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Background: Deficits in neuromuscular control are widely reported after mild traumatic

brain injury (mTBI). These deficits are speculated to contribute to the increased rate

of musculoskeletal injuries after mTBI. However, a concrete mechanistic connection

between post-mTBI deficits and musculoskeletal injuries has yet to be established. While

impairments in some domains of balance control have been linked to musculoskeletal

injuries, reactive balance control has received little attention in the mTBI literature, despite

the inherent demand of balance recovery in athletics. Our central hypothesis is that the

high rate of musculoskeletal injuries after mTBI is in part due to impaired reactive balance

control necessary for balance recovery. The purpose of this study is to (1) characterize

reactive postural responses to recover balance in athletes with recent mTBI compared

to healthy control subjects, (2) determine the extent to which reactive postural responses

remain impaired in athletes with recent mTBI who have been cleared to return to play,

and (3) determine the relationship between reactive postural responses and acute lower

extremity musculoskeletal injuries in a general sample of healthy collegiate athletes.

Methods: This two-phase study will take place at the University of Utah in

coordination with the University of Utah Athletics Department. Phase 1 will evaluate

student-athletes who have sustained mTBI and teammate-matched controls who

meet all the inclusion criteria. The participants will be assessed at multiple time

points along the return-to-play progress of the athlete with mTBI. The primary

outcome will be measures of reactive postural response derived from wearable

sensors during the Push and Release (P&R) test. In phase 2, student-athletes

will undergo a baseline assessment of postural responses. Acute lower extremity

musculoskeletal injuries for each participant will be prospectively tracked for 1 year

from the date of first team activity. The primary outcomes will be the measures of

reactive postural responses and the time from first team activity to lower extremity injury.
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Discussion: Results from this study will further our understanding of changes in

balance control, across all domains, after mTBI and identify the extent to which postural

responses can be used to assess injury risk in collegiate athletes.

Keywords: wearable sensors, push and release test, return-to-play, compensatory stepping, concussion

INTRODUCTION

Standing balance problems are well documented in collegiate
athletes after mild traumatic brain injury (mTBI) (Guskiewicz,
2011; Broglio et al., 2014). However, the Balance Error Scoring
System (BESS), the most common clinical balance assessment for
a suspected mTBI, only subjectively measures postural control
in a variety of static conditions (Riemann and Guskiewicz,
2000). The BESS and other clinical tests, such as the standard
Romberg test (Guskiewicz, 2011), struggle to detect subtle
balance deficits that persist throughout an athlete’s recovery from
mTBI (Buckley et al., 2018) and therefore may be limited in their
ability to determine return-to-play (RTP) readiness. Additionally,
postural demands during athletic pursuits are not static. Recent
studies suggest clinical testing of dynamic balance using the
timed tandem gait test has clinical utility in mTBI management
(Oldham et al., 2018). However, other aspects of balance control
remain untested in mTBI management.

Balance control can be separated into three domains based
on the goal of the task: (1) maintaining a posture (e.g., standing
balance), (2) transitioning between postures with voluntary
movement (e.g., gait, turning, gait initiation/termination,
standing from a chair), or (3) restoring stability (e.g., recovering
from a trip, slip, or push) (Pollock et al., 2000). Objective
measures of standing balance from instrumented force platforms
(DeBeaumont et al., 2011; Quatman-Yates et al., 2015; Fino et al.,
2016b) and inertial sensors (King et al., 2014; Parrington et al.,
2019) suggest maintenance of posture can remain impaired
beyond the clinical RTP decision in athletes, and gait and turning
abnormalities suggest postural control during transitions may
also be affected for up to 1 year after mTBI (Fino et al., 2016a,
2018). Yet, there is limited knowledge of how mTBI affects the
restoration of stability after loss of balance. There is evidence
to suggest that mTBI history affects stability after dynamic
movement in athletes (Lynall et al., 2020). However, no study
has examined reactive stabilization following an unexpected
external disturbance in athletes after mTBI. Considering athletes
are frequently required to recover balance after an external
perturbation or sudden destabilizing event, examining the effects
of mTBI on restoring stability is important for a comprehensive
understanding of the impact of mTBI in real-world and
sporting environments.

