sense that they change the step size they use to update
parameter weights during optimization to avoid getting stuck in
local minima or skipping over minima. Adam updates parameters
according to estimates of first order and second moments and
has been shown to be suitable for optimizing large algorithms
(Kingma and Ba, 2017), Adamax updates parameters according to

first order moments and the infinity norm and has been shown
to be suitable for recurrent networks (Kingma and Ba, 2017), and
Adagrad updates its gradient descent step size per parameter based
on the number of updates the parameter receives during training
making it suitable for sparse gradients (Duchi et al., 2011). To save
computational resources, the hyperparameter search is conducted
using the efficient Hyperband tournament bracket style algorithm
(Li et al., 2018) implemented in theKerasTunerAPI (O’Malley et al.,
2019). The optimal hyperparameters as well as the bounds of the
hyperparameter search are presented in Table 1. Those parameters
define the canonical PRIME algorithm, the weights and biases of
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TABLE 2 Performance of PRIME and theMVA shiftedWind data on theMMS test dataset across continuous rank probability score (CRPS, Eq. 1), mean absolute
error (MAE), and Pearson’s r correlation coefficient (also shown in Figure 4). CRPS is given in the units of each parameter as well as dimensionless units of
standard deviations of each parameter in theMMS training dataset to facilitate comparison between each parameter.

Parameter PRIME CRPS PRIME MAE Wind MVA CRPS/MAE PRIME r Wind MVA r

Bx GSM 0.874 nT (0.259σ) 1.20 nT (0.356σ) 1.13 nT (0.334σ) 0.823 0.713

By GSM 1.10 nT (0.229σ) 1.42 nT (0.295σ) 1.71 nT (0.356σ) 0.743 0.643

Bz GSM 1.07 nT (0.267σ) 1.45 nT (0.362σ) 1.56 nT (0.390σ) 0.771 0.726

Vx GSE 9.23 km/s (0.113σ) 11.3 km/s (0.138σ) 16.1 km/s (0.198σ) 0.930 0.830

V y GSE 5.23 km/s (0.246σ) 6.78 km/s (0.319σ) 8.77 km/s (0.413σ) 0.758 0.593

V z GSE 4.09 km/s (0.258σ) 5.58 km/s (0.352σ) 6.87 km/s (0.433σ) 0.854 0.803

ni/e 0.850cm−3 (0.128σ) 1.16cm−3 (0.175σ) 2.16cm−3 (0.323σ) 0.952 0.874

Pdyn 0.198 nPa (0.126σ) 0.269 nPa (0.171σ) 0.547 nPa (0.348σ) 0.961 0.904

FIGURE 5
Probability densities predicted by PRIME (solid lines) for nominal
plasma density in the fast (orange, measured 12 December 2017,
15:14:49 UTC) and slow (green, measured 2 April 2021, 15:13:35 UTC)
solar wind. Values for corresponding MMS measurements in the solar
wind are provided for reference. Means and standard deviations output
by PRIME along with the CRPS between them and their associated
MMS observation are annotated alongside the Gaussian curves they
define. This display emphasizes that PRIME outputs a distribution
function for possible predicted values rather than a single scalar value
or a single scalar value with fixed error bars or confidence intervals.

which are then optimized so that predictions can be made for the
test dataset in order to evaluate PRIME’s predictive performance.
The canonical version of PRIME is trained for 50 epochs (maximum
before overfitting) and has a CRPS on the validation dataset of 0.175
(dimensionless units of parameter interquartile range to ensure
comparability between all parameters).

4 Results

4.1 Model performance

PRIME’s performance is evaluated on the test dataset (not seen
by the algorithm at any point during training) by calculating the
CRPS between its predictions and the test dataset. It is also desirable
to compare PRIME with the current state of the art algorithm
used to propagate solar wind conditions from L1 to the Earth.
The OMNI database is currently the most widely used database
of solar wind conditions propagated to the bow shock nose, and
relies on planar propagation and MVA for its propagation algorithm
(in addition to extensive spacecraft intercalibration). In addition
to the multispacecraft databases assembled from all L1 monitors,
spacecraft-specific datasets with the phase front directions used for
propagation still included are also publicly available. This allows the
Wind-specific 1-min cadence data from the OMNI database to be
shifted to MMS’s position using the same MVA/planar propagation
algorithm used to shift it from L1 to the bow shock nose in order
to make a fair comparison here (King and Papitashvili, 2020).
Specifically, the timestamps of the Wind-specific OMNI data at
the bow shock nose are shifted based on the MVA-calculated
propagation delay time between the bow shock nose and MMS-1’s
position. The shifted Wind data with the closest timestamp within
100s of each MMS-1 observation is taken as the MVA algorithm’s
prediction. This is similar to the approach taken to construct the
OMNI database, with the only difference being that the resulting
timeseries is not resampled/interpolated to a new time cadence. Also
like the OMNI database, out-of-sequence arrivals are left as they are.
The CRPS between the shifted Wind-specific OMNI data (hereafter
referred to as MVA shifted Wind data) and the MMS test dataset is
calculatedwith Eq. 2 (CRPS in the case of deterministic predictions).
Pearson’s r correlation coefficient is calculated between the MVA
shiftedWinddata and theMMS test set, aswell as between themeans
of PRIME’s predicted probability distributions and the MMS test set
(thereby ignoring the uncertainty information). Joint distributions
of the MMS test dataset with PRIME’s predictions and the MVA
shifted Wind data are shown in Figure 4, and the performance of
each algorithm is compiled in Table 2.
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FIGURE 6
PRIME’s performance on the test dataset arranged in GSE coordinates
in 3D (A) and in a projection on the GSE X-Y plane (B). The CRPS
between PRIME’s predictions and the MMS measurments at each point
are scaled to the standard deviation of the seven parameters and then
averaged to obtain the scalar CRPS value at each point in the figure.

For all parameters predicted, PRIME has a lower CRPS
than the MVA shifted Wind data. This is most pronounced for
plasma parameters v⃗SW and n. Additionally, calculating dynamic
pressure via Pdyn =minv2

x from the outputs of each model (and
propagating PRIME’s uncertainties) reveals that PRIME predicts
dynamic pressure almost three times more accurately than the
MVA shifted Wind data, with a CPRS of 0.198 nPa compared
to the MVA shifted Wind data’s 0.547 nPa. This discrepancy is
primarily driven by the fact that the MVA shifted Wind data
overpredicts proton density. While it is the case that MMS FPI
electron density is used as a proxy for proton density in the target
dataset, this assumption of quasineutrality would result in the
MVA shifted Wind data appearing to underpredict proton density
rather than the overprediction observed here. Studies that compare
propagated OMNI data to MMS electron data in a statistical
average sense (e.g., comparing hourly averaged OMNI proton
density to hourly averaged MMS FPI electron density) have not
shown this effect (Roberts et al., 2021), whereas comparisons of
minutely OMNI data to other spacecraft data have (Zhang et al.,
2022). This points to the effect being a result in sub-hour-scale
timing inaccuracies in the underlying MVA propagation algorithm
rather than instrument error. The plasma parameter that is most
difficult for PRIME to predict is vy, likely due to the issues with

FIGURE 7
Correlation coefficients calculated between PRIME/the MVA shifted
Wind data’s output IMF clock angle and MMS measured IMF clock
angle over a 10 minute sliding window and then binned (bars). PRIME
is shown in green and the MVA shifted Wind data is shown in orange.
Only intervals that are more than half full (i.e., 4 or more entries) are
included.

