
ORIGINAL RESEARCH
published: 18 March 2021

doi: 10.3389/fspor.2021.585809

Frontiers in Sports and Active Living | www.frontiersin.org 1 March 2021 | Volume 3 | Article 585809

Edited by:

Jean Slawinski,

Institut national du sport, de l’expertise

et de la performance (INSEP), France

Reviewed by:

Qingguo Li,

Queen’s University, Canada

Janez Podobnik,

University of Ljubljana, Slovenia

*Correspondence:

Mathieu Falbriard

mathieu.falbriard@epfl.ch

Specialty section:

This article was submitted to

Elite Sports and Performance

Enhancement,

a section of the journal

Frontiers in Sports and Active Living

Received: 21 July 2020

Accepted: 27 January 2021

Published: 18 March 2021

Citation:

Falbriard M, Soltani A and Aminian K

(2021) Running Speed Estimation

Using Shoe-Worn Inertial Sensors:

Direct Integration, Linear, and

Personalized Model.

Front. Sports Act. Living 3:585809.

doi: 10.3389/fspor.2021.585809

Running Speed Estimation Using
Shoe-Worn Inertial Sensors: Direct
Integration, Linear, and Personalized
Model
Mathieu Falbriard*, Abolfazl Soltani and Kamiar Aminian

Laboratory of Movement Analysis and Measurement, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland

The overground speed is a key component of running analysis. Today, most speed

estimation wearable systems are based on GNSS technology. However, these devices

can suffer from sparse communication with the satellites and have a high-power

consumption. In this study, we propose three different approaches to estimate the

overground speed in running based on foot-worn inertial sensors and compare the results

against a reference GNSS system. First, a method is proposed by direct strapdown

integration of the foot acceleration. Second, a feature-based linear model and finally a

personalized online-model based on the recursive least squares’ method were devised.

We also evaluated the performance differences between two sets of features; one

automatically selected set (i.e., optimized) and a set of features based on the existing

literature. The data set of this study was recorded in a real-world setting, with 33 healthy

individuals running at low, preferred, and high speed. The direct estimation of the running

speed achieved an inter-subject mean± STD accuracy of 0.08± 0.1 m/s and a precision

of 0.16± 0.04 m/s. In comparison, the best feature-based linear model achieved 0.00±

0.11m/s accuracy and 0.11± 0.05m/s precision, while the personalizedmodel obtained

a 0.00 ± 0.01 m/s accuracy and 0.09 ± 0.06 m/s precision. The results of this study

suggest that (1) the direct estimation of the velocity of the foot are biased, and the error

is affected by the overground velocity and the slope; (2) the main limitation of a general

linear model is the relatively high inter-subject variance of the bias, which reflects the

intrinsic differences in gait patterns among individuals; (3) this inter-subject variance can

be nulled using a personalized model.

Keywords: IMUs, speed, running, overground, linear prediction, personalization

INTRODUCTION

The overground speed is the most useful metric in training and performance analysis of running.
Researchers have tried for decades to understand the physiological and biomechanical adjustments
occurring at different ranges of running speeds (Williams and Cavanagh, 1987; Nummela et al.,
2007; Moore, 2016; Thompson, 2017). However, most of the existing studies were performed in
a controlled environment (i.e., treadmill running inside a laboratory) where the runner has to
adapt his gait to run at a constant speed. In overground running, change of environment, surface,
slope, obstacles, and turns alter the gait and the running speed. Many studies have discussed the
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biomechanical adaptations associated with running on a
treadmill vs. running overground (Van Hooren et al., 2019).
While standard motion capture (i.e., stereophotogrammetry and
force plate) offers accurate measurements in laboratories, the
recent emergence of wearable systems is paving the shift toward
studies carried overground and in real-world conditions (Benson
et al., 2018).

The real-world estimation of the overground speed is
generally obtained using a body-worn Global Navigation Satellite
System (GNSS). Although these systems provide accurate and
reliable measurement of the locomotion speed (Terrier et al.,
2000; Witte and Wilson, 2004), they suffer from several
limitations: (1) their high power consumption restricts their
duration of use in portable devices, (2) the communication
between the receiver and the satellite is not always guaranteed
(e.g., indoor, near high buildings), and (3) the measurement
accuracy decrease during rapid changes of speed and position
(Varley et al., 2012; Rawstorn et al., 2014). As a solution to
the latter limitation, systems based on the data fusion of body-
worn inertial and GNSS sensors have been proposed to monitor
sports activities (Brodie et al., 2008; Waegli and Skaloud, 2009;
Zihajehzadeh et al., 2015). However, to address the issue of power
consumption and communication losses, IMU-based systems
must be able to estimate the speed without or with very limited
input from a GNSS device.

Several methods have been proposed to estimate the
walking speed using IMUs attached to different body-segments
(Miyazaki, 1997; Aminian et al., 2002; Zijlstra and Hof, 2003;
Sabatini et al., 2005; Hu et al., 2013; Salarian et al., 2013). One
solution would be to extend and adapt these methods to running.
However, these methods often relied on walking models or on
the estimation of step length, which cannot be directly applied to
running because of the aerial phases, where accelerometers are
erroneous. Other studies have used machine learning techniques
to estimate the walking speed but did not validate the results for
running (Zihajehzadeh and Park, 2016; Fasel et al., 2017).

To the authors’ knowledge, few studies proposed an accurate
ambulatory method, based on body-worn IMUs, to estimate
the overground speed of running, and even less did so for
instantaneous speed estimation. Two studies used a similar
method (integration of the acceleration signal) to calculate
the velocity of the shank (Yang et al., 2011) and foot (Chew
et al., 2017) segments. However, the error of the system was
computed over multiple strides, in a small range of speeds,
and for level treadmill running. As mentioned previously, the
velocity estimated from the integration of segment acceleration
has limitations, particularly when the flight phase varies in a
wide range or when various slopes are experienced as it is the
case in overground running. Another study (Hausswirth et al.,
2009) compared in-lab a commercialized speed estimation device
with the speed of a treadmill and reported a relatively low
accuracy considering that the system required a subject-specific
calibration. Subject-specific neural networks were also devised
to assess the running speed in free-living conditions using only
triaxial accelerometric measurements, but the model needed a
calibration/learning phase for each runner and was validated for
the mean speed using few trials (Herren et al., 1999). One study,

however, exploited the personalized calibration and proposed
a model based solely on the contact time (De Ruiter et al.,
2016). Although the authors obtained a low root-mean-square
error (<3%), these results were not instantaneous estimations
but rather the average speed over bouts of 125 meters. Besides,
a more recent study (Soltani et al., 2019) based on wrist-worn
inertial sensors suggested that better results could be achieved by
including more features to the model.