Reactive postural responses rely on short-, medium-, and
long-latency responses, resulting from interaction among spinal
circuits, the brainstem, and the cerebral cortex. The short-
latency response is likely spinally mediated and is too small to
stabilize balance, whereas medium- and long-latency responses
are mediated by the brainstem and cortex and stabilize balance
via whole-body, synergistic muscle activations (Jacobs and

Horak, 2007). During change in support responses in particular,
a transcortical loop through the motor cortex is involved in
initiation (Jacobs and Horak, 2007). Yet, the response to a
perturbation is also dependent on the preperturbation central
set, which is the neuromotor state resulting from changes in
initial contexts such as changes in cognitive state or sensorimotor
conditions (Jacobs and Horak, 2007). Prior to a loss of
balance, cortical loops update the central set to prime postural
responses (Jacobs and Horak, 2007; Mochizuki et al., 2008) in
an anticipatory manner according to stored visual information
about the surrounding environment (Maki et al., 2001; Zettel
et al., 2005, 2008a,b). Because attentional resources may be
required to maintain an appropriate central set, concurrent
cognitive demands can limit this anticipatory preparation;
attentional resources switch from the concurrent cognitive task
to the balance-recovery task after the postural disturbance
(Maki and McIlroy, 2007), and delayed set-switching can
compromise the ensuing stepping response (Maki et al., 2001).
Concurrent cognitive tasks also attenuate the N1 perturbation-
evoked response within the medial prefrontal cortex (Quant
et al., 2004) associated with task-switching (Rushworth et al.,
2002). Persistent executive and attentional dysfunction (Howell
et al., 2013b) and lasting structural and functional neuroimaging
abnormalities within the frontal and prefrontal cortex (Chamard
et al., 2016; Churchill et al., 2017a,b,c; Bigler, 2018), may limit
the cognitive reserve (Stern, 2009) for completing simultaneous
tasks after mTBI and could be responsible for impaired dual-
task balance. Based on these previous findings, we posit that
persistently slower set-switching reaction times and larger switch
costs after mTBI (Mayr et al., 2014; Moore et al., 2014) may
adversely affect balance recovery, particularly in highly dynamic
sporting environments with changing motor and cognitive
demands. While dual-task paradigms involving simultaneous
static or dynamic balance and cognitive tasks elicit large balance
deficits in individuals with mTBI (Howell et al., 2013a; Lee et al.,
2013; Register-Mihalik et al., 2013; Fino et al., 2018), the influence
of cognitive demands on the ability to restore stability remains
unclear after mTBI.

Numerous research groups suspect that there is a link
between impaired neuromuscular control and musculoskeletal
injuries after mTBI. Notably, both of these aspects have solid
grounding in the literature; deficits in neuromuscular control
after mTBI are widely reported in the literature (Howell et al.,
2018b; Wilkerson et al., 2018) and musculoskeletal injuries
are around two times more likely after mTBI (Nordström
et al., 2014; Lynall et al., 2015, 2017; Pietrosimone et al., 2015;
Brooks et al., 2016; Cross et al., 2016; Gilbert et al., 2016;
Herman et al., 2017; Fino et al., 2019; Reneker et al., 2019).
Recently, dual-task gait impairment after mTBI has been linked
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to musculoskeletal injury risk (Howell et al., 2018a). Despite
the overlap and apparent connection, a concrete connection
between post-mTBI deficits and musculoskeletal injuries has yet
to be established. Although absent from mTBI literature to date,
imprecise responses following a loss of balance may contribute to
the high rate of musculoskeletal injuries after mTBI. In healthy
collegiate athletes, postural responses following the release of
a sustained force at the trunk, with the lower body fixed, are
highly associated with future injuries to the low back (Cholewicki
et al., 2005) and knee (Zazulak et al., 2007). Disrupted
perception–action coupling has been suggested as an alternative
potential mechanism for post-mTBI musculoskeletal injury. This
theory suggests that neurophysiological dysfunction stemming
from mTBI dysregulates the perception–action coupling loop
(Eagle et al., 2020); misestimating one’s abilities (both the
participant’s physical abilities related to the environment and
the participant’s perception based on repeated action in the
environment) may manifest in improper timing of movement
or body position and increase behavioral risk after mTBI
(Eagle et al., 2020). However, direct experimental evidence
is lacking.