FPI’s energy-azimuth table in situations where the non-solar-wind-
optimized table is used. Indeed, if MMS targets where the table is
not used are eliminated PRIME would have a CRPS of 4.04 km/s,
comparable to vz.

The calculated correlation coefficients show how the means
of PRIME’s predicted distributions vary with the target data.
Besides vy discussed above, the output means that correlate the
poorest with MMS data are the predicted IMF components. This
is likely due to the fact that the IMF varies more quickly than
the solar wind plasma does, making it more difficult for an
algorithm to accurately predict the timing of the fluctuations as
neural network regression algorithms frequently have difficulty
reproducing sharp/fast variation (Huang et al., 2022). However, the
fact that PRIME’s outputs are probabilistic allows it to account for
this difficulty by assigning higher uncertainty when the fluctuations
in the IMF make propagation more difficult (see Section 4.4). This
results in PRIME being able to predict the IMFmore accurately than
the MVA shifted Wind data despite the fact that its means and the
MVA shifted Wind data correlate with the MMS data to roughly the
same degree.

Examples of what PRIME’s outputs look like are shown in
Figure 5. Only one parameter (number density) at two separate
timesteps of MMS data are shown for clarity. The orange prediction-
target pair are from a period where MMS was in fast solar wind
(v = 633 km/s) and the green prediction-target pair are from a
period where MMS was in slow solar wind (v = 362 km/s). As
expected, the fast solarwinddensity is lower than the slow solarwind
density. Additionally, the predicted uncertainty (Gaussian width) of
the fast solar wind prediction is smaller than that of the slow solar
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wind, which is consistent with the understanding that the slow solar
wind ismore variable in density than the fast solar wind (Kallenrode,
2010). This also serves to highlight the difference between the
uncertainty PRIME assigns to its prediction, its predicted mean
value, and the accuracy metric used to optimize the model (CRPS).
Despite the fact that the mean of the predicted slow solar wind
distribution is closer to its associated observation than the mean
of the fast solar wind distribution is to its associated observation
(differences of 0.21cm−3 and 0.35cm−3 respectively), the fact that the
slow solar wind prediction has a larger uncertainty than the fast solar
wind prediction (1.35cm−3 vs. 0.65cm−3) means that in this case it is
considered less accurate according to the CRPS metric (0.327cm−3

vs. 0.225cm−3). The CRPS is intended to balance the accuracy of the
mean with the size of the confidence interval, so a larger σ does not
always result in a larger or smaller CRPS.

Since PRIME can output predictions at any point in space, it is
important to know where in space its predictions are most accurate.
The CRPS between PRIME and the test dataset are shown as a
function of MMS’s position in Figure 6. The scalar value for CRPS

at each point is computed by scaling the CRPS for each of the seven
solar wind parameters PRIME outputs to the standard deviation of
each parameter, and then averaging all seven into a single scalar
value. As can be seen, PRIME generally becomes less accurate the
closer to the Earth radially it is attempting to predict, with its poorest
performance on a set ofmeasurements on the dawnside flank (visible
roughly 5RE to 10RE X GSE and −5RE to −10RE Y GSE) that
have the smallest radial distance to the Earth. These measurements
were manually confirmed to be solar wind and were made months
apart, indicating that this inaccuracy is not due to mislabeled data
but rather is a feature of PRIME’s performance. Care should be
taken when using PRIME outside of regions with good accuracy in
Figure 6.

4.2 Timing

Metrics such as the CRPS capture the ability of each algorithm to
instantaneously predict themagnitude of each solar wind parameter,

FIGURE 8
Case study comparing propagated solar wind with ground truth. Ground truth from MMS-1 upstream of the bow shock measuring Corotating
Interaction Region (CIR) shock event. Solid lines are the MMS-1 ground truth, dashed lines are predictions from PRIME with 1σ uncertainty (shaded
region), and crosses are Wind data propagated to MMS-1’s position with the OMNI database’s MVA technique.
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but another important function of solar wind propagation
algorithms is their ability to predict the arrival times of solar wind
structures at the Earth. Timing uncertainty has been identified as
a problem for correlation analysis between ground-based monitors
and solar wind inputs, as well as understanding energy transfer
between the solar wind and magnetosphere broadly (Lockwood,
2022). Delay times between L1 and the Earth calculated by
traditional algorithms on two consecutive minutes of solar wind
measurements can have differences on the order of the total
delay time itself, so quantifying the timing accuracy of solar wind
propagation algorithms has been the subject of extensive study
(Collier et al., 1998; Mailyan et al., 2008; Case and Wild, 2012) and
has been the focus of other propagation algorithms (Baumann
and McCloskey, 2021). To quantify PRIME and the MVA shifted
Wind data’s ability to predict the arrival time of structures in the
solar wind, the correlation coefficient between the IMF clock angle
measured by MMS and the IMF clock angle calculated from each
algorithm’s output is calculated in a 10 minute sliding window over
the test subset of the MMS solar wind dataset used in this study

(10 min was selected following the method used by Case and Wild
(2012)). Since PRIME’s outputs are probability distributions, the
mean of the distribution is what is used to calculate the correlation
coefficient for PRIME (thereby throwing away the uncertainty
information). The correlation coefficients for all the windows are
binned and shown in Figure 7 along with the length of data from
PRIME and the MVA shifted Wind data in each 10-min chunk.
Only time windows with no missing data are included in the
figure.