The objective of the current study was three-fold: first,
we aimed to extend an existing walking algorithm based on
strapdown integration of foot acceleration and show its limitation
for running speed estimation. Then we proposed a new linear
model to predict the running speed at each step and in real-
world condition, based on relevant features extracted from feet
acceleration and angular velocity. Finally, we investigated how
personalization improved the performances of the system using
additional data, such as occasional GNSS inputs. We compared
each method to the GNSS speed, considered as the ground truth,
obtained during outdoor measurements of overground running,
at different speeds and slopes.

MATERIALS AND METHODS

Protocol and Instrumentation
Thirty-three healthy and active participants [18 males (age: 38
± 9 y.o.; size: 180 ± 7 cm; weight: 76 ± 9 kg), 15 females (age:
36 ± 10 y.o.; size: 165 ± 7 cm; weight: 59 ± 7 kg)] without any
symptomatic musculoskeletal injuries participated to this study.
Themeasurements were performed in real-world conditions with
sections of uphill, downhill, and level running. We asked the
participants to run the same circuit three times, once at self-
adjusted normal, fast, and slow speeds (Figure 1A). The periods
of rest and the walking bouts, in between the running segments,
were manually removed from the analysis. The local ethics
committee approved the present protocol, and we conducted the
measurements in agreement with the declaration of Helsinki.

Each participant was equipped with two time-synchronized
sensors (Physilog 4, Gait Up, Switzerland) strapped on the
dorsum of the shoe. Each sensor included a triaxial accelerometer,
a triaxial gyroscope, and a barometer. The barometer was
sampled at 50Hz. Acceleration (±16 g) and angular velocity
(±2,000 deg/s) were recorded at 500Hz and were calibrated
according to Ferraris et al. (1955) before each measurement
session. Furthermore, a GNSS receiver (CAMM8Q, u-blox, CH)
with an external active antenna (ANN-MS, u-blox, CH) was
mounted on the head using Velcro attached to a cap. GNSS was
used as a reference system for the estimation of the running
speed. The GNSS receiver was set to pedestrian mode with
a sampling frequency of 10Hz. With such a configuration,
the datasheet of the manufacturer reported a median error of
0.05 m/s for instantaneous speed estimation. MATLAB software
(R2018b, MathWorks, Natick, MAUSA) was used for all the data
processing steps without the need for publicly available libraries.

Estimation of Reference GNSS Speed
The reference speed obtained from the GNSS receiver was
processed according to Soltani et al. (2019) and in two steps
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FIGURE 1 | (A) The elevation and speed of the running circuit. This figure was adapted from Soltani et al. (2019). (B) The definition of the foot functional frame (FF)

and global frame (GF) used in this study.

FIGURE 2 | Pre-processing steps applied to the GNNS measurements of speed to obtain the reference speed estimation. This figure was adapted from Soltani et al.

(2019).

(Figure 2). First, we enhanced the signal by removing the
outliers that did not correspond to running; hence, we removed
all recorded speed samples outside of the 5–20 km/h range.
Moreover, the GNSS receiver provided an estimation of the
accuracy of each observation; hence we discarded any data-point
with an error higher than 0.15 m/s. This process retrieved an
unevenly sampled reference speed signal. We applied a moving
average of 0.5-s width (in 10Hz), followed by linear interpolation
to obtain an equally-spaced time series at 10Hz. In the second
step, the signal was down-sampled to provide the reference speed
(vref), after a fourth-order low-pass Butterworth filter with the
cut-off frequency at 0.25Hz to reduce the noise.

Speed Estimation Based on Direct
Integration of Foot Acceleration
In this section, we describe the sequence of transformations that
we applied on the IMU and barometer data to extract the gait

features. The whole process can be summarized in four tasks:
pre-processing, temporal analysis, spatial analysis, and foot speed
estimation (Figure 3).

Pre-processing
First, a 4th-order low-pass Butterworth filter (Fc = 50Hz) was
applied on the raw acceleration (a(t)) and angular velocity (ω(t))
signals to reduce the noise. Then the IMU signals were aligned
with the foot segment by computing the rotation matrix that
transforms the data recorded in the technical frame of the sensors
into the functional frame (FF) of the foot (Figure 1B). For this
purpose, we used the measurements of level normal walking
(Figure 1A) and a previously reported calibration method
(Falbriard et al., 2018). This process aligned the y-axis of the IMU
with the vertical axis of the foot, pointing upward, the z-axis to
the mediolateral axis, pointing to the right side of the subject, and
the x-axis to the longitudinal axis, pointing toward the forefoot.
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FIGURE 3 | Steps performed on the IMU acceleration a(t), angular velocity ω(t), and barometric pressure b(t) measurements. The outputs were later used for feature

extraction; the slope s(t), the speed of the foot vfoot(t), the pitch angle θ (t), contact time CT, flight time FLT, swing phase duration SWT, step duration STP and stride

duration STR.

Throughout this paper, if not mentioned otherwise, the data are
reported in the functional frame of the foot.

The last phase in pre-processing was estimating the
overground slope. As the mechanics of running differ between
level, uphill, and downhill running (Vernillo et al., 2017),
we assumed that the elevation difference between successive
steps would be a relevant input for the model. Therefore, the
barometric pressure was converted by the hypsometric equation
to the altitude signal (Bolanakis, 2017) smoothed by applying a
4-s moving average filter and down-sampled to 1Hz time-series.
The slope (s(t)) was defined as the altitude difference between
two samples spaced by 5 s, by assuming that changes of altitude
shorter than 5 s would not have a significant effect on the
running speed.

