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Running is a popular way to become or stay physically active and tomaintain and improve

one’s musculoskeletal load tolerance. Despite the health benefits, running-related injuries

affect millions of people every year and have become a substantial public health

issue owing to the popularity of running. Running-related injuries occur when the

musculoskeletal load exceeds the load tolerance of the human body. Therefore, it

is crucial to provide runners with a good estimate of the cumulative loading during

their habitual training sessions. In this study, we validated a wearable system to

provide an estimate of the external load on the body during running and investigated

how much of the cumulative load during a habitual training session is explained by

GPS-based spatiotemporal parameters. Ground reaction forces (GRF) as well as 3D

accelerations were registered in nine habitual runners while running on an instrumented

treadmill at three different speeds (2.22, 3.33, and 4.44 m/s). Linear regression analysis

demonstrated that peak vertical acceleration during running explained 80% of the peak

vertical GRF. In addition, accelerometer-based as well as GPS-based parameters were

registered during 498 habitual running session of 96 runners. Linear regression analysis

showed that only 70% of the cumulative load (sum of peak vertical accelerations) was

explained by duration, distance, speed, and the number of steps. Using a wearable

device offers the ability to provide better estimates of cumulative load during a running

program and could potentially serve as a better guide to progress safely through

the program.

Keywords: running, wearable, cumulative load, speed, distance

INTRODUCTION

Recreational distance running is one of the most popular forms of physical activity (Pedisic
et al., 2019). Approximately 20% of all people in Western countries go out for a run once or
twice a week. By doing so, runners profit from the associated health benefits which range from
improvements in mental health to prevention of chronic diseases. Hence, recreational running
can be considered as an ideal lifestyle medicine (Lee et al., 2017). However, runners must receive
the right running dose to reap these health benefits. Getting the dose right can be tricky as
the dose must exceed the minimal amount of running needed to receive its health benefits
whereas running too much can lead to running-related injuries (RRIs) (Bertelsen et al., 2017).
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Despite the benefits of running, the development of RRIs
remains a major problem as the incidence of RRIs remains
high with reports of an average of 17.8 injuries per 1,000 h of
running (Videbæk et al., 2015) or with 40% of novice runners
having a RRI during the first year after a start-to-run program
(Kluitenberg et al., 2015). RRIs are generally musculoskeletal
overuse injuries at the legs that result from the repetitive motion
pattern of running in which the legs experience high amounts of
musculoskeletal loading during every step. The etiology of RRIs
is multifactorial and a great diversity of intrinsic related (such
as age, gender, BMI) and extrinsic (such as training load) risk
factors have been identified. However, most studies identifying
these factors show inconsistent or conflicting results. Bertelsen
et al. (2017) recently proposed a conceptual framework to inform
future RRI prevention studies. This framework explains that
a RRI occurs when the musculoskeletal load capacity, i.e., the
load that can be sustained before a RRI occurs, is exceeded by
the cumulative load, i.e., the sum of stride-specific mechanical
loads that musculoskeletal structures are exposed to during a
running session. They recommend that future RRI studies should
quantify participation objectively by reporting the number of
strides per training session as well as the structure-specific
load per stride. However, they do recognize that structure-
specific load per stride is currently very challenging to measure
and cannot be performed during each training session of
the runner.

As it is crucial to appropriately monitor the cumulative load
as a product of load magnitude and load volume, proxies of
this load have been used to develop training programs aimed
to minimize the risk of overuse injuries by prescribing the right
training dose. Most running programs use a 10% increase as a
progression rule, where the load progression is typically based
on time or distance (Buist et al., 2008; Bredeweg et al., 2012).
A recent literature review by Edwards (2018) provided very
limited evidence to support that a sudden change in training
load is associated with an increased risk of a running-related
injury. However, changes in training load were mainly defined as
proxies of the volume (such as distance, duration, or number of
steps) and did not capture the magnitude of the musculoskeletal
load (such as muscle forces or joint contact forces). A recent
mechanobiological model of Edwards (2018) showed that
mechanical fatigue of the musculoskeletal tissues is dependent
on the number of cycles multiplied by the load magnitude to
the 5–9th power depending on the tissue involved. As such, the
load magnitude will have more of an effect than the volume in
the emergence of RRIs. Traditionally, load magnitude during
running is determined in highly sophisticated laboratory settings
which combine ground reaction force measurements (e.g.,
force-instrumented treadmills) with motion analysis (e.g., 3D
motion capture). Although these give very detailed information
on the tissue specific loading, they provide only a “snapshot
view” over a limited number of running strides confined to
the laboratory environment. Vertical ground reaction forces
(vGRF) have also been used to estimate the loading on the
musculoskeletal system. Although easier to measure, it is still not
possible to measure these in the normal training environment of
the runner.

