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Background: The availability of instrumented treadmills that can apply unexpected

perturbations during walking has made gait perturbation training more popular in clinical

practice. To quantify and monitor balance recovery while training, easy to use measures

are needed and may be based on integrated force plate data. Therefore, we aimed to

quantify and evaluate different implementations of the recovery performance measure

based on center of pressure data.

Methods: Recovery performance was calculated based on differences in center

of pressure trajectories between unperturbed walking and balance recovery after a

perturbation. Five methodological choices leading to 36 different implementations were

evaluated. Test-retest reliability, effect sizes, and concurrent validity were evaluated

against trunk velocity measures.

Results: Differences in measures of (dis-)similarity, time normalization and reference

data affected reliability, sensitivity and validity and none of the performance measure

implementations based on center of pressure trajectories was superior on all criteria.

Measures assessing perturbation effects on trunk velocities provided more reliable and

sensitive recovery outcomes.

Discussion: Different implementations of the recovery performance measure can be

chosen dependent on constraints imposed in the clinical setting.

Conclusion: Quantifying recovery performance based on center of pressure data is

possible and may be suitable to monitor improvement in recovery performance after

gait perturbations in specific clinical setups. Validity of performance measures in general

requires further attention.

Keywords: postural balance [MeSH], walking, gait, accidental falls, physical functional performance, rehabilitation,

aging
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INTRODUCTION

Fall prevention training using gait perturbations during
walking is becoming more popular (Gerards et al., 2017),
but the application of standardized and sufficiently impactful
perturbations is generally limited to setups that require a
lot of space and are expensive and complex to control (e.g.,
over ground walkways or gait labs). Smaller devices, among
which treadmills, are being developed to make gait perturbation
training accessible in clinical settings. One advantage of advanced
research setups is the ability to capture movements and record
forces, to quantify the unperturbed gait kinematics and kinetics,
the perturbation magnitude and impact, as well as the patient’s
balance recovery performance. Quantification of recovery
performance is key for successful clinical application. It may also
allow for identification of people at higher risk for falling and
indicate necessity of fall-preventive interventions. Furthermore,
it allows standardization and monitoring of the patient’s progress
over training sessions. This enables therapists to consistently
adjust perturbation difficulty, to keep the patient challenged
and motivated, and may support reporting outcomes to health
care providers.

When loosing balance due to gait perturbations, the
neuromotor system applies various strategies to regain balance
(Hof et al., 2010; Reimann et al., 2018; van den Bogaart et al.,
2020). According to Hof (2007), this can be achieved by adjusting
the position of the center of pressure (CoP) relative to the vertical
projection of the center of mass (CoM), by counter rotations of
body segments around the CoM or by applying external forces
(e.g., holding on to a handrail). Furthermore, older adults show
compensatory stepping reactions (Jensen et al., 2001) and often
take multiple steps in response to both anterior-posterior and
medio-lateral perturbations (Mille et al., 2013).

In literature, recovery performance has been quantified in
various manners. One commonly used parameter is called the
margin of stability, which relates the movement of the center
of mass (CoM) to foot placement (Hof et al., 2005). Although
this measure is straightforward to use in unperturbed walking, its
use is limited for large perturbations, due to the wide variability
in balance recovery responses in terms of stepping direction,
skipping instead of stepping, number of steps used, and use of
other strategies than adjusting the position of the CoP, such as
speeding up or slowing down (Bruijn et al., 2013; Hak et al., 2013).
Consequently, it is not easy to infer how changes in the margin of
stability contribute to recovery.

Maybe a more suitable approach is to quantify recovery
performance after perturbations based on trunk kinematics
(Owings et al., 2001; Grabiner et al., 2008; Bruijn et al., 2010;
Sessoms et al., 2014; Roeles, 2018), as the trunk has a large impact
on balance, given its large mass and cranial location. Trunk
flexion angle at toe-off and trunk flexion velocity at recovery foot
contact have been related to the successful balance recovery (van
den Bogert et al., 2002; Sessoms et al., 2014). By combining linear
and angular trunk velocities, the whole recoverymovement of the
trunk can be captured and compared to the trunk movements
during normal walking. The deviation from normal walking can
therefore be used to describe the perturbation impact and the rate

of return to normal walking (Bruijn et al., 2010; Roeles, 2018;
Rieger et al., 2020). The advantage of this approach is that it is
less sensitive to variability in reactive stepping strategies.

While inertial measurements may allow low-cost motion
capture compared to optical systems, at present, motion capture
is often not available in clinical practice, so the measures
mentioned above cannot be used. A simple solution, which
would be more accessible (i.e., less time consuming), is the use
of treadmills with embedded force plates. The cheapest option
here is a one-directional force plate, which only records vertical
ground reaction forces, and may provide sufficient information
to quantify recovery after gait perturbations. To our knowledge,
measures based on force plates to quantify balance recovery
during gait have not been investigated previously. Finally, for
successful clinical application, recovery performance should be
quantified as single value, that is easy to interpret and available
online during training, immediately after each perturbation.