Temporal Analysis
Temporal events detection was performed as described in
Falbriard et al. (2018) by segmenting the race into mid-swing
to mid-swing cycles and detecting of several temporal events
within each cycle. Mid-swings were detected as the positive peaks
observed on the pitch axis (FF z-axis) of the angular velocity
measurements. Moreover, we improved the robustness of the
peak detection algorithm by applying the YIN auto-correlation
method (De Cheveign and Kawahara, 2002) over a 10-s sliding
window (5-s overlap) to obtain an approximation of the cadence
and set an adequate minimum time difference between two
peaks. The initial contact event (IC), defined as the moment
when the foot initiates contact with the ground at landing, and
terminal contact (TC), defined as the instant when the toes leave
the ground during the pushing phase, were then detected within
each cycle using the two minimums of the pitch angular velocity.
Moreover, we defined the event MinRot as the time-point where
the norm of the angular velocity (||ω(t)||) is minimum within the
stance phase (i.e., between IC and TC).

Spatial Analysis and Foot Speed Estimation
This process aimed to measure the orientation of the foot in the
global frame (GF), remove the Earth’s gravitational acceleration
from the recorded acceleration, and integrate the corrected
acceleration to obtain the speed of the foot. In GF, the x-axis
was in the running direction, the z-axis corresponds to the axis
perpendicular to the ground surface, and the y-axis was defined
by the cross-product of the z and x-axes (Figure 1B). Using
a previously validated technique (Falbriard et al., 2020), foot
orientation was obtained in GF, and foot acceleration in FF was
expressed in GF and the gravitational acceleration (g = [0 0 9.81]
m/s2) removed. The resulting acceleration (in GF) was integrated
using a trapezoidal rule to get a first estimate of the speed of
the foot. We considered the speed of the foot to be zero during
the stance phase and, therefore, estimated and removed the
integration drift by linearly resetting the speed between MinRot
and TC of each stance phase. Note that we preferred MinRot to
the IC for drift resting since MinRot corresponds to the time
sample when the foot is the closest to a static state, reportedly
used as the integration limits in walking gait analysis (Mariani
et al., 2010). We finally applied the inverse of the quaternions
mentioned above to get the drift-corrected speed of the foot
segments (vfoot(t)) in the FF.

Development of a Linear Model for Speed
Prediction
Feature Extraction, Linearization, and Outliers

Removal
First, we extracted several parameters (pj) for each step, which
were later used as inputs for the speed estimation model. As
several studies reported on the association between the changes in
the duration of the gait phases and the running speed (Högberg,
1952; Saito et al., 1974; Nummela et al., 2007), we computed the
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TABLE 1 | List of the features extracted for each stride on the continuous

acceleration a(t), angular velocity ω(t), speed vfoot(t), and slope s(t).

Type Feature Description

Intensity mean_<T>_<C> Mean value

std_<T>_<C> Standard deviation

med_<T>_<C> Median

iqr_<T>_<C> Interquartile range

max_<T>_<C> Maximum

rms_<T>_<C> Root-mean-square

Shape kurt_<T>_<C> Kurtosis

skew_<T>_<C> Skewness

Compression arm1_<T>_<C> First coefficient of the auto-regressive

model of order 3

arm2_<T>_<C> Second coefficient of the auto-regressive

model of order 3

arm3_<T>_<C> Third coefficient of the auto-regressive

model of order 3

In the name of the feature, variables <T> and <C> correspond to the label of the signal
and the channel, respectively. Hence<T>must be replaced by a, ω, vfoot, or s while<C>

must be replaced by x, y, z, or norm.

ground contact time (CT), the flight time (FLT), the swing time
(SWT), the step duration (STP), and the stride duration (STR) for
each step i, where i = 1. . .N, and N is the total number of steps
(Equations 1–5).

CTi = TCi− ICi (1)

FLTi = ICi+1−TCi (2)

SWTi = ICi+2−TCi (3)

STPi = ICi+1− ICi (4)

STRi = ICi+2− ICi (5)

As a few strides suffered from misdetections, outliers were
removed according to (1) a valid stride must last between 0.37
and 2.5 s, and (2) the flight phase (FLT) must be >0.

Pitch angle (θ) at the IC was extracted as the angle between the
longitudinal axis of the foot (FF x-axis) and the ground surface (x
and y-axis in GF). A positive pitch angle corresponds to a rear-
foot landing (i.e., talus region lower than the toes) and a negative
pitch angle to a forefoot strike.

We also extracted several statistics from the acceleration
a(t), the angular velocity ω(t), the foot speed vfoot(t), and the
slope s(t) time-series. Moreover, since a(t), ω(t), and vfoot(t)
were 3-dimensional signals, these statistics were computed for
each axis (i.e., x, y, and z) and the norm of the signal. Note
that the features were captured on the signals of a single
stride (i.e., between ICi and ICi+2, where i = 1. . .N) before
applying the statistical functions. We opted for a stride-based
segmentation instead of the step-based segmentation because a
stride corresponds to one period of gait and, therefore, is more
likely to capture the complete pattern of a cycle. Besides, the
list of selected features (Table 1) aimed to collect information
in the intensity of the signal (e.g., mean, STD, RMS), the shape
of its distribution (e.g., skewness, kurtosis) and its shape in

a compressed format (e.g., coefficient of the auto-regressive
model). Moreover, as the temporal parameters (Equations 1–5)
already hold relevant periodic information, we did not consider
features in the frequency domain.

Before proceeding to the selection of the best features, we
visualized the relation between the reference speed vref (t) and the
features individually. Based on our observations, we identified
three functions that improved the linear relationship between the
reference speed and some of the input features; f1(p) = p2, f2(p)
= p3, and f3(p) = 1/p. The functions f1, f2, and f3 were applied
to all the features, and the results added to the list of features.
Finally, we also included several anthropometric parameters to
the collection of features, such as the size, weight, gender, and age
of the participants.

Data Set Configuration
We divided the data into three subsets: validation, training, and
testing sets. The participants were randomly distributed into
the three subsets. It is important to note that all the steps of a
single individual were attributed to only one of the subsets; this
removed the performance bias associated with themodels trained
and tested on measurements originating from the same subjects
(Halilaj et al., 2018). Figure 4 shows the data from each set with
different colors and illustrates their functions.

We used the 10 subjects (30%) from the validation set for
feature selection (in orange in Figure 4), and the 23 remaining
participants (70%) were used interchangeably for training (in
blue in Figure 4) and testing (in green in Figure 4) of the
model according to the leave-one-subject-out cross-validation
method. We emphasize on the fact that the validation set was not
included in the evaluation of the model and served exclusively
for feature selection. We distinguished the development set from
the other sets to lessen the risks of overfitting and preferred a
leave-one-subject-out approach for the assessment of the model’s
performance due to the relatively low number of individuals
present in this study. Moreover, such a method allowed us
to identify potential outliers in the participants and later find
collections of subjects with similar biases.