Two major challenges in establishing the connection between
musculoskeletal injury risk and neuromuscular deficits are
the lack of sensitivity of assessments and obtaining adequate
sample size. Clinical tests often lack sensitivity and specificity,
particularly to subtle motor deficits that may have practical
implications. There is growing interest in using neuroimaging
and serum biomarkers to examine changes in cerebrovascular
reactivity (Churchill et al., 2020) and systemic inflammation
(Di Battista et al., 2019) after mTBI, but a direct connection
between mTBI and musculoskeletal injury risk remains unclear.
In a recent study, several clinical tests including the standard
assessment of concussion (SAC), BESS, Immediate Post-
Concussion Assessment and Cognitive Training (ImPACT),
clinical reaction time, and the King-Devick failed to predict
musculoskeletal injury risk after mTBI (Buckley et al., 2020).
As a consequence, more sophisticated tests and instrumentation
are often used to determine post-mTBI neuromuscular deficits.
These assessments, often conducted within biomechanical
laboratories, are not feasible in clinical settings, a necessary
requirement for adequate power and future clinical translation.
Recent technological advances in wearable, inertial sensors
may be capable of addressing these limitations by enabling
objective and sensitive assessments in clinical settings (Horak
et al., 2015; Nouredanesh and Tung, 2015; El-Gohary et al.,
2017). For example, instrumenting the BESS with a single
inertial sensor identified acute mTBI more accurately than
the clinical error count (King et al., 2017; Parrington et al.,
2018). Inertial sensors can identify subtle deficits in gait,
distinguishing between healthy controls and individuals within
72 h of mTBI and up to 2 weeks postinjury (Howell et al.,
2015). Recently, objective qualities of gait, quantified with inertial
sensors, differed between athletes with mTBI who went on to
sustain a future lower extremity musculoskeletal injury and
those who did not (Oldham et al., 2020). Similarly, worsening
dual task cost of walking speed throughout mTBI recovery
was associated with risk of incurring a sport-related injury

during the year following mTBI (Howell et al., 2018a). Because
inertial sensors are portable and clinically feasible, they can
be used to facilitate clinical testing on large numbers of
collegiate athletes.

Similar to static balance and gait, clinical assessments
of reactive postural responses in other populations rely
on scoring guidelines based on visual observation, but
wireless, wearable inertial sensors can improve the accuracy
of these assessments. For example, inertial sensors can detect
differences in reactive postural responses between disease
states [healthy control, multiple sclerosis (Smith et al., 2016;
El-Gohary et al., 2017), Parkinson disease (Smith et al., 2016)].
Wearable sensors also provide information about quality
of movement using a variety of objective characteristics.
However, no study has used inertial sensors to quantify
reactive postural responses in clinical mTBI settings. Improved
understanding of how mTBI impacts the quality of balance
recovery is critical to determine the implications of persistent
balance impairments after mTBI, such as increased injury
risk, and to develop clinical rehabilitation strategies to
optimize athletes’ neuromuscular control prior to return to
competitive activity.

Our central hypothesis is that the high rate of musculoskeletal
injuries after mTBI is in part due to impaired postural responses
and balance recovery. Therefore, the purpose of this study is
to (1) characterize reactive postural responses in athletes with
recent mTBI compared to healthy control subjects, (2) determine
the extent to which postural responses remain impaired in
athletes with recent mTBI who have been cleared to RTP, and
(3) determine the relationship between postural responses and
acute lower extremity musculoskeletal injuries in a general
sample of healthy collegiate athletes. We hypothesize that (1a)
athletes with recent mTBI will take longer to regain balance
during assessments of reactive postural responses compared
to control athletes; (1b) athletes with recent mTBI will have
larger deficits, in postural responses when simultaneously
performing a dual task, relative to single task; (2) athletes
with recent mTBI will improve reactive postural responses but
will still demonstrate deficits compared to control subjects
at all time points; (3a) that impaired postural responses at
a baseline assessment will be associated with a faster time
to acute musculoskeletal injury in healthy collegiate athletes;
and (3b) objective measures of reactive postural responses will
be better predictors of musculoskeletal injuries compared to
clinical measures.

METHODS

This study has two phases that will run concurrently. Phase
1 includes the first two aims: (1) to evaluate acute differences
in postural responses after mTBI and (2) to evaluate persistent
mTBI-related deficits in postural responses after RTP. Phase
2 contains the third aim: to characterize associations between
baseline variations in postural responses and prospective lower
extremity injuries in healthy athletes.
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Phase 1: Characterization of Postural
Responses After mTBI and Persistent
mTBI-Related Deficits
Participants
For phase 1, 80 subjects will be recruited (40 athletes who
experienced recent mTBI and 40 healthy teammate controls,
matched on position and practice exposure). Sports medicine
fellowship–trained team physicians with at least 10 years of
training and clinical experience will diagnose mTBI based on
history and physical examination, which is currently the gold
standard. All subjects will be between the ages of 18 and 30
years and tested on site in the Athletic Training Clinics at the
University of Utah. Informed written consent will be obtained
from all participants.