Wearable technology in terms of inertial measurement units
(IMU’s) is capable of capturing biomechanical data in real-
life environments. Using a wearable trunk accelerometer it is
possible to obtain ecologically valid estimates of peak vGRFs
outside the lab, as previously shown (Neugebauer et al., 2014;
Neugebauer and Lafiandra, 2018). However, this was only done
during walking (Neugebauer and Lafiandra, 2018) or using
accelerometers with a low range (Neugebauer et al., 2014). It is
therefore still crucial to estimate the accuracy of the estimates of
peak vGRFs during running. Using these estimates of vGRF in
combination with number of steps could have the potential to
estimate cumulative loading. The potential of such an approach
was shown for the first time by Kiernan et al. (2018) in a
small cohort study. In this study, the 3 runners who sustained
an injury had higher weighted cumulative loading per run
measured by a hip mounted accelerometer compared to those
who didn’t sustain an injury. However, the added value of using
cumulative loading compared to the commonly used estimates
such as distance, duration, speed, and number of steps is still
unknown. Therefore, the goal of the current study is to explore
how well distance, duration, speed, and number of steps explain
cumulative loading during habitual running sessions. For that, we
first aimed to validate the use of vertical acceleration measured
using our in-house developed wearable system using an indoor
instrumented treadmill, and then to determine how much of
the cumulative load during a habitual running session can be
predicted using GPS based spatiotemporal parameters.

METHODS

Indoor Validation
Nine habitual runners were invited to the Movement and
posture Analysis Laboratory of Leuven (Belgium) to determine
the validity of accelerometer-based parameters to estimate peak
vGRF. Prior to the experimental testing, participants had a 5-min
warm-up on a motorized force measuring treadmill (Motekforce
Link, Amsterdam, The Netherlands). Next, they ran for 1min at
three incremental speeds (2.22, 3.33, and 4.44 m/s) in sequential
order with 2-min rest periods between speed intervals. Ground
reaction forces during running were measured using the force
plate embedded in the treadmill with a sampling frequency of
1,000Hz. Force plate data was first low-pass filtered in MatLab
(Mathworks, Natick, US) using a third order Butterworth filter
with a cut-off frequency of 45Hz to avoid smoothing out high-
frequency impact transients then parsed into individual steps.
vGRFpeak was defined as the maximum vGRF during 40–
60% stance. Foot contact was defined as vGRF exceeding 50N.
Ground reaction forces were normalized to body mass.

In addition, the runners were equipped with a custom-
made wearable system. The wearable system consists of a smart
phone (Nokia 1) attached in an armband on the upper arm
of the runner’s preferred side, and an IMU (LPMS-B2 wireless
Bluetooth 2 ± 16 g range, sampling at 200Hz, 12 g weight,
LP-RESEARCH, Tokyo, Japan) attached using a tightly fitted
waistband centered on the lower back at spinal level of L3–
L5 (Schütte et al., 2015). The IMU was used to record tri-
axial accelerations for each running speed epoch, respectively.
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To match each running step, IMU acceleration signals were
temporally aligned with vGRF signals. This was achieved by
cross-correlating the IMU’s vertical acceleration profile with
the vertical acceleration profile derived from a retro-reflective
marker placed on the posterior side of the IMU. Specifically,
the marker’s trajectory was recorded in 3D at 200Hz using
a 10 camera Vicon system (Vicon, Oxford, Metrics UK) and
was time synchronized with the vGRF. Marker acceleration was
obtained after differentiating from marker displacement and
velocity. Both displacement and velocity were low-pass filtered
using a third order Butterworth filter with a cut-off frequency
of 20Hz prior to differentiating. Peak positive accelerations (g)
along three longitudinal axes of the trunk: vertical (ACC_v),
anteroposterior (ACC_ap), and mediolateral (ACC_ml), were
extracted in the time domain and were defined as the maximum
absolute acceleration during stance. Step detection and the
contact phase was determined based on previously published
algorithms (Benson et al., 2019).