The leave-one-subject-out cross-validation method
functioned as followed: we trained the model using the
data from 22 subjects (training set) and tested on the data from
one individual (testing set). We then repeated this process, such
that each participant appeared once in the testing set.

Automatic Feature Selection
Here, we selected the features (Pauto) to minimize the mean-
square error (MSE) of the speed estimation model using
the ordinary least squares method. The leave-one-subject-out
method was applied with 11 subjects for training and one subject
to evaluate the error of the predictions (Figure 4). The automatic
feature selection process started with an empty set of inputs and
sequentially added the parameters pj or their transform (f1, f2,
f3), which minimized the average MSE among all the subjects.
This method is known as the forward stepwise selection process
and has proven to be reliable on large feature space (John et al.,
1994; Kohavi and John, 1997). The algorithm stopped including
new parameters if the gain in the average MSE was lower than
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FIGURE 4 | Schematic representation of the data repartition into the validation (blue), training (orange), and testing (green) set. The validation set was used for feature

selection, the training set to train the coefficients of the linear model, and the testing set to evaluate the performance of the predictions. The features are represented

as pj and the linearization function as f1(pj), f2(pj), and f3(pj).

1% of the previous MSE recorded. We deliberately set a low
1% criterion to obtain a possibly unnecessary large number
of inputs knowing that the model is trained using the LASSO
method (Tibshirani, 1996) with shrinkage of the redundant
features. To ensure that the features contributed equally to the
MSE estimation, we rescaled the inputs using a robust z-score
normalization method (Jain et al., 2005); after normalization,
the feature’s mean was equal to zero, and median absolute
deviation equal to one (less sensitive to outliers than the variance
of one).

Comprehensive Selected Features
Although a supervised and automatic feature selection method
may retrieve the subset with the best prediction performance on
a given set of parameters, the results are sometimes difficult to
interpret. Hence it is generally recommended also to evaluate the
performance of a comprehensive set of features selected based
on their biomechanical relevance (Halilaj et al., 2018). Based on
the findings of previous research in running, we defined a list
of features (Pmanual) known to be affected by variations in the
running speed. As for the automatic selection of features, we
willingly selected a large number of input features, potentially
intercorrelated, knowing that optional inputs will be discarded
later in the training stage. In summary, comprehensive features
included the following:

– Anthropometric features: the height because taller individuals
are likely to have longer step length, thus higher speed, than
shorter individuals with similar flight times.

– Temporal features: the CT, FLT, and STR contain relevant
information about the stride frequency and were shown to
decrease with an increase in the running speed (Saito et al.,
1974; Nummela et al., 2007; Chapman et al., 2012).

– Speed and spatial features: the average speed of the foot
(mean_vfoot_norm) obtained with a direct integration; the
maximum angular velocity of the foot in the sagittal plane
(max_ω_z) assuming faster swing involves higher speed; the
RMS value of the angular velocity norm (rms_ω_norm) since
higher speed should result in higher dynamic movements; the
maximum of the acceleration norm (max_a_norm) as it was
demonstrated in previous studies that tibial peak accelerations
increased with faster-running velocities (Sheerin et al., 2019);
and the average slope (mean_s) since uphill and downhill may
affect the running speed.

Training and Testing of the Model
The linear model was trained and tested with the leave-one-
subject-out cross-validation method. For each individual, the
performance of the speed prediction was evaluated with the
model’s coefficients trained on 22 other subjects. This approach
was preferred to a traditional split of the data into two datasets
(e.g., 70% training and 30% testing repartition) due to the
restricted number of subjects available after the feature selection
phase. Besides, the leave-one-subject-out procedure allowed us
to detect potential outliers in the participants and, therefore,
possibly identify the sources of poor estimation results.

The least-squares regression coefficients were trained using
the LASSOmethod (Tibshirani, 1996), with scaled inputs to have
zero mean and a variance of one, and equally distributed the
observations’ weights at the initialization stage. To limit the risks
of overfitting, we selected the model with the smallest number of
inputs, if any new input would improve the MSE by <2%.

Since we observed some disparity in the dataset (the steps
between 2.5 and 4 m/s were over-represented), we used a random
under-sampling (RUS) method to deal with the issue of class
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imbalance (Pes, 2020). This process started by dividing the range
of reference speeds into five equally spaced groups, from 1.4 to
2.2 m/s, 2.2 to 3 m/s, 3 to 3.8 m/s, 3.8 to 4.6 m/s, and 4.6 to 5.4
m/s. We then randomly selected the same number of steps from
each group based on the group with the least number of steps
(i.e., down-sampling of the majority). We repeated this process
ten times, generating ten versions of the under-sampled data set
and used these subsets independently. In other words, we trained
and tested the model 10 times for each individual.

Finally, we investigated the changes in the speed prediction
when input features were averaged over consecutive steps.
Instead of using a single step granularity for running speed,
averaging over several steps might conceivably improve the
precision (i.e., random error) of the model. We tested this
approach on an even number of steps (i.e., 2, 4, 6, 8,
and 10), for it equally includes the sensor’s information
from both feet. In order to avoid grouping non-consecutive
steps, we applied this averaging process before under-sampling
the inputs.

Personalized Model
Running Speed Estimation Algorithm
Recently, online personalization methods have emerged in
the field of human movement analysis. For instance, such
an approach demonstrated significant improvement in speed
estimation performances (Soltani et al., 2019). The objective
is to personalize a generic speed estimation model based on
the sporadic reference data obtained from a GNSS device. We
describe the online-learning procedure used in this study in the
following; we define n as the observation (or sample) index used
for the personalization where each sample corresponds to one
stride. Therefore, if we have M samples (i.e., strides) for the
personalization, then n ∈ {1, 2, 3, . . . ,M }.

Let’sQ be the number features in each stride. We defined pn as
the feature vector and sln as the reference stride length for the n-
th stride according to Equations (6, 7). Here, pj[n] is a symbolic
name for the j-th feature of the n-th stride. Moreover, vref [n] is
the GNSS speed of the n-th stride.

pn =
[

1 p1[n] p2[n]. . . pQ[n]
]

(6)

sln = vref [n]×
1

STRn
(7)

For pn we used the selected features in Pmanual or Pauto based on
results obtained in the linear model. We first modeled the stride
length through Recursive Least Square (RLS) and thenmultiplied
that by the stride frequency to obtain the running speed. The
RLS is a real-time and computationally effective online learning
method, which does not need to have or store all the training data
from the beginning of training.