From Figure 7, it can be seen PRIME is more likely than the
MVA shifted Wind data to produce good correlations in IMF clock
angle, as 41.2{%} of the time intervals it produced had correlation
r > 0.7 (as opposed to only 37.7{%} of the MVA shifted Wind data’s
intervals). Additionally, PRIME produces poor correlations (r < 0.4)
only 28.1{%} of the time as opposed to the MVA shifted Wind
data doing so 30.2{%} of the time. This means that PRIME more
accurately predicts the arrival of IMF rotations than the leading
planar propagation algorithm. In an absolute sense, neither theMVA
shifted Wind data nor PRIME’s mean value are perfect predictors

FIGURE 9
Case study comparing propagated solar wind with ground truth. Ground truth from MMS-1 upstream of the bow shock measuring Coronal Mass
Ejection (CME). Solid lines are the MMS-1 ground truth, dashed lines are predictions from PRIME with 1σ uncertainty (shaded region), and crosses are
Wind data propagated to MMS-1’s position with the OMNI database’s MVA technique.
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of solar wind temporal variation. A quantity X that correlates with
another quantity Y with Pearson’s r = 0.7 accounts roughly 50{%}
of the variance in Y. PRIME’s means meet this level 41.2{%} of
the time, and the MVA shifted Wind data meet this level only
37.7{%} of the time. However, PRIME does not seek to account
for all of the variance in solar wind parameters with its predicted
mean values alone, as the uncertainty of its output distributions also
encodes information about the solar wind variation as can be seen
in Section 4.3.

4.3 Case studies

Two events from outside the training and validation datasets
are highlighted to examine PRIME’s performance for events that are
difficult for traditional planar propagation algorithms to predict.The
Wind-specific OMNI data compared against here is propagated to
MMS-1 from the bow shock nose using the same phase fronts used
to propagate the data from L1 to the bow shock to ensure a fair
comparison and will be referred to as the MVA shifted Wind data
for clarity.

4.3.1 Corotating interaction region (CIR)
The first is a Corotating Interaction Region (CIR) shock that

passed over MMS-1 on 8 January 2018 (Starkey et al., 2020), shown
in Figure 8. CIRs are formed when fast solar wind from coronal
holes overtakes slow SW from coronal streamers forming a shock
(Gosling et al., 1993). Planar propagation algorithms are prone to
out of sequence arrivals during CIRs, as they allow fast streams to
pass through slow streams without modifying the plasma in either
flow. Implementations of planar propagation algorithms sometimes
favor the earlier (Weimer, 2003) or the later (Weimer and King,
2008) plane, but there is no good physical reasoning for either. The
approach taken by the OMNI team in assembling the spacecraft-
specific datasets is to shift the data and accept the new time tags
the order they come, then average to a 1-min cadence. This can
result in plasmas from both early and late planes mixing, depending
on their orientation (meaning one cannot say out of sequence
arrivals in the OMNI dataset are always late or early, see https://
omniweb.gsfc.nasa.gov/html/omni_min_data.html). Therefore, this
event is one that could potentially be better predicted by PRIME,
which is theoretically capable of accounting for the physics of the
interacting flows.

As can be seen in Figure 8, PRIME accurately predicts the arrival
time of the CIR at MMS-1, whereas the MVA shifted Wind data
are almost 30 min late. Both algorithms capture the magnitude of
each parameter before and after roughly as well as the other, but
PRIME has the added benefit of capturing the uncertainty due to
the turbulence downstream of the shock, as its predicted uncertainty
increases for all parameters downstream of the shock. PRIME’s
predicted uncertainty is largest for VX GSE, which is a result of
the fact that its output probability distributions are Gaussian (and
therefore symmetric). The large negative jump in VX increases
the uncertainty a great deal in the negative direction, which is
necessarily reflected in the positive direction. Despite the fact that
it predicts the arrival time of the structure more accurately, PRIME
transitions more slowly than the MVA shifted Wind data. Neural
network outputs tend to have difficulties with sharp transitions, as

FIGURE 10
Reliability diagram constructed from PRIME’s outputs on the test
dataset for each parameter. Shown versus the predicted frequency of
the observation from PRIME are the absolute value of the observed
frequency (top) and the deviation from perfect reliability (bottom). For
the bottom plot, a given parameter being over (under) the line by an
amount corresponds to PRIME over (under) predicting the frequency
by that amount.

it is often the case that they overfit during training before being able
to reproduce such structure (Huang et al., 2022). Depending on the
application, this behavior may not be desirable and should be noted
by the user.

4.3.2 Coronal mass ejection (CME)
The second event is a Coronal Mass Ejection (CME) observed

by MMS-1 on 1 February 2022. This CME was the first of a set of
Earth-directed CMEs that caused the failure of 38 starlink satellites
and is thought to have provided the necessary preconditioning for
the unexpectedly strong geomagnetic activity over the following
days (Dang et al., 2022). MMS-1 observed the leading edge of
the CME starting around 22:15 UT on February 2nd, shown in
Figure 9, alongside PRIME’s predictions andOMNI data propagated
to MMS’s position.

For this event, both algorithms predict the arrival time of the
event fairly accurately. It can be seen that PRIME has some difficulty
capturing the exact variation in velocity, especially in the GSE Y
and Z directions. This is possibly due to the fact that PRIME is
trained on solar wind data that has had plasma resembling the
magnetosheath and ion foreshock removed, both of which resemble
parts of the CME. Indeed, the Olshevsky et al. (2021) classifier labels
the CME sheath from 22:15–23:30 as the Earth’s magnetosheath
rather than the solar wind; if this event were in the time range of the
target dataset that section would be removed. In short, the fact that
portions of shocked (i.e., magnetosheath-like) plasma are removed
from the target dataset limits the representational power of PRIME
for some situations. Additionally, PRIME misses the sharpness of
the transition in Bz, much like the slow transition exhibited in
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the CIR event in Figure 8. One benefit PRIME has over the MVA
shifted Wind data during this event is coverage, as the MVA/planar
propagation routine from the bow shock to MMS fails over several
intervals before and after the CME.

4.4 Uncertainty validation

As noted in Section 3.1, the statistical reliability of
PRIME’s outputs is not explicitly enforced during training. The
extent to which PRIME’s output distributions are statistically
valid/meaningful must therefore be evaluated after training.
PRIME’s output uncertainties can be validated quantitatively
through the use of a reliability diagram (Hamill (1997); Hamill
(2001)). Following the procedure outlined in Camporeale et al.
(2019) and Camporeale and Carè (2021), define the standardized
errors associated with prediction μi,σi with i = 1,… ,N as ηi =
(yobs,i − μi)/(√2σi). The probability of a given Gaussian forecast
is therefore Φi =

1
2
[erf(ηi) + 1], allowing the reliability diagram

to be constructed from the empirical cumulative distribution of
Φi defined by C(φ) = 1

N
∑N

i=1H(φ−Φi) with H being the Heaviside
step function. C(φ) is the observed frequency as a function of the
predicted frequency, the same as reliability diagrams of forecasts
of discrete events (e.g., Hamill, 1997). However, this method does
not require binning, which has been shown to affect the results of
reliability diagrams of discrete events (Bröcker and Smith, 2007).
C(φ) is calculated for all observations in the test dataset for each
parameter and presented in Figure 10.

