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INTRODUCTION

Adult rodent skeletal muscles are composed of four types of myofibers (Schiaffino and Reggiani,
1996, 2011; Bassel-Duby and Olson, 2006), which are present in different proportions in different
muscles. Slow-twitch (type I) fibers have fatigue resistance properties by virtue of large numbers
of mitochondria. The remaining three types are fast-twitch (type II) fibers, subclassified as types
IIA, IIX, and IIB. Of these, type IIA fibers exhibit the slowest shortening velocity and display
fatigue resistance due to a high density of mitochondria. Conversely, type IIB fibers have the fastest
shortening velocity and exhibit exercise intolerance due to a low density ofmitochondria, while type
IIX fibers are intermediate. Although the predominant fiber types in each muscle are determined
during embryonic and fetal myogenesis (Lu et al., 1999; Agbulut et al., 2003), functional adaptations
can lead to the alteration of these proportions through changes in gene expression (Swoap et al.,
2000; Oh et al., 2005).

Vestigial is a nuclear protein that is essential for Drosophila wing formation and muscle
differentiation (Paumard-Rigal et al., 1998; Simon et al., 2016). Four mammalian vestigial-like
proteins (Vgll1, Vgll2, Vgll3, and Vgll4) have been identified, which support the function of TEA
domain (TEAD) transcription factors in a tissue-specific manner (Maeda et al., 2002; Mielcarek
et al., 2002; Pobbati and Hong, 2013). One of these proteins, Vgll2/VITO-1, is expressed in
adult skeletal muscles (Maeda et al., 2002; Mielcarek et al., 2002) and plays a role in in vitro
muscle differentiation (Maeda et al., 2002; Günther et al., 2004). Our previous study using Vgll2
knockout (KO) mice revealed that Vgll2 regulates skeletal muscle fiber composition by repressing
the neonatal expression of sex-determining region Y (SRY)-box 6 (Sox6), trans-acting transcription
factor 3 (Sp3), and purine-rich element-binding protein B (Purβ), which are transcriptional
repressors of slow-twitch fiber-related genes (Honda et al., 2017).

In humans, long-term resistance training not only induces muscle hypertrophy but also
increases the proportion of slower muscle fibers by increasing and decreasing the number of type
IIA and type IIX fibers, respectively (Hather et al., 1991; Adams et al., 1993; Williamson et al.,
2001; Bickel et al., 2011). Like resistance training, mechanical overload (MOV, also called chronic
overload) by synergistic ablation of the soleus and gastrocnemius muscles induces hypertrophy in
the plantaris muscles. MOV alsomodifies the fiber type proportions in the plantaris muscles toward
slower fibers by shifting type IIX and IIB fibers to type I and IIA fibers, through the activation
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of multiple genes related to muscle contractility in mice
(Karasseva et al., 2003; Ji et al., 2007; McGee et al., 2008;
Pérez-Schindler et al., 2013). We previously showed that MOV
increases Vgll2 protein expression and activity, enhancing the
functional adaptation of skeletal muscle (Honda et al., 2019).
In addition, mice lacking Vgll2 exhibited limited fiber type
transition after MOV due to the repression of slow muscle
genes, which are increased by MOV in wild-type mice. Vgll2
KO mice also displayed downregulated expression of several
genes involved in oxidative metabolism. Thus, Vgll2 is essential
for the fast-to-slow shift of muscle fibers after MOV and
acts by regulating the expression of downstream genes at
the transcriptional level (Honda et al., 2019). However, gene
expression changes downstream of Vgll2 in skeletal muscle
subjected to MOV have not been systematically identified. To
examine molecular network changes in skeletal muscle after
MOV, we conducted a comparative gene expression analysis in
wild-type and Vgll2 KO mice under both sedentary and MOV
conditions. Raw data files have been deposited to the Sequence
Read Archive of the DNA Data Bank of Japan (DDBJ) under
Accession No. DRA008472.

METHODS

Animals
Vgll2 KO mice and wild-type littermates on a C57BL/6J
background were generated as previously described (Honda
et al., 2017) and housed in cages at 24◦C with a 12:12-h
light–dark cycle. Animal experiments were approved by the
Animal Care and Use Committee of the National Cerebral
and Cardiovascular Center in Japan and conducted under
institutional and national guidelines.

Synergistic Ablation
MOV was performed as previously described (McGee et al.,
2008; Honda et al., 2019). In brief, for synergistic ablation of the

plantaris, the soleus and gastrocnemius were surgically removed

from 10-weeks-old male wild-type littermates (Wild_MOV) and

Vgll2 KO mice (KO_MOV) under anesthesia (2.5% isoflurane).

Mice that underwent sham surgeries were used as controls
(Wild_sham, KO_sham). To explore the results of long-term
effects of MOV, 6 weeks after surgery, the mice were sacrificed,

TABLE 1 | Summary of the sequencing results.