Let Pn and SLn be the feature matrix and the vector of actual
stride length defined in Equations (8, 9), respectively.

Pn =







p1
...
pn






(8)

SLn =







sl1
...
sln






(9)

Using the RLS approach, SLn can be modeled as in Equation
10, where βn is the coefficient of the model trained using n
observations. If Pn−1 and βn−1 are the feature matrix and model
coefficients estimated using n-1 samples, then once we obtain
a new sample (pn and sln) for the personalization, βn can be
recursively estimated through Equation (10).

βn = βn−1 + Dnpn

(

sln − pTnβn−1

)

(10)

Where Dn, known as the dispersion matrix, itself, is recursively
estimated by having only Dn−1 (i.e., the dispersion matrix
estimated using n-1 samples) and the new personalization data
(i.e. pn and sln) according to Equation (11). Here, Kn is defined as
Equation (12).

Dn = Dn−1

(

I−pn (I+Kn)
−1 pTnDn−1

)

(11)

Kn = pTnDn−1pn (12)

For each individual, ten strides from the training set were used to
initialize the recursion process of the RLS.

Cross-Validation
The data set was organized differently for the personalization
process to consider the gait style of each individual and minimize
the training data from GNSS. Data from each individual was
divided into bouts of 10 strides, and half of these bouts were
assigned randomly to the training set and the other half to the
testing set of that same individual. Consequently, we trained and
evaluated the models for each individual separately, using the
uniquely the data from that same individual.

Statistical Analysis
We evaluated the performance of the model by computing
the error on the training and testing sets. We did so going
from a single step to a ten-steps resolution according to the
configuration of the inputs. For each of the RUS iteration, the
intra-subject accuracy (or bias) and precision were estimated
using the mean and standard deviation, respectively. The
normality of the speed error was tested using the Lilliefors
test, and in the case of non-normal distribution, the mean was
replaced by the median and standard deviation by the Inter-
Quartile Range (IQR). To better understand the performance
of the system, the intra-subject RMS error was calculated,
and the Pearson correlation coefficient was used to assess the
linear dependence of the predictions. Since we used the leave-
one-subject-out method for training and testing, the results
were reported by computing the mean, the standard deviation,
the minimum and the maximum on the intra-subject biases,
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FIGURE 5 | Bland-Altman plot of the agreement between the direct speed estimation method (vfoot ) and the GNSS reference (vref ). The error was estimated with a

granularity of one step.

precision, RMS error, and correlation coefficients. Agreement
between the reference GNSS speed and the estimated speed
was illustrated with Bland & Altman plots (Bland and Altman,
1986). Furthermore, to evaluate the distribution of the errors and
possible overfitting, we used the cumulative distribution function
(CDF) of step absolute error for both training and testing sets.

RESULTS

Direct Speed Estimation
Two subjects were excluded from the data set; because of the poor
quality of the GNSS measurements or because of an improper
fixation of the IMU on the shoe and high Signal to Noise Ratio
(SNR) of the kinematic data. Since it required no learning, the
direct speed estimation method was performed on the 63’435
steps available in this study. We observed an inter-subject mean
± STD (min, max) of 0.08 ± 0.10 (−0.12, 0.27) m/s for the bias,
0.16 ± 0.04 (0.08, 0.25) m/s for the precision, 0.20 ± 0.06 (0.08,
0.34) for the RMSE. The relation between the speed estimation
error and the overground velocity is presented in Figure 5, and
the effect of the slope in Figure 6.

Automatic Feature Selection
In total, we used the 20’084 strides of the validation set to select
28 features out of the 668 features available. The feature selection
process stopped at average Mean Square Error (MSE) of 0.0057
m/s (Figure 7), which corresponded to a 1.12% improvement
compared to the previous step with 27 features. The selection

process was repeated 100 times (i.e., 10 times for each of the 10
subjects) and led to the set of features presented in Table 2.

Out of the 28 features selected, 16 (57%) resulted from one of
the three linearization functions (f1, f2, f3), one feature from the
temporal analysis (STR), one from the orientation estimation (θ).
The other features are statistics extracted from the different time
series [i.e., acceleration a(t), angular velocity ω(t), the velocity of
the foot segment vfoot(t), and the slope s(t)].

Linear Model
In total, 43’351 steps were used to train and test the linear model.
Due to the subdivision of the data associated with the leave-
one-subject-out method, we used, for each individual, an average
± STD (min, max) of 41’287 ± 188 (41’032, 41’642) steps for
training and 2’064± 188 (1’709, 2’319) steps for testing.

When the Pauto feature set was used for training, the LASSO
method always favored the same 7 inputs (Pauto,best) among the
28 features previously selected (Table 2):

Pauto,best = [mean_a_norm, f1(mean_s), f3(STR), f2(median_ω_z),

max_vfoot_norm, f1(mean_vfoot_y),

f3(median_ω_norm)]

In comparison, with Pmanual the LASSO method selected 4
inputs (Pmanual,best):

Pmanual,best = [rms_ω_norm,mean_vfoot_norm,mean_s, CT].
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FIGURE 6 | The step by step error of the direct speed estimation method (vfoot ) in relation to the slope of the ground surface.

FIGURE 7 | Mean Square Error (MSE) of the speed estimation during the forward stepwise selection process. In gray, the MSE of each subject and blue the

inter-subject average.
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The performances of the linear predictor over the testing set are
shown in Table 3; the inter-subject mean, STD, minimum, and
maximum are presented for the bias, the precision, the RMSE,
and the correlation coefficients. The results of the running speed
estimation are presented for single-step resolution and also where
the inputs were averaged over 2, 4, 6, 8, and 10 steps before being
used by the linear model.

In comparison, when we used a moving average (four steps)
on the output of the speed estimation model (i.e., not the inputs
as in Table 3), then we obtained an inter-subject mean ± STD
(min, max) bias of 0.00 ± 0.10 (−0.17, 0.17) m/s, precision of
0.13 ± 0.05 (0.06, 0.23) m/s, RMSE of 0.14 ± 0.05 (0.08, 0.28)
m/s, and correlation coefficients of 0.985 ± 0.010 (0.956, 0.997).
The agreement between the speed estimation using Pauto,best (vest)

TABLE 2 | The ordered list of the features automatically selected by the forward

stepwise selection algorithm.