From Figure 10, it is clear that PRIME’s outputs are not perfectly
reliable/calibrated as they do not correspond exactly to the dotted
line. In general, PRIME tends to overestimate the likelihood of

unlikely events, and underestimate the likelihood of likely events.
This is a similar effect in uncertainty that is observed in the peak
value of the distribution, where PRIME’s outputs are “smoother”
than may be desirable for some uses. The largest departures from
perfect calibration are observed in Ppdyn (predicts events that occur
with p = 0.227 as occurring with p = 0.340),VX GSE (predicts events
that occur with p = 0.588 as occurring with p = 0.725), and BY
GSM (predicts events that occur with p = 0.585 as occurring with
p = 0.670).With the exception ofVX GSE and BY GSMPRIME tends
to be conservative, as it overestimates the likelihood of rare events.
Some departures from perfect calibration are expected, since even
models perfectly calibrated on training data can suffer calibration
loss on the test dataset (Kull and Flach, 2015). Across all parameters
andpredicted probabilities, PRIME is reliable towithin 2.2{%}with a
maximumdifference 14{%} (calculated pobs − ppred).This is still fairly
reliable relative to other probabilistic prediction algorithms for other
space weather tasks (e.g., Tasistro-Hart et al., 2021), but less reliable
those that use loss functions that enforce reliability explicitly (e.g.,
Hu et al., 2022).

It is a well known result that propagating solar wind and
IMF conditions from L1 to the Earth becomes more difficult and
uncertain as the monitor spacecraft at L1 strays further from
the Earth-Sun line (Crooker et al., 1982; Paularena et al., 1998;
Richardson et al., 1998; Milan et al., 2022). This is generally thought
to be due to the fact that the L1 spacecraft becomes more likely
to be in a solar wind flux tube or “parcel” that will not impact
the Earth’s magnetosphere (Borovsky, 2018). Thus an important
validation metric for PRIME is whether its output uncertainties get
larger when Wind is further from the Earth-Sun line. In Figure 11
PRIME’s output uncertainties (σs) from the test dataset are binned
with respect to Wind’s tangential distance from the Earth-Sun

FIGURE 11
Box-and-whisker plot of PRIME uncertainties as the distance from the Earth-Sun line of the Wind spacecraft increases. Dots are the median uncertainty
in each bin, and the lines are between the 10th-25th and 75th-90th percentiles. Note the uncertainties here are the variances of the distributions
output by PRIME, not performance metrics for PRIME.

Frontiers in Astronomy and Space Sciences 13 frontiersin.org

https://doi.org/10.3389/fspas.2023.1250779
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


O’Brien et al. 10.3389/fspas.2023.1250779

FIGURE 12
Box-and-whisker plot of PRIME uncertainties as the standard deviation of each magnetic field component over the input timeseries (5000s, 1.4 h)
increases. Dots are the median uncertainty in each bin, and the lines are between the 10th-25th and 75th-90th percentiles. Note the uncertainties here
are the variances of the distributions output by PRIME, not performance metrics for PRIME.

line in 20RE bins. The median value as well as the 10th-25th
and 75th-90th percentiles in each bin are displayed in a box-and-
whisker style. The median values show a somewhat upward trend
as Wind gets further from the Earth-Sun line, with a dramatic
increase in both median value and the 75th-90th percentile for the
furthest bin (100RE to 120RE). Therefore, PRIME predicts that its
predicted mean values are more uncertain when the input monitor
is further from the Earth-Sun line. This is consistent with the result
from Crooker et al. (1982) that showed that timing uncertainty
for solar wind conditions propagated from L1 gets dramatically

larger when the monitor is >90RE from the Earth-Sun line, and
serves to validate that PRIME’s output uncertainties are indeed
physically motivated. The addition of more L1 monitors (e.g.,
ACE, DSCOVR) to the input dataset would improve the accuracy
of PRIME’s predictions for situations where one L1 monitor is
straying far from the Earth-Sun line, but would necessitate extensive
instrument cross-calibration and re-tuning of the dataset andmodel
architecture.

Another verification that the uncertainties output by PRIME
are physical is whether its predicted uncertainties increase during
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times of high variation, particularly for the magnetic field. The IMF
can exhibit a great deal of small scale variation that can be difficult
for models to capture (See Figures 8, 9), and thus for periods of
rapid or large variation one would expect the uncertainty PRIME
assigns to its magnetic field output to increase. To investigate this,
the standard deviation of each magnetic field component over the
input timeseries (5000s, 1.4 h) for each output in the test set is
calculated to be used as ameasure of themagnitude ofmagnetic field
variation. Then, the output uncertainties are binned with respect
to these variations and presented in Figure 12. As can be seen, as
the magnitude of magnetic field variation increases, so too does
the uncertainty PRIME assigns its magnetic field predictions. This
effect is strongest for variations in Bz, as the uncertainty is roughly
1.5× greater during times of maximum Bz variation than it is for
maximum By or Bx variation. This could be due to the fact that
Bz is much more variable than the other IMF components, with a
maximum standard deviation of 14.0 nT (as opposed to 7.42 nT and
5.2 nT for By and Bx).

5 Conclusion

In this study, a probabilistic gated recurrent neural network
is trained to predict observations of the solar wind near the
Earth measured by MMS-1 given timeseries input measured by
the Wind spacecraft at L1. The algorithm’s last layer is taken to
be the means and variances of Gaussian distributions for each
solar wind parameter (rather than single scalar values), and the
algorithm is then optimized to minimize the continuous rank
probability score (CRPS) between its outputs and the MMS
dataset. In this way, the algorithm is able to simultaneously
predict the solar wind conditions and assign uncertainties to
its predictions. This algorithm, PRIME (Probabilistic Regressor
for Input to the Magnetosphere Estimation), is a first-of-its
kind method for solar wind propagation with uncertainty
estimation.

PRIME’s performance is compared to the most widely used
algorithm used to propagate solar wind conditions from L1 to the
Earth (minimum variance analysis (MVA) and planar propagation,
as used to construct the OMNI database). PRIME’s outputs are
shown to be more accurate than Wind data propagated to MMS-
1’s position using the MVA algorithm across the test dataset,
with PRIME achieving a CRPS of 0.214σ on average across all
parameters compared to the MVA algorithm’s CRPS of 0.350σ. This
improvement in accuracy is due to both the improved accuracy
of the mean values of PRIME’s predicted probability distributions
as well as the uncertainty it is able to assign to its predictions.
Through case studies of a corotating interaction region (Figure 8)
and a coronal mass ejection (Figure 9), some of PRIME’s key
benefits and drawbacks are shown. The magnitude of the solar
wind parameters PRIME predicts before and after the events are
in general more accurate than the MVA technique’s predictions.
PRIME also predicts the arrival time of each structure more
accurately than the MVA technique. PRIME’s outputs are in general

“smoother” than the ground truth and the MVA shifted data,
which is a known drawback of neural network algorithms. While
it does predict the arrival time of each structure more accurately,
it does not fully capture the sharpness of the discontinuities.
Additionally, during the CME event PRIME has difficulty predicting
the shocked plasma in the CME sheath since shocked plasma is
removed from the training dataset. The probabilistic nature of
PRIME’s predictions is also one of its key benefits. In order to
verify that they are physically meaningful, the reliability of PRIME’s
predicted uncertainties is also assessed. It is found that PRIME
is not perfectly reliable, with maximum deviation from perfect
reliability (pobs − ppred) of 14{%} and an average deviation of 2.2{%}.
This is within the range of reliability demonstrated by other space
weather prediction algorithms (Tasistro-Hart et al., 2021; Hu et al.,
2022).