Inclusion and Exclusion Criteria
For phase 1, inclusion criteria for mTBI recruitment are (1)
age 18 to 30 years, (2) current participant in NCAA Division
I athletics, and (3) mTBI within last 10 days (subjects must be
assessed before beginning RTP protocol, even if acute time point
is missed). Exclusion criteria for mTBI subjects are (1) previous
history of vestibular or somatosensory pathology, (2) history of
major injury to either leg requiring surgery within the last 2
years, and (3) body mass index (BMI) >40 kg/m2. Inclusion
criteria for matched controls are (1) age 18–30 years, (2) current
participant in NCAA Division I athletics. Exclusion criteria for
healthy control subjects are (1) previous history of vestibular or
somatosensory pathology, (2) recent mTBI (<1 year), (3) history
of major injury to either leg requiring surgery within the last 2
years, and (4) BMI >40 kg/m2.

Assessment Procedures
For phase 1, athletes will be assessed at four time points: (1)
within 48 h of mTBI (acute), (2) within 24 h of starting RTP
protocol (PreRTP), (3) within 24 h of being medically cleared
for RTP (PostRTP), and (4) ∼6 months after injury (6Month).
Assessments will take ∼15min and will be administered at
the end of current Pac-12 CARE Affiliated Project (CAP)
testing (Broglio et al., 2017). CAP testing is a tablet-based
battery of measures that examine personal and family health
history, neurocognitive assessments, neurological status, postural
stability, symptoms, and oculomotor/oculovestibular function.
Tests included in CAP testing are the Sport Concussion
Assessment Tool, Fifth Edition; BESS; Brief Symptom Inventory
18; SAC; ImPACT; and EYESYNC (SyncThink, Palo Alto, CA)
measures (Maruta et al., 2018). Assessments of matched control
subjects will be tested within 24 h of the testing session of the
athlete with mTBI. Return to play will follow guidelines set
forth by the University of Utah Concussion Management Plan.
Athletes will progress to RTP when, under the guidance of the
physician and athletic trainer, the assessment battery including
symptom assessment, ImPACT, and BESS has normalized. In the
current study, athletes will be cleared to start RTP by only a
limited number of team physicians.

Within 48 h from the time of the mTBI, informed written
consent will be obtained from the athlete with mTBI and the
matched control teammate. A total of 40 athletes with mTBI

and 40 matched control athletes will complete assessments
at four time points (Acute, PreRTP, PostRTP, 6Month). Each
assessment will include questionnaires, clinical tests of function,
and instrumented assessments of reactive postural responses
(Table 1).

Questionnaires
At every time point, the athlete with mTBI will complete
the following questionnaires: Multidimensional Fatigue
Inventory (MFI), Pittsburgh Sleep Quality Index (PSQI), Injury-
Psychological Readiness to Return to Sport (I-PRRS) scale.
The MFI is a 20-item questionnaire designed to measure the
following domains of fatigue: general fatigue, physical fatigue,
mental fatigue, motivation, and activity (Smets et al., 1995).
The PSQI is a 19-item questionnaire designed to assess sleep
quality, sleep disturbances, and daytime dysfunction. In the
present study we will exclude the five questions rated by the
bed-partner or roommate (Buysse et al., 1989). The I-PRRS scale
is a sport psychometric test to assess injured athletes’ confidence
and psychological readiness to return to play (Glazer, 2009).
Athletes are asked to rate their confidence on a scale of 0 to 100
on six items related to competing in their sport. To determine
motivation underlying return to sport, at the 6Month time
point, the athlete with mTBI will also complete the 21-item
Return to Sport after Serious Injury Questionnaire (Podlog and
Eklund, 2005). Information regarding return-to-learn experience
and medication use after mTBI will also be obtained. The
matched control athlete will complete the MFI and PSQI at every
time point.

Clinical reaction time
At every time point, both athletes with mTBI and matched
control athletes will perform the Clinical Reaction Time test
(RTclin). RTclin is a clinical test measuring simple reaction time
using an 80-cm dowel with one end inserted in the middle of a
hockey puck (Eckner et al., 2010). The participants will sit with
their dominant arm on a table, leaving their wrist and hand off
the side of the table. The investigator then brings the hockey
puck to the level of the athlete’s first finger and thumb. After a
random duration between 2 and 5 s, the investigator releases the
dowel, and the participant attempts to catch the dowel as soon
as possible. The distance from the superior aspect of the hockey
puck to the superior aspect of the participant’s hand is measured.
For the present study, two practice trials followed by eight
measured trials will be completed by athletes at each assessment.