Taking these constraints into account, the purpose of the
study was to develop several implementations of a new potential
measure of what we coined quantified recovery performance
(QRP). These implementations all compare the CoP trajectory
during balance recovery from a perturbation, but with small
differences in data processing.We evaluated test-retest reliability,
sensitivity and concurrent validity of these different measures
against motion-captured based measures of trunk velocity. We
hypothesized that the QRP has sufficient reliability, validity,
and sensitivity to change to be used to monitor progress in
fall-prevention training.

MATERIALS AND METHODS

Participants
Data of a previous perturbation intervention trial were used for
this study (Rieger et al., 2020). The cohort consisted of 30 healthy
older adults aged 65 years or older, who had no experience
with perturbation training. Any neurological, cardiovascular or
pulmonary comorbidity (i.e., stroke, heart attack, hypertension)
that occurred in the past 12 months, as well as orthopedic
complications (i.e., lower extremity fractures, joint replacements)
within the past 6 months before the study, led to exclusion.

Experimental Setup
The setup and perturbation characteristics are explained in detail
in the original study (Rieger et al., 2020). Briefly, participants
walked on the GRAIL (Gait Real-time Analysis Interactive
Lab, Motek Medical BV, Amsterdam, The Netherlands), a 3D
instrumented dual-belt treadmill, with an integrated motion
capture system (Vicon Motion Systems Ltd, Yarnton, UK). A
model [Human Body Model (HBM), version 2.0, Motek Medical
BV, Amsterdam, The Netherlands] based on 26 reflective markers
placed on the feet, legs and trunk was used to capture the
participants’ movements.

A custom application (D-flow version 3.30.1, Motek Medical
BV, Amsterdam, TheNetherlands) triggered perturbations at heel
strike (Zeni et al., 2008) of either the left or right leg while
walking with a fixed treadmill speed at 1 m/s. ML perturbations
consisted of a sideways movement of the treadmill platform

Frontiers in Sports and Active Living | www.frontiersin.org 2 February 2021 | Volume 3 | Article 617430

https://www.frontiersin.org/journals/sports-and-active-living
https://www.frontiersin.org
https://www.frontiersin.org/journals/sports-and-active-living#articles


Rieger et al. Quantified Recovery Performance

to the side opposite of the foot contact, provoking cross-over
stepping. AP perturbations consisted of belt decelerations at foot
contact, provoking backwards balance loss. Participants were
measured three times in total (Rieger et al., 2020). On the first
day, their gait was perturbed eight times (four times in AP and
four times in ML direction) before and after a short intervention
consisting of 8min of treadmill walking with 16 AP perturbations
(experimental group) or without (control group). After a 1-
week retention period, participants were measured again with
the same eight perturbations. Results indicated, that short
exposure to gait perturbations led to significant improvements
in balance recovery (stabilization of the trunk during walking)
that were retained over 1 week, which limits conclusion if training
effects transfer between perturbation directions. Steady state gait
parameters did not change compared to baseline, so we can
conclude that improvements are based on improved reactive
responses. Balance recovery was quantified based on trunk
kinematics and we used this as a reference measure for testing
concurrent validity in the current study. A detailed description
can be found elsewhere (Rieger et al., 2020). In short, time series
of trunk velocities of unperturbed and perturbed walking were
normalized to 101 samples per stride. For unperturbed gait,
averages over 100 strides and their variability for each percentage
of the gait cycle were calculated. Deviations in perturbed gait
relative to unperturbed gait were calculated for six degrees of
freedom (Bruijn et al., 2010). Next, the deviations were divided
by the standard deviation of the unperturbed gait cycle for each
dimension and then combined as the Euclidian sum over degrees
of freedom into a trunk velocity deviation measure (Bruijn et al.,
2010). The integral of the deviation over the first three recovery
strides following a perturbation, expressed as the area under the
curve (AUC), was used to describe recovery performance for
every perturbation. Initial exposure to perturbations caused an
improvement in recovery performance in both groups. Hence, we
used the pre- and post-intervention trials of the whole cohort to
assess sensitivity. No change in recovery performance was found
in the control group between the post-intervention and retention
measurements. Hence, the post-intervention and retention trial
of the control group were used to assess test-retest reliability.
Finally, to assess concurrent validity we used the retention trial
over the whole cohort, excluding the pre- and post-intervention
trials that would add repeated (dependent) measurements.

Data Processing
Trunk marker data and force plate data, recorded at baseline,
post-intervention and retention, were processed with Nexus
software (version 2.7.0, Vicon Motion Systems Ltd, Yarnton,
UK) and custom MATLAB scripts (version R2018a; MathWorks
Inc, Natick, MA, USA). Three-dimensional marker data were
smoothed using a second order 15Hz low-pass Butterworth filter.
Deviation in linear and angular trunk velocities from normal
walking were used to quantify performance during balance
recovery following a perturbation (Rieger et al., 2020). Vertical
force and moment data of the instrumented dual-belt treadmill,
recorded at 1,000 samples/s, were combined to simulate a single
force plate and to estimate the CoP time series, which were then
smoothed with a second order 6Hz low-pass Butterworth filter

and a second order 0.5Hz high-pass Butterworth filter to correct
for drift in the position on the treadmill. Finally, CoP data were
resampled to 100 samples/s to match 3D marker data.