Sample name Raw reads Reads after trimming Aligned reads Overall alignment rate DDBJ accession IDs

Wild_MOV-1 26,019,105 25,982,454 25,189,725 96.95% DRR180073

Wild_MOV-2 24,455,198 24,420,404 23,695,197 97.03% DRR180074

Wild_sham-1 36,918,704 36,861,698 35,629,942 96.66% DRR180075

Wild_sham-2 27,862,191 27,822,881 26,968,955 96.93% DRR180076

KO_MOV-1 27,991,076 27,950,916 27,013,374 96.65% DRR180077

KO_MOV-2 25,265,455 25,229,254 24,520,609 97.19% DRR180078

KO_sham-1 28,007,495 27,968,083 27,040,208 96.68% DRR180079

KO_sham-2 25,423,616 25,387,787 24,472,197 96.39% DRR180080

and the plantaris muscles were collected and submerged in
RNAlater (Thermo Fisher Scientific, Waltham, MA, USA) for
RNA isolation.

RNA Isolation and Library Preparation
Total RNA was extracted from the plantaris muscles using the
miRNeasy Mini Kit (QIAGEN, Hilden, Germany) according to
themanufacturer’s instructions and quantified using a NanoDrop
spectrophotometer (Thermo Fisher Scientific). Poly(A)+ RNA
was purified from 1 µg of total RNA using the NEBNext
Poly(A) mRNA Magnetic Isolation Module (New England
Biolabs, Ipswich, MA, USA) and used for RNA sequencing
(RNA-Seq) library preparation with the NEBNext Ultra RNA
Library Prep Kit for Illumina (New England Biolabs), according
to the manufacturer’s protocol. The quantity of the libraries was
assessed using a Library Quantification Kit (Takara, Shiga, Japan)
and a Thermal Cycler Dice Real Time System TP800 (Takara);
their quality was assessed with a DNA 1000 Kit and a Bioanalyzer
2100 (Agilent, Santa Clara, CA, USA).

Transcriptome Analysis
RNA-Seq libraries were sequenced with 124-bp single-end
reads using a HiSeq 1500 system (Illumina, San Diego, CA,
USA) at Fujita Health University. Two biological replicates
were performed per sample. Base calling was conducted using
bcl2fastq ver. 1.8.4 software. The RNA-Seq raw data have been
deposited in the DDBJ Sequence Read Archive under Accession
No. DRA008472. DDBJ accession IDs for each sample are listed
in Table 1. Raw sequence data were cleaned using FastQC
ver. 0.11.3 software (https://www.bioinformatics.babraham.ac.
uk/projects/fastqc/) and the command “–Q 33 –t 20 –l 30”.
Trimmed reads were aligned to the mouse reference genome
(mm10) usingHISAT2 ver. 2.0.5 (Pertea et al., 2016) using default
parameters. SAMtools ver. 1.3.1 software (Li et al., 2009) was used
to convert SAMfiles, which contain aligned reads, into BAMfiles.
A summary of sample names, raw reads, and aligned reads is
provided in Table 1.

Statistical Analysis of Differentially
Expressed Genes
Statistical analysis of RNA-Seq data was performed as previously
described (Hitachi et al., 2019). In brief, to count the aligned
reads, HTSeq ver. 0.6.0 software (Anders et al., 2015) was
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FIGURE 1 | Summary of differentially expressed genes in the skeletal muscle of Vgll2 knockout (KO) mice subjected to mechanical overload (MOV). (A) Venn diagram

of differentially expressed genes between sets of experimental groups. (B) Heat map displaying differentially expressed genes in each experimental group (log2

ratio scale).

used against the Mus_musculus_UCSC_mm10.gtf file with
the optional command “–stranded=no –format=bam”. We
compared gene expression levels in Wild_sham mice with those
in Wild_MOV, KO_sham, and KO_MOV mice using DESeq2
software ver. 1.12.4 (Love et al., 2014) using the Wald test.
Differentially expressed genes with a false discovery rate (adjusted
P-value, padj) <0.001 and log2-fold change >1 or <-1 were
considered significant. The expression levels of all genes in each
experimental group are listed in Table S1.

Using these parameters, we identified 454 differentially
expressed genes (398 upregulated and 56 downregulated) after
MOV in wild-type mice. Although in the absence of MOV,
statistically significant expression changes were observed in only
18 genes (11 upregulated and 7 downregulated) in Vgll2 KO
mice compared to wild-type mice; in the presence of MOV,
the expression levels of 1,889 genes (1,336 upregulated and 553
downregulated), including a majority of genes whose expression
was altered by MOV in wild-type mice, were significantly altered
in Vgll2 KO mice compared with wild-type mice subjected to
the sham operation (Figure 1A). Intriguingly, although Vgll2
is required to activate the expression of genes involved in
the shift from fast to slow muscle fibers by MOV (Honda
et al., 2019), Vgll2 deficiency eventually enhanced the effects of
MOV on gene expression (Figure 1B). Therefore, these results
suggest that Vgll2 plays a role in the functional adaptation of
skeletal muscle by MOV beyond the fast-to-slow shifting of
muscle fibers.

These data will be helpful in elucidating the skeletal muscle
molecular networks that respond to MOV and allow in-
depth analysis of expression changes in genes regulated by
Vgll2 under both sedentary and MOV conditions. Interestingly,
fusion genes involving Vgll2 have been identified in the

spindle cell variant of rhabdomyosarcoma (Alaggio et al.,
2016). Thus, our data identifying genes downstream of Vgll2
could also help reveal the molecular mechanisms underlying
not only MOV but also human diseases caused by Vgll2
fusion genes.
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