Instrumented BESS
Quiet standing balance will be assessed at every time point
using the BESS (Bell et al., 2011). Both athletes with mTBI and
matched control athletes will complete this test wearing five
inertial measurement units (APDM Inc., Portland, OR) placed
on the sternum, lumbar spine, right shank, and right and left
feet. The footwear of the athletes will be recorded, and tests will
be video recorded. The full BESS battery involves a double-leg
stance, single-leg stance (on non-dominant foot), and tandem
stance (nondominant behind dominant) performed on both firm
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TABLE 1 | Questionnaires, surveys, and tests utilized in the present study with description of subject group (mTBI, control, both) and time point (Acute, PreRTP, PostRTP,

6Month, all).

Validated Questionnaires Purpose Subject group Time point

Multidimensional fatigue inventory Multiple domains of fatigue Both All

Pittsburgh sleep quality index Sleep quality and disturbances

and daytime dysfunction

Both All

Injury-psychological readiness to return to

sport scale

Confidence to return to play mTBI All

Return to sport after serious injury

questionnaire

Motivation underlying return to

play

mTBI 6 month

Patient self-report Purpose Subject group Time point

Questions adapted from the OSU TBI-ID Concussion history Both Acute, 6 month

Questions regarding recent (<2 years) lower

extremity musculoskeletal injury and surgery

history

Lower extremity injury and

surgery history

Both All

Questions regarding return-to-learn progress Return-to-learn mTBI All

Questions regarding medication use

postconcussion

Medication use mTBI All

Test Purpose Subject group Time point

Clinical reaction time (drop stick test) Clinical reaction time Both All

Instrumented balance error scoring system Static balance Both All

Push and release test Reactive postural response Both All

and foam surfaces. Each trial will last 30 s, but errors will only be
counted during the first 20 s.

Push and release reactive postural response paradigm
Reactive postural responses will be assessed using the Push
and Release (P&R) test (Smith et al., 2016; El-Gohary et al.,
2017). The P&R is a clinical test that examines reactive postural
responses and compensatory stepping behavior after a loss of
balance (Jacobs et al., 2006). Prior to each trial, a footplate
(8′′ long, 5.75′′ wide at the toes, 4′′ wide at the heels) will
be placed on the floor, and the subject will be asked to
press their feet firmly and symmetrically against each side of
the footplate to ensure a standardized stance width at the
beginning of each test. Subjects will lean, while supported by an
investigator, until their center of mass is just beyond their base of
support (Figure 1, left). After maintaining the supported leaning
posture, the investigator will unexpectedly release their hands,
requiring the subject to take a step (Figure 1, right). Subjects
will perform the P&R, with eyes closed, in four directions:
forward, backward, left, and right. Athletes demonstrate faster
auditory and visual reaction times than healthy controls (Kaur
et al., 2006) and typically perform better on balance tests than
nonathletes (Davlin, 2004). Therefore, to increase difficulty of
the P&R task for an athletic population, participants will be
asked to close their eyes. During competition, athletes are often
required to produce appropriate cognitive and motor responses
simultaneously. Dual-task assessments are more sensitive to
cognitive and motor impairments after mTBI than single-tasks
beyond the acute phase of recovery (Register-Mihalik et al., 2013).

Therefore, to make the P&R more functionally relevant and
sensitive to cognitive andmotor impairments, participants will be
tested under single- and dual-task conditions. The dual task will
be randomized and consists of serial subtraction by 3’s, phonemic
verbal fluency (FAS test), categorical verbal fluency (animal or
fruit naming), and reciting every other letter of the alphabet
(Tombaugh et al., 1999). During the dual-task condition, as soon
as participants are in the supported leaning posture, they will be
prompted with one of the four cognitive tasks. Participants will
respond at least three times before being released unexpectedly
by the investigator. Inertial measurement units (APDM Inc.) will
be placed on the sternum, lumbar spine, right shank, and right
and left feet. One sensor will be placed on the investigator’s hand
to determine release of support time. Data will be collected at
128Hz and processed using custom-built algorithms inMATLAB
(MathWorks, Natick, MA).

Outcome Measures
Raw acceleration and angular velocity data from the five inertial
measurement units will be used to calculate the following
outcomes from the P&R test (Figure 2): step latency, step length,
and time to stabilization.

Using data from the sensor on the investigator’s hand,
release of support (t0) will be identified when acceleration
is >5% of gravity. Step latency will be calculated as the
amount of time (seconds) from t0 to first foot movement.
First foot movement will be detected when foot acceleration
>7% of gravity and rotational rate is >7 degrees/s (El-
Gohary et al., 2017). To determine step length (meters) of
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FIGURE 1 | Push and release test (A) Prior to release, the subject’s center of mass is beyond the subject’s base of support (heels). (B) Immediately after release of

support. (C) Subject recovered using one backward step.