Uncertainty in solar wind conditions at Earth has been identified
as a key problem for studies of solar wind/magnetosphere coupling
(Lockwood et al., 2019; Borovsky, 2021). PRIME offers a simple
solution by generating accurate predictions of the solar wind at
Earth with physically meaningful uncertainties attached. These
outputs can be used to correct for regression biases due to
uncertainties associated with input data (Sivadas et al., 2022), and
generally quantify the confidence associated with results that rely
on solar wind input data. Furthermore, PRIME’s architecture
can be readily adapted to other regression tasks in geophysics
where assigning uncertainties to predictions is desirable, predicting
magnetosheath conditions from L1 inputs or ionospheric currents
from geomagnetic indices.

Data availability statement

Magnetospheric Multiscale, Wind, and OMNI data are available
through the Coordinated Data Analysis Web (CDAWeb) online
portal at https://cdaweb.gsfc.nasa.gov/istp_public/. Codes for
dataset preparation, algorithm development, and analysis presented
in this paper are available at https://github.com/connor-obrien888/
prime, along with the latest version of PRIME and ISTP compliant
CDF files with PRIME’s output at the bow shock nose (O’Brien
2023).

Author contributions

CO’B compiled the datasets, implemented the algorithm,
developed algorithm comparisons and visualizations, and wrote
the text. BW contributed to the dataset compilation methodology
and algorithm evaluations. YZ contributed to the development
of the propagation methodology. ST contributed comparisons
to other propagation methodologies. HZ contributed the
probabilistic aspects of the algorithm architecture. DS contributed
interpretations of the case studies and output distributions. All
authors contributed to the article and approved the submitted
version.

Frontiers in Astronomy and Space Sciences 15 frontiersin.org

https://doi.org/10.3389/fspas.2023.1250779
https://cdaweb.gsfc.nasa.gov/istp_public/
https://github.com/connor-obrien888/prime
https://github.com/connor-obrien888/prime
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


O’Brien et al. 10.3389/fspas.2023.1250779

Acknowledgments

The authors acknowledge the instrument teams for FPI,
FGM, SWE, and MFI, as well as the other MMS and Wind
instrument teams whose labormade this study possible.The authors
acknowledge Barbara Giles and Steve Kreisler for their advice on
working with FPI data products. The authors acknowledge use
of NASA/GSFC’s Space Physics Data Facility’s OMNIWeb service,
and OMNI data. The authors acknowledge discussions with Sheng
Huang and Sam Evans about machine learning best practices.
Authors CO’B, BW, and YZ would like to acknowledge support
from NASA grants 80NSSC21K0026 and 80NSSC20K1710. Author
ST acknowledges support from the German Aerospace Center
(DLR). DS was supported by NASA’s MMS Theory and Modeling
program.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product thatmay be evaluated in this article, or claim
thatmay bemade by itsmanufacturer, is not guaranteed or endorsed
by the publisher.

References

Al Shidi, Q., Pulkkinen, T. I., Welling, D. T., and Tóth, G. (2023). Accuracy of Global
Geospace Simulations: How much of the error arises from solar wind input uncertainties?
Preprints. doi:10.22541/essoar.168565415.57893357/v1

Anderson, J. L. (1996). A method for producing and evaluating probabilistic
forecasts from ensemble model integrations. J. Clim. 9, 1518–1530. doi:10.1175/1520-
0442(1996)009⟨1518:AMFPAE⟩2.0.CO;2

Axford, W. (1964). Viscous interaction between the solar wind and the earth’s
magnetosphere. Planet. Space Sci. 12, 45–53. doi:10.1016/0032-0633(64)90067-4

Ba, J. L., Kiros, J. R., andHinton, G. E. (2016). Layer normalization. ArXiv:1607.06450
[cs, stat].

Bargatze, L. F. (2005). A new interpretation of Weimer et al.’s solar wind propagation
delay technique. J. Geophys. Res. 110, A07105. doi:10.1029/2004JA010902

Baumann, C., and McCloskey, A. E. (2021). Timing of the solar wind propagation
delay between L1 and Earth based on machine learning. J. Space Weather Space Clim.
11, 41. doi:10.1051/swsc/2021026

Bebis, G., and Georgiopoulos, M. (1994). Feed-forward neural networks. IEEE
Potentials 13, 27–31. doi:10.1109/45.329294

Borovsky, J. E. (2008). Flux tube texture of the solar wind: strands of the magnetic
carpet at 1 au? Flux tube texture of solar wind. J. Geophys. Res. Space Phys. 113. n/a–n/a.
doi:10.1029/2007JA012684

Borovsky, J. E. (2021). Is our understanding of solar-wind/magnetosphere
coupling satisfactory? Front. Astronomy Space Sci. 8, 634073. doi:10.3389/fspas.2021.
634073

Borovsky, J. E. (2018). The spatial structure of the oncoming solar wind at Earth and
the shortcomings of a solar-wind monitor at L1. J. Atmos. Solar-Terrestrial Phys. 177,
2–11. doi:10.1016/j.jastp.2017.03.014

Bröcker, J., and Smith, L. A. (2007). Increasing the reliability of reliability diagrams.
Weather Forecast. 22, 651–661. doi:10.1175/WAF993.1

Burch, J. L., Moore, T. E., Torbert, R. B., and Giles, B. L. (2016). Magnetospheric
Multiscale overview and science objectives. Space Sci. Rev. 199, 5–21.
doi:10.1007/s11214-015-0164-9

Cameron, T. G., and Jackel, B. (2019). Using a numerical MHD model to improve
solar wind time shifting. Space weather. 17, 662–671. doi:10.1029/2019SW002175

Camporeale, E., and Carè, A. (2021). Accrue: accurate and reliable uncertainty
estimate in deterministic models. Int. J. Uncertain. Quantification 11, 81–94.
doi:10.1615/Int.J.UncertaintyQuantification.2021034623

Camporeale, E., Chu, X., Agapitov, O. V., and Bortnik, J. (2019). On the generation
of probabilistic forecasts from deterministic models. Space weather. 17, 455–475.
doi:10.1029/2018SW002026

Camporeale, E. (2019). The challenge of machine learning in space weather:
nowcasting and forecasting. Space Weather 17, 1166-1207. doi:10.1029/2018SW-
002061

Case, N. A., andWild, J. A. (2012). A statistical comparison of solar wind propagation
delays derived frommultispacecraft techniques: solarwind propagation. J. Geophys. Res.
Space Phys. 117. n/a–n/a. doi:10.1029/2011JA016946

Chang, S. C., and Nishida, A. (1973). Spatial structure of transverse oscillations
in the interplanetary magnetic field. Astrophysics Space Sci. 23, 301–314.
doi:10.1007/BF00645159

Cho, K., van Merrienboer, B., Bahdanau, D., and Bengio, Y. (2014). On the
properties of neural machine translation: Encoder-decoder approaches. ArXiv:1409.1259
[cs, stat].