Outdoor Training Monitoring
To determine the association between accelerometer-based
cumulative loading and spatiotemporal characteristics, we
monitored the habitual training sessions of regular runners
during a period of 3 months using the same wearable system
as described in 2.1 Indoor Validation. We recruited 96 runners
who ran on a regular basis over the previous 6 months
and were between 18 and 60 years of age. Participants were
excluded from the study if they had any known history of
metabolic, neurological, or cardiovascular disease or had any
recent (6 months prior) surgery of the lower limbs or back.
Recruitment was done through social media, using electronic
flyers distributed to local running groups and clubs.

Prior to the first training session, participants were asked
to complete a questionnaire including demographics as well
as detailing their training and injury history. Participants were
asked to meet at the Movement and Posture Analysis Laboratory
of Leuven (Belgium) and received clear instructions on how to
attach and properly position the belt. This belt had a special
attachment such that the sensor fit tightly and comfortable
between the left and right posterior superior iliac spines on
the lower back. The positioning of the sensor was checked
through an automatic calibration procedure while the runners
was standing still. All participants were injury free at the time of
testing. Written informed consent was received from all runners
prior to participation in accordance with the Declaration of
Helsinki. The local ethics committee (Medical Ethics Committee
of University Hospital Leuven) approved the study (S62086).
During the measurements, participants ran according to their
habitual training plan, with the addition of an accelerometer-
based wearable device provided by the researchers. Specifically,
participants were able to self-select their own training parameters
(e.g., pace, duration, distance, and terrain/surface). Participants
were asked to track their training sessions with the wearable
system during a period of 3 months. All signal processing of
acceleration curves was performed using the same algorithms as
described for the validation study. Algorithms were implemented
in Python. Cumulative load per training session was calculated

as the sum of all peak vertical accelerations for all steps. Pace,
duration, and distance were extracted from the GPS in themobile
phone (as part of the wearable system).

Statistical Analysis
All statistical analyses were conducted using SPSS software (SPSS;
v26.0, SPSS Inc., New York, USA). Statistical significance was
set at p < 0.05. All data were checked for normalcy using a
Kolmogorov-Smirnov Test in combinationwith visual inspection
of the histograms.

For the indoor validation study, correlations between the
accelerometer data and the peak vGRF were calculated using
Pearson product-moment correlation coefficients when data
were normaly distributed. A linear regression model was
developed using ACC_v, ACC_mp, ACC_ap and speed as
independent variables.

For the outdoor data, cumulative load per training session was
calculated for all runners. For a sub-set of runners with more
than two training sessions (n= 57) a pooled cumulative load per
runner was calculated as the average of the cumulative load per
training session of that specific runner. In addition, average and
standard deviation ACC_v was calculated per training session.
For each runner, a pooled average and pooled standard deviation
was calculated as the mean ACC_v and mean of the standard
deviation of all training session of that runner.

Linear regression models to predict cumulative loading per
training session was developed using all runners data (n = 96)
and a combinations of duration (minutes), distance (m), average
speed (m/s), and number of steps as core hypothesized predictors.
To assess the real-world predictive performance of the above
linear regression model, we used a leave-one-subject-out-cross-
validation approach (De Beéck et al., 2018). Thus, for each
runner, we trained a linear regression model based on the data
of all other runners. This model is used to predict the cumulative
load of each held-aside session of that runner. The absolute
error of a prediction is then defined as the absolute value of
the difference between the true cumulative load of the session
and the predicted cumulative load. To aggregate the absolute
errors across all sessions and runners, a two-step aggregation
procedure to account for the variable amount of sessions per
runner was employed (De Beéck et al., 2018). First, a runner’s
mean individual absolute error was calculated as the average
absolute error over all of that runner’s sessions. Second, the global
mean absolute error across all runners was calculated as the
average of all individual mean absolute errors.

RESULTS

Indoor Validation Study
To validate the accelerometer data in comparison with the
ground reaction force, a total number of 4,158 running steps were
used. Average vGRF was significantly correlated with ACC_v,
ACC_ml, and ACC_ap (Table 1). ACC_v alone explained 79.7%
of the variation in the vGRF_peak (Figure 1).

Linear regression analysis resulted in R∧2 of 0.873.
Linear model:
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vGRF_Active = 0.46 + 0.62∗ ACC_v + 0.81 ∗ ACC_ml +
0.46∗ACC_ap+.01 ∗ Speed.