# Label f(p) # Label f(p)

1 mean_a_norm - 15 mean_vfoot_y p2

2 mean_vfoot_norm - 16 median_ω_norm p−1

3 iqr_a_norm - 17 median_ω_x -

4 θ - 18 skew_vfoot_norm -

5 mean_s p2 19 iqr_vfoot_norm p−1

6 STR p−1 20 max_vfoot_y p−1

7 median_a_x p3 21 mean_ω_y -

8 median_ω_z p3 22 rms_a_x p3

9 max_vfoot_norm - 23 median_vfoot_x -

10 median_a_y p3 24 std_a_norm p−1

11 mean_vfoot_x p2 25 skew_ω_norm -

12 skew_vfoot_y p−1 26 skew_ω_z p2

13 median_vfoot_y - 27 std_a_x p−1

14 std_ω_z - 28 arm3_vfoot_y p−1

and the reference GNSS system is presented for each stride (gray
dots) and each individual (blue circles) in Figure 8.

Figure 9A shows the CDF of the speed estimation error for
each subject (gray lines) and the subjects aggregated (blue line).
In total, 56% of the recorded steps have an error below 0.1 m/s
and 86% below 0.2 m/s. Finally, as illustration of overground
measurement of speed over a various range of self-adjusted
speed, the speed obtained with the reference GNSS system was
compared for a typical subject with the speed estimation at step
level (vest,1), and the estimation when averaged over four steps
(vest,4) in Figure 9B.

Personalization
We used the features in Pmanual to train and test the personalized
model since the results of the generic model show little
differences between Pauto,best and Pmanual,best , and because, with
Pmanual, we could include the 10 subjects from the validation set
in the training and testing process without any risk of overfitting.
For each subject, the training samples (i.e., half of the data of
the subject, randomly selected) were fed one-by-one to the RLS,
and the speed was estimated with the complete test set of the
subject. Figure 10 shows this process for the first 150 strides used
for personalization of the model; the solid line and the shaded
area represents the inter-subject mean and standard deviation of
the RMSE, respectively. Also, the evaluation error for the first 10
strides is not displayed in Figure 10; these strides were used to
initialize the RLS algorithm.

In total, we used 1,139 ± 149 strides for training and 1,132 ±
149 strides for testing for each individual.Table 4 reports the bias,
precision, and RMSE of the personalized model. Figure 11 also
shows the Bland-Altman plot of the personalized model where
the mean and standard deviation of the error is displayed by the
dark and dotted lines, respectively. Moreover, the Spearman’s test
showed a high correlation of 0.97 between the estimated and the
reference values of running speed.

TABLE 3 | Inter-subject mean, STD, minimum, and maximum of the system’s bias, precision, Root-Mean-Square error (RMSE), and the linear correlation coefficient (R).

Features Steps Bias (m/s) Precision (m/s) RMSE (m/s) R

mean STD min max mean STD min max mean STD min max mean STD min max

Pauto,best 1 0.00 0.10 −0.17 0.17 0.14 0.05 0.08 0.24 0.16 0.05 0.10 0.28 0.985 0.010 0.956 0.997

2 0.00 0.11 −0.17 0.18 0.13 0.05 0.06 0.23 0.14 0.05 0.08 0.27 0.989 0.009 0.957 0.998

4 0.00 0.11 −0.17 0.19 0.12 0.06 0.05 0.24 0.12 0.05 0.07 0.24 0.990 0.009 0.961 0.998

6 0.00 0.11 −0.17 0.18 0.11 0.05 0.05 0.23 0.12 0.04 0.06 0.21 0.990 0.009 0.952 0.999

8 0.00 0.11 −0.18 0.19 0.11 0.05 0.05 0.23 0.12 0.05 0.06 0.23 0.991 0.009 0.952 0.999

10 0.00 0.11 −0.17 0.19 0.11 0.05 0.05 0.23 0.11 0.04 0.06 0.23 0.992 0.008 0.965 0.999

Pmanual,best 1 0.00 0.11 −0.22 0.17 0.15 0.06 0.09 0.29 0.18 0.07 0.11 0.37 0.983 0.009 0.961 0.997

2 0.00 0.11 −0.23 0.18 0.13 0.06 0.07 0.26 0.15 0.06 0.09 0.29 0.988 0.008 0.963 0.997

4 0.00 0.11 −0.23 0.20 0.12 0.06 0.06 0.26 0.14 0.06 0.08 0.24 0.989 0.009 0.959 0.998

6 0.00 0.12 −0.23 0.19 0.12 0.06 0.06 0.24 0.13 0.06 0.06 0.24 0.990 0.009 0.956 0.999

8 0.00 0.12 −0.23 0.20 0.11 0.06 0.05 0.24 0.13 0.06 0.06 0.24 0.991 0.009 0.944 0.999

10 0.00 0.12 −0.24 0.20 0.11 0.06 0.05 0.24 0.12 0.06 0.06 0.24 0.991 0.008 0.964 0.999

The results are presented for each configuration of inputs (Pauto,best and Pmanual,best ).
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FIGURE 8 | Bland-Altman plot of the speed estimation (vest ) obtained with the features automatically selected (Pauto,best ) and compared with the reference GNSS

speed (vref ). The gray dots represent the steps, the blue circle the average results of each subject, the solid black line the mean of the steps, the dashed black lines

the STD of the steps, and the dashed blue line the linear trend of the steps.

FIGURE 9 | (A) The Cumulative Density Function (CDF) of the speed estimation error of each step (|vref – vest |). The speed was estimated using the automatically

selected inputs (Pauto,best ). The gray curves represent the CDF of each individual in the testing set, the blue line the inter-subject CDF of the testing set, and the orange

line the inter-subject CDF of the training set. (B) Comparison between the speed estimation of each step (vest,1), the speed estimation averaged over four steps (vest,4),
and the reference GNSS speed (vref ).
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FIGURE 10 | Evolution of the RMSE error during the personalization of the speed model. Here, the solid line and the shaded area represent, respectively, the

inter-subject mean and standard deviation of the RMSE. The x-axis corresponds to the number of strides used for the personalization. Note that, for a better

visualization of the error evolution, the figure is zoomed only on the first 150 samples used for personalization.