FIGURE 2 | (Left) Support was released at time 0 (solid yellow). Step latency (blue dashed line) and time to stabilization (yellow dashed line) are marked.

the first step, the double integral of acceleration of the foot
from first foot movement to the next zero velocity instant
will be calculated. Magnitude thresholds of 97.4 degrees/s
for rotational rate and 0.8 m/s2 relative to gravity for

acceleration will be used to determine the zero velocity instant
(Rebula et al., 2013). Time to stabilization will be calculated
as the amount of time (seconds) from t0 to stabilization.
Stabilization will be detected when lumbar acceleration <7%
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of gravity and rotational rate <7 degrees/s, after the last step
(El-Gohary et al., 2017).

The primary outcome measure will be time to stabilization.
Secondary outcomes include step latency, step length, and the
clinical score (number of steps) (Horak et al., 2009). The clinical
score will be rated as follows: 0= fall, 1= recovers independently
but takes more than 1 step, 2 = recovers independently with
one step.

Sample Size
The sample size for aim 1 of phase 1 was calculated from
differences between symptomatic concussed subjects and healthy
controls in response to a tethered pull perturbation (Pan et al.,
2015), with an estimated difference of 1.7 standard deviations
(Cohen d = 1.7) between concussed subjects with residual
balance complaints and healthy controls. With an effect size of
1.7, we will have>99% power to detect group differences at acute
assessments with a 0.05 significance level and a two-sided t test
with 40 subjects per group.

The sample size for aim 2 of phase 1 was based on an estimated
effect size of Cohen d = 0.72 between asymptomatic, previously
concussed individuals and healthy controls (Pan et al., 2015).
If we observe a similar effect size of 0.72 for the P&R test, we
expect 74% power to detect group differences at the primary
PostRTP time point using a two-sided t test at a Bonferroni-
corrected significance level of 0.0125 (0.05/4 for four outcomes:
time to stabilization, step latency, step length and clinical score)
with 40 subjects per group. Comparisons at PreRTP and 6Month
assessments will also be performed but will be considered
secondary. We also expect 88% power to detect group differences
in the change between acute and subsequent assessments with 40
subjects per group.

Statistical Analysis
Aim 1 of phase 1: t tests will be used to determine if time to
stabilization during the P&R differs between healthy subjects
and subjects <48 h after concussion. Linear regression models
will assess group differences while controlling for potential
confounders of age, sex, contact/noncontact sport, and BMI.
Concussion history will be recorded and explored as a covariate
if necessary. As clinical scores are ordered with three levels,
Wilcoxon Mann-Whitney U tests and generalized linear models
for ordered multinomial outcomes (ordinal logistic regression)
will compare clinical scores between groups. If the clinical scores
exhibit a high ceiling effect, scores will be dichotomized and
analyzed using χ

2 tests and logistic models. t tests will assess
whether concussed athletes had greater differences between
single- and dual-task conditions relative to controls.

Aim 2 of phase 1: Bonferroni-adjusted t tests will be used
to compare groups PostRTP to determine whether athletes with
a recent mTBI take longer to stabilize during reactive postural
responses after being medically cleared to RTP. Analogous
secondary tests will be used for the PreRTP and 6Month
assessments. We will also compute the difference in time to
stabilization between assessments (e.g., change from Acute to
PostRTP) to determine whether concussed athletes improved
their postural responses over time. t tests will compare the group

differences in the change between assessments. Longitudinal
analysis using generalized estimating equations (GEEs) with
compound symmetry working covariance models will be used to
contrast each outcome of the P&R test at each assessment while
controlling for lean direction; single vs. dual task; and possible
confounders of age, sex, contact/noncontact sport, and BMI. A
group-by-assessment interaction will determine if adjusted group
differences changed between assessments. Two- and three-way
interactions with task (group× task, group× task× assessment)
will be included to test for group-difference in task, and if
significant, final models will include these interactions. Ordinal
logistic regression in a GEE framework will be used to assess
changes in clinical scores between assessments.

Phase 2: Examining the Relationship
Between Postural Responses and Acute
Lower Extremity Musculoskeletal Injuries
Participants
For phase 2, a minimum of 200 subjects will be recruited before
the start of their competitive season and prospectively tracked
for 1 year. All subjects will be between the ages of 18 and 30
years and tested on site in the Athletic Training Clinics at the
University of Utah. Informed written consent will be obtained
from all participants.

Inclusion and Exclusion Criteria
For phase 2, inclusion criteria are as follows: (1) age 18 to
30 years and (2) current participant in NCAA Division I
athletics. Exclusion criteria are as follows: (1) recent (within
6 months) or planned surgery that would result in future
time loss and practice/competition exposure and (2) chronic
conditions that could confound testing procedures (overuse
injuries, medical conditions).