Outdoor Training Monitoring
Cumulative load was calculated for 96 runners (Table 2)
including 498 running sessions with on average 6,640 (2,239–
31,870) steps per session. The median duration and distance of
a running session was 42 (14–228) min and 7.5 (2.1–37.0) km.
Runners ran at an average speed of 3.0 (2.0–4.65) m/s.

The median (range) cumulative load per session for the sub-
group of runners with more than two running sessions was
37,198 (9,518–190,409) g. Themedian (range) ACC_v per session
was 5.42 (2.89–12.99) g for all running sessions. Median standard
deviation within one training session was 0.90 (0.34–3.27)g. The
median (range) of the pooled average ACC_v per runner was 5.54
(3.17–10.56) g.

TABLE 1 | Correlations (r∧2) between the peak vertical ground reaction force

(vGRF_peak) and the peak acceleration signals in the indoor validation study.

2.22 m/s 3.33 m/s 4.44 m/s R∧2

vGRF_peak (N/BW) 2.44 ± 0.21 2.71 ± 0.28 2.85 ± 0.31

ACC_v (g) 2.72 ± 0.27 3.00 ± 0.34 3.03 ± 0.37 0.797

ACC_ap (g) 0.59 ± 0.14 0.78 ± 0.16 0.89 ± 0.19 0.186

ACC_ml (g) 0.33 ± 0.17 0.50 ± 0.26 0.58 ± 0.29 0.064

Data for the mean ± standard deviation of all parameters during all running trails

are reported.

Themedian (range) of the pooled cumulative load per runners
was 32,432 (10,332–102,331) g. The median (range) of the pooled
standard deviation was 0.52 (0.05–2.79) g.

The R∧2 values between the spatiotemporal parameters and
cumulative load per session are represented in Table 3. The best
regression model with an r∧2 of 0.703 is represented by

Cumulative_Loading = −1,33 + 13.078 ∗ steps - 7.108 ∗

distance – 13.17 ∗ duration+ 1,61 ∗ speed
Using total distance, duration, speed, and number of steps as

input for the above linear regression, we found a global mean
absolute error of 9,488 g. Compared to an average load of 35,271 g
per session (i.e., aggregated using same two-step aggregation),
this yielded a relative error of 26%.When only distance, duration,
and speed were being used, the global mean absolute error of the
models increased to 10,908 g (31%).

DISCUSSION

The primary aim of this study was to investigate how much of
the cumulative loading during a training session is explained

TABLE 2 | Demographics of the runners included in the outdoor monitoring study.

Gender (male/female) 41:18

Age 29.5 ± 8.1

BMI 22.4 ± 2.2

Number of years running 9.6 ± 7.6

Number of runners with history of RRIs 21

FIGURE 1 | Linear regression between the active peak vertical ground reaction (GRFvActive) and the peak vertical acceleration (ACCvImpact). Each point represents a

running step from a runner running on an instrumented treadmill.
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TABLE 3 | Overview of the results of the linear regression models with the

spatiotemporal parameters to predict the cumulative load during all habitual

running sessions.

Duration Distance Speed Number of steps R∧2

(min) (km) (m/s)

x 0.005

x 0.477

x x 0.560

x 0.565

x x 0.569

x x 0.571

x 0.629

x x 0.652

x x 0.699

x x x 0.701

x x x x 0.703

by commonly used spatiotemporal characteristics such as speed,
distance and duration. We found that only 70% of the
cumulative loading per training session was explained by these
spatiotemporal parameters and that using a generic program
based on these parameters will result in a relative error of 26%.

Monitoring load during training sessions gained significant
attention over the last decade especially as too high training
loads and rapid changes in training loads have been associated
with injury. Using training load researchers, coaches, and trainers
attempt to quantify the external load on the human body during
physical activity (Foster et al., 2017). Most studies represented
training load, especially in running, by the duration, distance
run, or number of steps (Buist et al., 2008; Nielsen et al.,
2013, 2014). However, based on our results these spatiotemporal
parameters only provide a very rough estimate of this load
(<70%). Other factors besides spatiotemporal parameters such
as running surface (Schütte et al., 2016), fatigue (Dierks et al.,
2010; Schütte et al., 2015), or other contextual factors have
previously been shown to have an effect on the external load on
the human body.