Chung, J., Gulcehre, C., Cho, K., and Bengio, Y. (2014). Empirical evaluation of gated
recurrent neural networks on sequence modeling. ArXiv:1412.3555 [cs].

Collier, M. R., Slavin, J. A., Lepping, R. P., Szabo, A., and Ogilvie, K. (1998). Timing
accuracy for the simple planar propagation of magnetic field structures in the solar
wind. Geophys. Res. Lett. 25, 2509–2512. doi:10.1029/98GL00735

Crooker, N. U., Siscoe, G. L., Russell, C. T., and Smith, E. J. (1982). Factors
controlling degree of correlation between ISEE 1 and ISEE 3 interplanetary
magnetic field measurements. J. Geophys. Res. 87, 2224. doi:10.1029/JA087iA04-
p02224

Dang, T., Li, X., Luo, B., Li, R., Zhang, B., Pham, K., et al. (2022). Unveiling the
space weather during the starlink satellites destruction event on 4 february 2022. Space
Weather 20, e2022SW003152. doi:10.1029/2022SW003152

Duchi, J., Hazan, E., and Singer, Y. (2011). Adaptive subgradient methods for online
learning and stochastic optimization.

Dungey, J. W. (1961). Interplanetary magnetic field and the auroral zones. Phys. Rev.
Lett. 6, 47–48. doi:10.1103/PhysRevLett.6.47

Gneiting, T., and Raftery, A. E. (2007). Strictly proper scoring rules, prediction,
and estimation. J. Am. Stat. Assoc. 102, 359–378. doi:10.1198/0162145060000-
01437

Gneiting, T., Raftery, A. E., Westveld, A. H., and Goldman, T. (2005). Calibrated
probabilistic forecasting using ensemble model output statistics and minimum CRPS
estimation. Mon. Weather Rev. 133, 1098–1118. doi:10.1175/MWR2904.1

Gosling, J. T., Bame, S. J., McComas, D. J., Phillips, J. L., Pizzo, V. J., Goldstein, B. E.,
et al. (1993). Latitudinal variation of solar wind corotating stream interaction regions:
ulysses. Geophys. Res. Lett. 20, 2789–2792. doi:10.1029/93GL03116

Hamill, T. M. (2001). Interpretation of rank histograms for verifying
ensemble forecasts. Mon. Weather Rev. 129, 550–560. doi:10.1175/1520-
0493(2001)129⟨0550:IORHFV⟩2.0.CO;2

Hamill, T. M. (1997). Reliability diagrams for multicategory
probabilistic forecasts. Weather Forecast. 12, 736–741. doi:10.1175/1520-
0434(1997)012⟨0736:RDFMPF⟩2.0.CO;2

Hersbach, H. (2000). Decomposition of the continuous ranked probability score
for ensemble prediction systems. Weather Forecast. 15, 559–570. doi:10.1175/1520-
0434(2000)015⟨0559:DOTCRP⟩2.0.CO;2

Hu, A., Camporeale, E., and Swiger, B. (2022). Multi-hour ahead dst index
prediction using multi-fidelity boosted neural networks. ArXiv:2209.12571
[physics].

Huang, S., Li, W., Shen, X., Ma, Q., Chu, X., Ma, D., et al. (2022). Application of
recurrent neural network to modeling earth’s global electron density. J. Geophys. Res.
Space Phys. 127. doi:10.1029/2022JA030695

Kallenrode, M.-B. (2010). “Space physics: an introduction to plasmas and particles
in the heliosphere and magnetospheres; with 12 tables,” in Numerous excercises and
problems (Berlin Heidelberg: Springer), 3. ed., paperback ed edn.

King, J. H., and Papitashvili, N. E. (2020). OMNI 1-min data set. doi:10.48322/45BB-
8792

Frontiers in Astronomy and Space Sciences 16 frontiersin.org

https://doi.org/10.3389/fspas.2023.1250779
https://doi.org/10.22541/essoar.168565415.57893357/v1
https://doi.org/10.1175/1520-0442(1996)009⟨1518:AMFPAE⟩2.0.CO;2
https://doi.org/10.1175/1520-0442(1996)009⟨1518:AMFPAE⟩2.0.CO;2
https://doi.org/10.1016/0032-0633(64)90067-4
https://doi.org/10.1029/2004JA010902
https://doi.org/10.1051/swsc/2021026
https://doi.org/10.1109/45.329294
https://doi.org/10.1029/2007JA012684
https://doi.org/10.3389/fspas.2021.634073
https://doi.org/10.3389/fspas.2021.634073
https://doi.org/10.1016/j.jastp.2017.03.014
https://doi.org/10.1175/WAF993.1
https://doi.org/10.1007/s11214-015-0164-9
https://doi.org/10.1029/2019SW002175
https://doi.org/10.1615/Int.J.UncertaintyQuantification.2021034623
https://doi.org/10.1029/2018SW002026
https://doi.org/10.1029/2018SW-002061
https://doi.org/10.1029/2018SW-002061
https://doi.org/10.1029/2011JA016946
https://doi.org/10.1007/BF00645159
https://doi.org/10.1029/98GL00735
https://doi.org/10.1029/JA087iA04-p02224
https://doi.org/10.1029/JA087iA04-p02224
https://doi.org/10.1029/2022SW003152
https://doi.org/10.1103/PhysRevLett.6.47
https://doi.org/10.1198/0162145060000-01437
https://doi.org/10.1198/0162145060000-01437
https://doi.org/10.1175/MWR2904.1
https://doi.org/10.1029/93GL03116
https://doi.org/10.1175/1520-0493(2001)129⟨0550:IORHFV⟩2.0.CO;2
https://doi.org/10.1175/1520-0493(2001)129⟨0550:IORHFV⟩2.0.CO;2
https://doi.org/10.1175/1520-0434(1997)012⟨0736:RDFMPF⟩2.0.CO;2
https://doi.org/10.1175/1520-0434(1997)012⟨0736:RDFMPF⟩2.0.CO;2
https://doi.org/10.1175/1520-0434(2000)015⟨0559:DOTCRP⟩2.0.CO;2
https://doi.org/10.1175/1520-0434(2000)015⟨0559:DOTCRP⟩2.0.CO;2
https://doi.org/10.1029/2022JA030695
https://doi.org/10.48322/45BB-8792
https://doi.org/10.48322/45BB-8792
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


O’Brien et al. 10.3389/fspas.2023.1250779

King, J. H. (2005). Solar wind spatial scales in and comparisons of hourly
Wind and ACE plasma and magnetic field data. J. Geophys. Res. 110, A02104.
doi:10.1029/2004JA010649

Kingma, D. P., and Ba, J. (2017). Adam: A method for stochastic optimization.
ArXiv:1412.6980 [cs].