Assessment Procedures
Phase 2 assessments will be included as part of preseason physical
baseline testing. Acute lower extremity musculoskeletal injuries
for each athlete in phase 2 will be prospectively tracked for 1 year
from the date of first team activity.

The phase 2 assessment will be identical to the phase 1
matched control athlete assessment. Additionally, mTBI history
will be recorded using the Ohio State Traumatic Brain Injury
Identification Method (OSU TBI-ID). While the OSU TBI-ID is
not made specifically for mTBI, it is well validated (Corrigan and
Bogner, 2007; Bogner and Corrigan, 2009) and recommended by
the National Institute of Neurological Disorders and Stroke as a
CommonData Element for mTBI studies. Lower extremity injury
history, including the date of injury, location, type of injury (e.g.,
sprain, fracture), cause, time lost from sport, and relation of each
injury to the athlete’s primary sport, will be recorded.

Prospective Musculoskeletal Injury Risk
Acute lower extremity musculoskeletal injuries for each athlete
in phase 2 will be prospectively tracked for 1 year from the
date of their first team activity. Injury data will be queried
from the athletes’ electronic medical records documented by the
University of Utah Athletic Training Staff and maintained for
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the Pac-12 Sports Injury Registry Management and Analytics
Program. Injuries of interest will include any acute orthopedic
injury of the lower extremity, pelvis, lumbar spine, or abdomen
that resulted in time lost, including but not limited to
joint sprains, musculotendinous strains, and fractures. Because
abdominal and lumbar muscles are required for stability and
movement control (Cholewicki et al., 1997), and the lumbar
spine is a critical junction of postural control during sport with
high musculoskeletal loads and compressive muscle forces, both
lumbar spine and abdominal injuries will be included. Any injury
that results in an athlete being unable to fully participate in
training ormatch play will be considered a time loss injury (Fuller
et al., 2007; Howell et al., 2018a). Overuse injuries and preexisting
conditions will be excluded. The primary outcome measure will
be time to first musculoskeletal injury. The number of injuries
within 1 year and severity of injuries (time lost from a given
injury) will be included as secondary outcomes.

Statistical Analysis
Time from first team activity to first musculoskeletal injury will
be summarized using Kaplan–Meier methods. Cox proportional
hazards models will be constructed to determine if time to
stabilization during postural responses is associated with faster
times to injury in the general collegiate athlete population
(hypothesis 3a). Similar models will be performed for each
secondary outcome. Models will first be unadjusted and then
potentially adjusted for age, gender, sport, history of a recent
musculoskeletal injury, and history of mTBI before enrollment.
The number of variables that we will adjust for will depend
on the number of musculoskeletal injuries observed. The
inclusion of sport as a covariate will account for variation in
the biomechanical demands, exposures, and schedules across
different sports. To determine if time to stabilization is a better
predictor of future injury than clinical score, similar models will
be constructed for the P&R clinical score, and we will assess
each model’s predictive ability using c-statistics (hypothesis 3b).
Models with the highest c-statistic value will indicate the outcome
most predictive of time to injury.

Sample Size Justification
We will have 80% power to detect a minimum hazard ratio
of 1.53 per 1-s increase in stabilization time with a total
sample size of 200 healthy participants, an event rate of
22%, and a standard deviation of 1 s using a Cox regression
model at the 0.05 significance level. The event rate was
estimated from the average number of athletes who experienced
musculoskeletal injuries at the University of Utah from
2015 to 2018.

DISCUSSION

While a number of studies have examined static balance and
gait after mTBI, reactive postural responses are an essential
component of balance control for athletic performance and
remain largely unstudied. An inability to accurately respond
to postural disturbances could contribute to the increased
musculoskeletal injury risk after mTBI. Therefore, the primary

goal of this study is to determine if impaired reactive
postural responses contribute to the increased musculoskeletal
injury risk after mTBI. Using a two-phase approach, we
will determine to what extent, and for how long, reactive
postural responses are impaired after mTBI (phase 1), and
we will determine the association between reactive postural
responses and prospective musculoskeletal injury risk (phase
2). This study is unique in that it objectively measures reactive
postural responses, an understudied component of balance,
after mTBI.