The availability of wearable sensors enables obtaining more
detailed information about the external load in the ecological
environment of the runner during each running session.
Although the axis system of the sensors could have been slightly
different from the world coordinate system used for the GRF, the
current study demonstrates that using peak accelerations during
the contact phase of running provides a good estimate of the
peak vGRF. For the indoor validation study, the same analysis
was performed except that tilt correction was included. This
yielded very similar results (data not shown). Because omitting
tilt correction yields a simpler andmore computationally efficient
implementation of the algorithms, therefore results without tilt
correction were reported. Our results are similar to previous
research associating peak vertical acceleration with vGRF during
walking (Neugebauer et al., 2014; Neugebauer and Lafiandra,
2018). Predictions of vGRF were accurate to within 4% based
on accelerometer data during walking at different speeds while

carrying different loads (Neugebauer and Lafiandra, 2018). In
contrast, Rowlands et al. (2004) found no significant correlation
between peak acceleration and peak impact force. However, they
investigated walking and running at different speeds as well as
several jumps using a commercially available accelerometer with
a low range on the hip. They described in their discussion that
the acceleration signal frequently reached the maximum range of
6 g. This studied used an accelerometer with a high range (16 g)
and a custom designed sensor attachment, which ensured that
the accelerometer only moved with the body. To the best of our
knowledge, this is the first study to demonstrate the accuracy
of predicting peak vGRF using a single accelerometer securely
attached at the lower back. As the vGRF is a good proxy of
the external load on the human body, we suggest that training
load would be better represented by the sum of the impact loads
(measured with accelerometry) of all steps.

In this study, we defined cumulative load as the sum of all
peak vertical acceleration of all running steps measured during
the habitual training session of 96 runners. This definition
is similar to Kiernan et al. although they weighted peak
acceleration to the 9th power (Kiernan et al., 2018). Rowland
et al. used also peak acceleration to quantify mechanical load
(Rowlandsa and Stiles, 2012). The training data showed quite
a large variation between runners. For example, the ACC_v
was above 10 g for three participants. After carefully checking
the quality of the data, it was noticed that all of the recorded
session of these runners showed these high values for ACC_v.
This might indicate that these high ACC_v are related to
the specific running styles of these participants rather than
bad data quality due to malpositioning of the sensor. As the
participants put the sensor on themselves as instructed in the
first session there is a possibility that this affects the data
quality. However, the design of the belt as well as the automatic
calibration assisted this process and when comparing the data
of the first session with the consecutive sessions no difference
were observed. Further research is needed to explore if is
indeed the case and if this puts these runners at a higher
risk of injury. Only 70% of the cumulative loading could be
explained by the commonly used spatiotemporal parameters
duration, distance, speed, and number of steps. This shows
that using accelerometer-based wearable technology gives better
estimates of cumulative load which might improve the value
of these parameters when designing and modifying training
programs. A recent literature review (Damsted et al., 2018)
concluded that there is very limited evidence supporting that
a sudden change in training load is associated with increased
risk of running-related injury. However, changes in training
load were defined as changes in speed, distance, volume, or
frequency. In contrast, Kiernan et al. (2018) recently showed
that using hip-mounted accelerometer to monitor collegiate
athletes throughout their entire run, injured runners had
higher weighted cumulative loading per run. This shows the
potential to use these loading profiles to investigate further
the link between training load and running related injuries.
To gain further insight monitoring load using this wearable
technology is therefore crucial and could be used to adjust
training programs.
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Although using our wearable system gives more information
about the loading compared to the GPS based parameters,
it still only uses a proxy of the whole-body rather than the
structure-specific musculoskeletal loading. Future research
therefore will need to determine the accuracy of the wearable
system in estimating GRF is sensitive enough to detect
factors such as cumulative loading or changes in loading
to detect or predict a higher risk of injury. In addition,
as the model of Edwards (Edwards, 2018) describes, the
structure-specific loading component is very important
and the association between this structure-specific loading
and the whole-body loading is not clear yet. However, in
order to measure proxies of structure-specific loading, it is
expected that multiple sensors or a combination with lab-based
measurements are needed. Future research is needed to further
develop specific proxies of structure-specific loading. At the
moment, monitoring cumulative load using the purposed
wearable system has the potential to give first insights in the
influence of training load on the development of running
related injuries.

CONCLUSION

Trunk based accelerometers could give a more accurate
estimation of accumulated training load compared to more
commonly used parameters such as speed, time, and duration.
Using this wearable technology can increase insight in the role
of change and progression of training load in the development
of RRIs.
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