Kömle, N. I., Lichtenegger, H. I. M., and Rucker, H. O. (1986). “Propagation of solar
wind features: A model comparison using voyager data,” in The Sun and the heliosphere
in three dimensions. Editor R. G. Marsden (Dordrecht: Springer Netherlands), 123,
205–210. Series Title: Astrophysics and Space Science Library. doi:10.1007/978-94-009-
4612-5_26

Kull, M., and Flach, P. (2015). “Novel decompositions of proper scoring rules
for classification: score adjustment as precursor to calibration,” in Machine learning
and knowledge discovery in databases. Editors A. Appice, P. P. Rodrigues, V. Santos
Costa, C. Soares, J. Gama, and A. Jorge (Cham: Springer International Publishing),
9284, 68–85. Series Title: Lecture Notes in Computer Science. doi:10.1007/978-3-319-
23528-8_5

Lakshminarayanan, B., Pritzel, A., and Blundell, C. (2017). Simple and
scalable predictive uncertainty estimation using deep ensembles. ArXiv:1612.01474
[cs, stat].

Lepping, R. P., Acũna, M. H., Burlaga, L. F., Farrell, W. M., Slavin, J. A., Schatten, K.
H., et al. (1995). The WIND magnetic field investigation. Space Sci. Rev. 71, 207–229.
doi:10.1007/BF00751330

Leshno, M., Lin, V. Y., Pinkus, A., and Schocken, S. (1993). Multilayer feedforward
networks with a nonpolynomial activation function can approximate any function.
Neural Netw. 6, 861–867. doi:10.1016/S0893-6080(05)80131-5

Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A., and Talwalkar, A. (2018).
Hyperband: A novel bandit-based approach to hyperparameter optimization. J. Mach.
Learn. Res. 18, 1–52.

Lockwood, M., Bentley, S. N., Owens, M. J., Barnard, L. A., Scott, C. J., Watt, C. E.,
et al. (2019). The development of a space climatology: 1. Solar wind magnetosphere
coupling as a function of timescale and the effect of data gaps. Space weather. 17,
133–156. doi:10.1029/2018SW001856

Lockwood, M. (2022). Solar wind—magnetosphere coupling functions: pitfalls,
limitations, and applications. Space weather. 20. doi:10.1029/2021SW002989

Lugaz, N., Liu, H., Hapgood, M., and Morley, S. (2021). Machine-learning research
in the space weather journal: prospects, scope and limitations. Atmos. Sci. preprint.
doi:10.1002/essoar.10509033.1

Mailyan, B., Munteanu, C., and Haaland, S. (2008). What is the best method
to calculate the solar wind propagation delay? Ann. Geophys. 26, 2383–2394.
doi:10.5194/angeo-26-2383-2008

Matheson, J. E., and Winkler, R. L. (1976). Scoring rules for continuous probability
distributions. Manag. Sci. 22, 1087–1096. doi:10.1287/mnsc.22.10.1087

Mehta, P., Bukov, M., Wang, C.-H., Day, A. G., Richardson, C., Fisher, C. K., et al.
(2019). A high-bias, low-variance introduction to Machine Learning for physicists.
Phys. Rep. 810, 1–124. doi:10.1016/j.physrep.2019.03.001

Milan, S. E., Carter, J. A., Bower, G. E., Fleetham, A. L., and Anderson, B. J. (2022).
Influence of off-sun-earth line distance on the accuracy of L1 solar wind monitoring. J.
Geophys. Res. Space Phys. 127. doi:10.1029/2021JA030212

Morley, S. K., Welling, D. T., and Woodroffe, J. R. (2018). Perturbed input ensemble
modeling with the space weather modeling framework. Space weather. 16, 1330–1347.
doi:10.1029/2018SW002000

Neugebauer, M., and Giacalone, J. (2015). Energetic particles, tangential
discontinuities, and solar flux tubes. J. Geophys. Res. Space Phys. 120, 8281–8287.
doi:10.1002/2015JA021632

Nielsen, M. A. (2015). Neural networks and deep learning, 25. San Francisco, CA:
Determination press.

Nix, D., and Weigend, A. (1994). “Estimating the mean and variance of
the target probability distribution,” in Proceedings of 1994 IEEE international
conference on neural networks (ICNN’94) (Orlando, FL, USA: IEEE), 1, 55–60.
doi:10.1109/ICNN.1994.374138

O’Brien, C. (2023). connor-obrien888/prime. Paper Release.
doi:10.5281/ZENODO.8065781

Ogilvie, K.W., Chornay, D. J., Fritzenreiter, R. J., Hunsaker, F., Keller, J., Lobell, J., et al.
(1995). SWE, a comprehensive plasma instrument for the WIND spacecraft. Space Sci.
Rev. 71, 55–77. doi:10.1007/BF00751326

Olshevsky, V., Khotyaintsev, Y. V., Lalti, A., Divin, A., Delzanno, G. L.,
Anderzen, S., et al. (2021). Automated classification of plasma regions using 3D
particle energy distributions. J. Geophys. Res. Space Phys. 126. ArXiv: 1908.05715.
doi:10.1029/2021JA029620

O’Malley, T., Bursztein, E., Long, J., Chollet, F., Jin, H., Invernizzi, L., et al. (2019).
Kerastuner.