Reactive postural responses are common in athletic
competition and essential for athlete safety, but this domain of
balance control has not been studied extensively after mTBI.
Time to stability after dynamic movement can discriminate
between those with history of mTBI and healthy controls (Lynall
et al., 2020), suggesting that stability may be an important
post-mTBI measure. However, no study has examined reactive
postural responses in athletes with mTBI. We suspect the lack
of knowledge concerning reactive postural responses after mTBI
stems from two sources. First, reactive postural responses have
been historically considered reflexive (subcortical) (Jacobs and
Horak, 2007; Jacobs, 2014). However, it is likely that reactive
postural responses rely on interaction among spinal circuits, the
brainstem, and the cortex (Jacobs and Horak, 2007). As the focus
of mTBI has traditionally been on cortical damage, postural
responses may have been considered too automatic/reflexive
to be disrupted by mTBI. The second possible reason for a gap
in knowledge is logistical; traditional assessments of postural
responses require sophisticated moving platforms (Zettel et al.,
2008a,b) or tether-release (MacKey and Robinovitch, 2005;
Inness et al., 2015) setups. Given some of the patient burden
hurdles ingrained within clinical mTBI research, it is perhaps
unsurprising that few studies have examined postural responses
using these types of equipment. In fact, in designing this
protocol, we considered implementing similarly controlled
postural response paradigms (e.g., tether-release, moving
platform, etc.). However, the need for a clinically feasible testing
paradigm was critical to minimize the burden on student-athlete
participants. Therefore, we selected the P&R test, a clinical
test traditionally quantified using visual scoring. The notable
weakness of this task is the relative simplicity for highly athletic
individuals—few athletes should take multiple steps or struggle
to recover. The use of wearable sensors is therefore essential and
enables quantitative metrics of response latency, step length,
and time to stabilization. The combination of wearable inertial
sensors with the clinical P&R test facilitates assessments of
reactive postural responses within an athletic training room with
minimal added burden on the athlete. If we find athletes with
recent mTBI take longer to regain stability or exhibit longer step
latencies, it will provide evidence that mTBI impairs the reactive
restoration of balance, demonstrating that mTBI affects all
domains of balance control. Additionally, if we find differences
between groups across time, it will support our hypothesis
that postural responses are persistently impaired after mTBI.
Such findings, coupled with the clinical feasibility of the P&R
assessment, may spur the integration of postural response testing
into the clinical management for mTBI. In the future, more work
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will be needed to develop outcome measures with established
cutoff values for return-to-to play that could be incorporated
into a testing battery.

The ability to carry out multiple tasks simultaneously, or to
divide attention, is important in maintaining postural stability.
Dual-task paradigms challenge the capacity for divided attention
by requiring the participant to deal with competing cognitive
and motor demands (Yogev-Seligmann et al., 2008). Because
attentional capacity is limited, simultaneous performance of the
tasks will cause a decline in one or both of the tasks (Posner
and Boies, 1971; Kahneman, 1973). Correspondingly, dual-
task deficits after mTBI during standing balance (Cavanaugh
et al., 2005) and gait (Howell et al., 2013a, 2017) persist
longer than motor tasks alone. If we find that reactive postural
responses are impaired only in athletes with recent mTBI
when performing a simultaneous cognitive task, it suggests
that clinical evaluations of reactive balance control after mTBI
should incorporate complex cognitive environments similar to
gameplay. This finding would add support to existing literature
demonstrating the need for dual-task assessments involving both
physical and cognitive demands similar to those experienced
during athletic competition.

A primary challenge in directly associating musculoskeletal
injuries to underlying concussion deficits is adequate statistical
power. To address this challenge, we considered the following to
be true: if postural responses are associated with musculoskeletal
within a population, the association will hold for a subgroup
of that population. Therefore, if we find an association between
reactive postural responses and the time to musculoskeletal
injury in the general athletic population, irrespective of mTBI
(phase 2), we expect that any impairment in reactive postural
responses after mTBI will also associate with a faster time to
injury. This assumption allows us to obtain adequate power for
a longitudinal survival model within a reasonable timeframe (3
years). However, it does prompt a question about the validity
of this assumption. The interpolation of a population-level
association (all athletes) to a subgroup-level association (those
with acute mTBI) will be directly tested by comparing the
time to injury in athletes from phase 1 to test the validity
of our assumption. Additionally, our concurrent two-phase
approach will allow us to explore the association between
changes in reactive postural responses from baseline-to-post-
mTBI with time to injury using the small subset of athletes in
which we will have baseline (pre-mTBI) and longitudinal post-
mTBI measurements.

This study seeks to further our understanding of balance
control after mTBI by examining a heretofore understudied, yet
critically important aspect of balance, reactive postural responses.
Through the innovative use of wearable sensor derived measures

gathered during a clinical testing battery, the results of this
study will improve our understanding of balance control post-
mTBI and contribute to the foundation of relevant post-mTBI
rehabilitation targets.
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