TABLE 4 | Inter–subject median and Inter-Quartile Range (IQR) of bias, precision,

and RMSE of the personalized model.

Bias (m/s) Precision (m/s) RMSE (m/s)

median IQR median IQR median IQR

0.00 0.01 0.09 0.03 0.09 0.06

DISCUSSION

In this study, we proposed three methods to estimate overground
running speed using feet worn sensors. First, we estimated the
overground speed using solely the velocity of the foot obtained
through the direct integration of the acceleration. We evaluated
this direct method to test our hypothesis that the accelerometer
fails to provide the correct value during the flight phase due
to the combination of rotational and translational accelerations.
Nevertheless, the velocity of the foot, with other relevant features,
was selected as the input of the second method based on a linear
model to predict the running speed. Thanks to an exhaustive
features selection procedure and cross-validation approach, the
model predicted the running speed with better accuracy. Finally,

we assumed that the running technique varies among individuals,
but that it should be well-correlated with individual gait features.
Therefore, we showed that the performance of running speed
could be improved using an online-personalization method with
sporadic access to some GNSS data. It is important to note
that the same method could be extended to less complicated
instrumentation (e.g., a stopwatch over a fixed distance).

The speed estimation result for the method based on vfoot
only confirmed our hypothesis that the direct integration of the
acceleration, as proposed for walking, cannot be generalized to
running due to the presence of aerial phases. The inter-individual
mean bias (0.08 m/s) we observed indicates that the direct
integration method underestimates the speed during the phase of
flight. This underestimation confirms the inexact measure of the
translational movement by the accelerometer during the flight
phase. Moreover, the trend displayed in the Bland-Altmann plot
(Figure 5) indicates that the system underestimates the velocity
more at faster speeds. This observation is coherent with our
hypothesis; the higher the speed, the greater the distance covered
during the phase of flight (i.e., longer step length) (Nummela
et al., 2007). Slope also seems to be a confounding factor of the
error (Figure 6), with higher errors obtained during downhill
running. In conclusion, vfoot itself does not characterize the speed
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FIGURE 11 | Bland-Altman plot of the proposed personalized model. Here, the points represent samples in the testing of all subjects. The dark and dotted and lines

show a mean and standard deviation of the error, respectively.

of the subject as it cannot measure the distance covered during
the period of the flight, but vfoot was a good proxy for speed and
was one of the main features for speed prediction based on the
linear model.

The selection of relevant features in the linear model was a
crucial phase. Feature selection was carried over 20’084 steps
and aimed to retrieve the most relevant features among the
668 variables available. Although we used a high-dimensional
feature space, the curse of dimensionality issue did not apply as
we used approximately 30 times more observations for feature
selection. The results of the feature selection process show
that the cost function (i.e., MSE) decreased quickly with the
first few inputs and then stabilized as additional features were
included (Figure 7). We set the stopping criteria intentionally
low (i.e., 1% improvement in the MSE), knowing that the
LASSO method used for training the model would ignore the
inputs with redundant information. Interestingly, several of the
features manually selected (Pmanual) were among the first to be
selected by the automatic process (Pauto); however, using different
linearization functions (Table 2).

The linear model required inputs parameters from the
temporal and spatial domain, as well as overground slopes.
Hence a precise estimation of related parameters is paramount to
optimize the precision of the speed estimation. Themethods used
to obtain these parameters should always be carefully reported
and, ideally, previously validated. Interestingly, the model did
not select the FLY parameter and instead favored the inverse

of the stride duration (i.e., the stride frequency); hence none
of the features selected required a bipedal configuration of the
sensors allowing us to use the model with a single foot-worn
IMU in the future. Also, none of the anthropometric parameters
was necessary for the estimation of the running speed. This
result is somewhat surprising, as we expected the height to be an
essential input.

Apart from its computation time greediness, one reported
issue of the forward selection algorithm is that decisions made
early in the process cannot be changed, therefore potentially
affecting its performance when the inputs are correlated (Derksen
and Keselman, 1992). Although we observed some correlation
in the inputs, we presumed that the two-fold selection process
(i.e., stepwise selection and LASSO) would not be significantly
affected by that matter. Moreover, the linearization of the feature-
space was an essential component of this study. We selected f1,
f2, and f3 functions based on visual inspection of the data, and
out of the 28 pre-selected features, 16 (57%) resulted from these
linearization functions.

Although the performance of the automatically selected
set of features (Pauto,best) performed slightly better than the
comprehensive set of features (Pmanual,best), the differences
remain in the order of a few centimeters per second (Table 3).
Indeed, the estimations based on Pauto,best , with a granularity of
1, over-performed the ones using Pmanual,best by 0.01 m/s in the
inter-subjects STD of the bias, 0.01 m/s in average precision, and
display a slightly lower RMSE. These differences are relatively
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little since several elements in Pmanual,best were among the most
relevant features selected by the LASSO regression method in
Pauto,best , or at least were highly correlated. The results also show
that averaging the inputs over several steps had a moderate effect
on the performance of the system; it reduced the random error
of the system with mean precision values consistently decreasing
from 0.14 m/s for the step level estimation to 0.11 m/s when the
granularity decreased to 10 steps. Also, when the output of step
level estimated speed was averaged over four steps, the precision
slightly improved (0.13± 0.05m/s). Hence, whether the inputs or
the outputs are averaged does not seem to affect the performances
of the model.

Overall, the linear method showed good prediction results
across a wide range of speed and slope, observed in real-world
conditions (Figure 9B). It principally removed the mean bias
of the method based on vfoot only and slightly improved the
precision. The Bland-Altmann plot in Figure 8 shows a good
agreement between the linear model and the reference GNSS
system. The linear trend of the error (dashed blue line) is almost
horizontal (y= 0.0034x+0.098), which suggests that the running
speed has little effect on the error. These results support the
usage of the RUS technique on the training data; the model
ensured that all the ranges of speeds observed were equally
represented. Although procedures more sophisticated than the
RUS method have been proposed, they do not always provide
a clear advantage in the results (Japkowicz, 2000). Moreover,
the CDF curves of the training and testing sets do not indicate
clear overfitting of the training data (Figure 9A) as the training
set attains better performance than the testing set, but these are
within an acceptable range.