Paularena, K. I., Zastenker, G. N., Lazarus, A. J., and Dalin, P. A. (1998). Solar wind
plasma correlations between IMP 8, INTERBALL-1, and WIND. J. Geophys. Res. Space
Phys. 103, 14601–14617. doi:10.1029/98JA00660

Paularena, K., Richardson, J., Lazarus, A., Zastenker, G., and Dalin, P. (1997). IMP 8,
WINDand INTERBALLobservations of the solarwind.Phys. Chem. Earth 22, 629–637.
doi:10.1016/S0079-1946(97)00188-2

Pollock, C., Moore, T., Jacques, A., Burch, J., Gliese, U., Saito, Y., et al. (2016).
Fast plasma investigation for magnetospheric Multiscale. Space Sci. Rev. 199, 331–406.
doi:10.1007/s11214-016-0245-4

Richardson, J. D., Dashevskiy, F., and Paularena, K. I. (1998). Solar wind plasma
correlations between L1 and Earth. J. Geophys. Res. Space Phys. 103, 14619–14629.
doi:10.1029/98JA00675

Roberts, O. W., Nakamura, R., Coffey, V. N., Gershman, D. J., Volwerk, M., Varsani,
A., et al. (2021). A study of the solar wind ion and electron measurements from the
magnetospheric Multiscale mission’s fast plasma investigation. J. Geophys. Res. Space
Phys. 126. doi:10.1029/2021JA029784

Russell, C. T., Anderson, B. J., Baumjohann, W., Bromund, K. R., Dearborn, D.,
Fischer, D., et al. (2016).ThemagnetosphericMultiscale magnetometers. Space Sci. Rev.
199, 189–256. doi:10.1007/s11214-014-0057-3

Sivadas, N., Sibeck, D., Subramanyan, V., Walach, M.-T., Murphy, K., and Halford, A.
(2022).Uncertainty in solarwind forcing explains polar cap potential saturation. Number:
arXiv:2201.02137 arXiv:2201.02137 [astro-ph, physics:physics].

Slingo, J., and Palmer, T. (2011). Uncertainty in weather and climate
prediction. Philosophical Trans. R. Soc. A Math. Phys. Eng. Sci. 369, 4751–4767.
doi:10.1098/rsta.2011.0161

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. (2014).
Dropout: A simple way to prevent neural networks from overfitting. J. Mach. Learn. Res.
15, 1929–1958.

Starkey, M., Fuselier, S. A., Desai, M. I., Schwartz, S. J., Gomez, R. G., Mukherjee,
J., et al. (2020). MMS observations of accelerated interstellar pickup He + ions at an
interplanetary shock. Astrophysical J. 897, 6. doi:10.3847/1538-4357/ab960c

Tasistro-Hart, A., Grayver, A., and Kuvshinov, A. (2021). Probabilistic geomagnetic
storm forecasting via deep learning. J. Geophys. Res. Space Phys. 126, e2020JA028228.
doi:10.1029/2020JA028228

Walsh, B. M., Bhakyapaibul, T., and Zou, Y. (2019). Quantifying the uncertainty of
using solar wind measurements for geospace inputs. J. Geophys. Res. Space Phys. 124,
3291–3302. doi:10.1029/2019JA026507

Weimer, D. R. (2003). Predicting interplanetary magnetic field (IMF) propagation
delay times using the minimum variance technique. J. Geophys. Res. 108, 1026.
doi:10.1029/2002JA009405

Weimer, D. R., and King, J. H. (2008). Improved calculations of interplanetary
magnetic field phase front angles and propagation time delays: calculations of IMF
phase front angles. J. Geophys. Res. Space Phys. 113. n/a–n/a. doi:10.1029/2007JA012452

Wilks, D. S. (2011). “Statistical methods in the atmospheric sciences. No. v. 100,” in
International geophysics series. 3rd (Amsterdam ; Boston: Elsevier/Academic Press). ed
edn.

Zamo, M., and Naveau, P. (2018). Estimation of the continuous ranked probability
score with limited information and applications to ensemble weather forecasts. Math.
Geosci. 50, 209–234. doi:10.1007/s11004-017-9709-7

Zastenker, G., Dalin, P., Petrukovich, A., Nozdrachev, M., Romanov, S., Paularena,
K., et al. (2000). Solar wind structure dynamics by multipoint observations. Phys.
Chem. Earth, Part C Sol. Terr. Planet. Sci. 25, 137–140. doi:10.1016/S1464-1917(99)000
55-0

Zhang, D., Liu, W., and Zhang, Z. (2022). Validation of the use of THEMIS-
B and THEMIS-C as a near-Earth solar wind monitor. Earth Planet. Phys. 6,
546–554. School of Space and Environment, Beihang University, Beijing 100191,
China, and Key Laboratory of Space Environment Monitoring and Information
Processing, Ministry of Industry and Information Technology, Beijing 100191, China.
doi:10.26464/epp2023003

Frontiers in Astronomy and Space Sciences 17 frontiersin.org

https://doi.org/10.3389/fspas.2023.1250779
https://doi.org/10.1029/2004JA010649
https://doi.org/10.1007/978-94-009-4612-5_26
https://doi.org/10.1007/978-94-009-4612-5_26
https://doi.org/10.1007/978-3-319-23528-8_5
https://doi.org/10.1007/978-3-319-23528-8_5
https://doi.org/10.1007/BF00751330
https://doi.org/10.1016/S0893-6080(05)80131-5
https://doi.org/10.1029/2018SW001856
https://doi.org/10.1029/2021SW002989
https://doi.org/10.1002/essoar.10509033.1
https://doi.org/10.5194/angeo-26-2383-2008
https://doi.org/10.1287/mnsc.22.10.1087
https://doi.org/10.1016/j.physrep.2019.03.001
https://doi.org/10.1029/2021JA030212
https://doi.org/10.1029/2018SW002000
https://doi.org/10.1002/2015JA021632
https://doi.org/10.1109/ICNN.1994.374138
https://doi.org/10.5281/ZENODO.8065781
https://doi.org/10.1007/BF00751326
https://doi.org/10.1029/2021JA029620
https://doi.org/10.1029/98JA00660
https://doi.org/10.1016/S0079-1946(97)00188-2
https://doi.org/10.1007/s11214-016-0245-4
https://doi.org/10.1029/98JA00675
https://doi.org/10.1029/2021JA029784
https://doi.org/10.1007/s11214-014-0057-3
https://doi.org/10.1098/rsta.2011.0161
https://doi.org/10.3847/1538-4357/ab960c
https://doi.org/10.1029/2020JA028228
https://doi.org/10.1029/2019JA026507
https://doi.org/10.1029/2002JA009405
https://doi.org/10.1029/2007JA012452
https://doi.org/10.1007/s11004-017-9709-7
https://doi.org/10.1016/S1464-1917(99)00055-0
https://doi.org/10.1016/S1464-1917(99)00055-0
https://doi.org/10.26464/epp2023003
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles

	1 Introduction
	2 Data
	2.1 MMS target dataset
	2.2 Wind input dataset

	3 Algorithm methodology
	3.1 Network architecture
	3.2 Algorithm optimization

	4 Results
	4.1 Model performance
	4.2 Timing
	4.3 Case studies
	4.3.1 Corotating interaction region (CIR)
	4.3.2 Coronal mass ejection (CME)

	4.4 Uncertainty validation

	5 Conclusion
	Data availability statement
	Author contributions
	Acknowledgments
	Conflict of interest
	Publisher’s note
	References