It seems challenging to reduce further the STD of the bias
using such a linear model since it depends on the inter-subject
differences as it has previously been reported that individuals
use different spatiotemporal adaptations at similar speeds. For
instance, previous studies have shown that the relationship
between stride frequency and stride length was specific to
each subject (Saito et al., 1974; Nummela et al., 2007). These
limitations were also encountered by previous studies that aimed
to estimate the running speed based on body-worn inertial
sensors. In Yang et al. (2011), the authors used a shank-worn
IMU to measure the velocity of the shank and compared it with
the speed of a motored treadmill. The study was conducted
at five predefined speeds (2.5, 2.75, 3, 3.25, 3.54 m/s), with
seven participants, and the error was calculated as the difference
between the average estimated speed over 30 strides and the
constant speed of the treadmill (i.e., the bias). The results show
inter-trial mean and STD of the bias of 0.11 ± 0.03 m/s at
2.5 m/s, 0.10 ± 0.03 m/s at 2.75 m/s, 0.08 ± 0.02 m/s at 3
and 3.25 m/s, and 0.09 ± 0.02 at 3.5 m/s. The biases reported
in Yang et al. (2011) are in range with those obtained in our
study. However, the measurements were performed on a leveled
treadmill at a discrete and limited number of running speeds,
and the results were averaged over 30 strides (i.e., 60 steps).
By considering the foot and shank as a single rigid body, the
authors in Chew et al. (2017) used foot-worn inertial sensors with
ten participants and a similar approach as in Yang et al. (2011).
Based on the errors reported at each speed (8, 9, 10, 11 km/h),

our method outperformed the one proposed in Chew et al.
(2017). Aiming to evaluate the accuracy and the repeatability of a
commercialized foot-worn running assessment system (RS800sd,
Polar, Kempele, Finland), the authors in Hausswirth et al. (2009)
performed 30-s measurements at multiple speeds (from 12 to
18 km/h) and compared the speed estimations with the speed of
the treadmill. Even though the commercialized system required
a subject-specific calibration, the reported mean ± STD bias of
−0.03 ± 0.14 m/s indicates a slightly less accurate estimation of
the running speed than the method proposed in this study. In a
study (Herren et al., 1999) conducted in outdoor conditions, the
authors explored whether triaxial accelerometric measurements
can be combined with subject-specific neural networks to assess
speed and incline of running accurately. The authors reported
an RMSE of 0.12 m/s for average speed the whole running trial
which is similar to our linear model estimations when the inputs
are averaged at least four steps.

In a recent effort to reduce the inter-subject differences
in the bias, researchers in De Ruiter et al. (2016) proposed
a personalized speed estimation model based solely on the
measurement of the contact time (CT). They obtained the
CT using shoe-worn inertial sensors and conducted the
measurements on an outdoor 2 km long tarmac. First, they
personalized a model (speed = αCTd) for each of the 14
participants based on the average speed over several bouts of 125
meters. Then, they compared the personalized estimation results
with those obtained with a stopwatch over a fixed 120-meters
distance (N = 35 bouts) and reported a median RMSE of 2.9
and 2.1% (two runs). In comparison, our linear model method
obtained a mean RMSE of 5.1% at step level estimation, and
the personalized method a median RMSE of 3.1 %. This slightly
higher RMSE in our study is partly reflecting the variety of slopes
in our measurements in comparison to the level running in De
Ruiter et al. (2016).

A recent study (Soltani et al., 2019) proposed a real-world
speed estimation method based on wrist-worn inertial sensors.
The authors obtained a median [IQR] (Inter-Quantile Range)
bias of −0.02 [−0.2, 0.18] m/s and precision of 0.31 [0.26, 0.39]
m/s for the non-personalized method. These results improved
using a personalization technique similar to this study, with
0.00 [−0.01, 0.02] and 0.18 [0.14, 0.23] for the bias and
precision, respectively. Hence, for both the personalized and non-
personalized methods, this study out-performed the wrist-based
estimation of the running speed.

The linear model is accurate for “average people” (i.e.,
individuals with typical running patterns), and individuals with
an atypical running technique will give rise to higher speed
estimation errors (Figure 8). In comparison, the personalized
model adapts to the movements of each individual; thus, it
ensures a bounded error for “average” and “atypical” individuals
(Figure 11).

The proposed personalization demonstrates significant
improvements in the performance of the real-world running
speed estimation. As reported in Table 4, the personalization
process improved the IQR of the bias by at least a factor
of 10 and the median precision by roughly 30% by
employing approximately 35 times less training data than
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the non-personalized linear model. The personalized model
bypasses the bias caused by the intrinsic variation of individuals
during real-world running. This observation is best characterized
by Figure 10, which demonstrates the relatively fast convergence
of the proposed RLS-based personalization; after roughly 50
strides, the model stabilized. As a consequence, the personalized
model does not require continuous GNSS value to be updated.
Once a good performance is reached, GNSS switch to off to
save batteries. Moreover, the proposed personalized method is
based on an online learning technique that does not require
a database; hence it saves time and energy. It allows real-time
speed estimation, computationally optimized, and does not need
to store training data.

CONCLUSION

In this study, we proposed and evaluated three different
methods for real-world speed estimation in running: direct speed
estimation, training based linear model, and a personalized
model. The direct estimation of the foot velocity confirmed
the hypothesis that accelerometers inaccurately measure the
translational motion of an individual during the flight phase;
therefore, techniques developed for walking analysis cannot
be generalized to running. We evaluated the linear model for
two sets of features: automatically selected (i.e., optimized) or
manually selected (i.e., comprehensive features). The model
performed best when we averaged its output over a few steps and
showed that 4 steps (i.e., two left strides and two right strides)
provided an acceptable trade-off between performance (bias: 0.00
± 0.11 m/s; precision: 0.12± 0.06 m/s) and time-resolution. The
personalized method tested in this study, used an online-learning
technique based on recursive least-squares to personalize the
speed estimations for each individual. Our results indicate that
such an approach primarily helps to reduce the inter-subject bias
(0.01 m/s) but also improves the average random error by more
than 30%.

Based on the results of this study, we recommend using the
linear model for speed estimation when the recordings of other

accurate devices are temporarily unavailable and personalized
the model when these recordings are available. For instance,
the system can be used as a complement to a GNSS device
experiencing sparse communication, either due to a reduced
transmission bandwidth (e.g., indoor running, city centers) or
because of electrical power limitations (e.g., low power systems).
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