Quantified Recovery Performance
The QRP is based on the fact that humans have a relatively
constant gait pattern during unperturbed walking with
the movements in each gait cycle being approximately the
same. This gait pattern also results in a relatively constant
CoP trajectory. The CoP is the point of application of
the ground reaction force vector. This single point on
the supporting surface is an effect of the forces that the
individual exerts on the surface during walking. The proposed
QRP utilizes this property of gait, since any perturbation
will result in a change from this pattern. The QRP was
calculated in different ways based on five methodological
choices in data processing, with two to three options
each, leading to 36 different implementations (Figure 1).
Here, we describe the different choices that were made in
the algorithm.

(1) The change from the normal walking pattern was
quantified using Pearson’s correlation coefficient or using an area
under the curve describing the difference in the time series of
the CoP patterns between perturbed and unperturbed gait as a
measure of deviation.

(2) The next choice considered which CoP dimension to use.
A pilot study suggested that change from the normal walking
pattern was larger in AP compared to ML direction, when
perturbations were applied in AP direction and vice versa for
perturbations in ML direction. To cover the whole recovery
reaction, the two directions can be combined. For the correlation-
based calculation AP andML coefficients were averaged using the
Fisher z-transformation before averaging to avoid interpretation
bias if the sampling distribution of correlation values is skewed,
followed by the inverse transformation. For deviation-based
calculation, both dimensions are combined as the Euclidian sum
over dimensions.

(3) For perturbed gait, time normalizing the gait cycles
may result in an average gait cycle that may be stretched
unnaturally due to missed gait events when using an automatic
gait event detection algorithm. One the other hand, because
absolute step times may be different after a perturbation,
time normalization may improve the comparison between
unperturbed and perturbed gait episodes.

(4) To obtain an unperturbed gait pattern as reference, either a
short episode of pre-perturbed walking preceding a perturbation
or a separate trial of unperturbed walking can be used. The latter
would allow a more reliable estimate as many gait cycles can be
measured, but this comes at the cost of a longer measurement
time. In our study, we recorded a 2-min steady state walking trial
at 1 m/s. A template of unperturbed walking is then created by
repeating the average gait cycle of these different references.

(5) Finally, the short episode of pre-perturbed walking was
determined either by a number of gait cycles or a number of
seconds. A measure dependent on the number of recovery steps
requires accurate gait event detection. If not robust enough,
manual post-processing is needed to evaluate whether events are
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FIGURE 1 | Schematic overview of methodological choices in data processing, resulting in 36 QRP measures.

correct or missing. The variance of recovery strategies and time
to recover normal walking is large between participants. In a
pilot study with older adults, therapists were not able to visually
observe any effect of a perturbation after 5 s and our previous

study showed that three cycles are enough for recovery of normal

walking based on changes in trunk velocities (Rieger et al., 2020).

The length of the post-perturbed walking episode was equivalent
to that of the pre-perturbation episode.

Example Calculation of a QRP
Implementation
The section above introduced the different choices that can be
made within the algorithm. Here we describe, as an example, the
details of the QRP calculation using the CoP trajectory in the
AP dimension with a non-normalized time window of 5 s before
and after the perturbation trigger, which are then compared using
Pearson’s correlation:
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FIGURE 2 | Example calculation of the QRP, (A): pre- and post-perturbation window (black dashed line is the trigger), (B): divided into gait cycles, (C):

de-normalization of the gait cycle (dotted line is the normalized gait cycle), (D): template of unperturbed walking (averaged), (E): alignment of template (averaged) and

perturbed (non-normalized) walking signal.

Step 1: The last 5 s before and the first 5 s after the perturbation
of the CoP trajectory are selected and stored as a pre- and
post-perturbation window (Figure 2A).

Step 2: In pre-perturbed CoP data, gait events are detected
according to the method of Zeni and colleagues (Zeni et al.,
2008). The gait cycles of the pre-perturbed episode are
determined by the right or left heel strikes as the start and end
of a gait cycle (Figure 2B).

Step 3: The average length of the gait cycles is calculated and the
gait cycles of the pre-perturbed episode are time normalized to
this average gait cycle length. In case of a non-normalized pre-
perturbed episode, the gait cycle is de-normalized again after
averaging (Figure 2C). For unperturbed walking, the average
gait cycle is repeated multiple times to construct a template
with reduced variance (Figure 2D).

Step 4: The cross-correlation between the post-perturbation
CoP trajectory and the constructed unperturbed walking

template is used to align the two signals (Figure 2E). The
maximum correlation is used as a measure of recovery
performance. In case of AUC, the template (unperturbed
episode) is cut to the length of the perturbed episode.

Statistics
Statistical analyses were performed with SPSS version 25 (SPSS
Inc, Chicago, IL, USA). First, we checked for normality of data
using the Shapiro-Wilk test. Second, the interquartile range rule
(IQR) was used to detect outliers, with no extreme outliers
(exceeding three times IQR) being found and consequently
no observations were excluded from the analysis. The level of
significance was set at alpha= 0.05.

To evaluate between session test-retest reliability we calculated
parametric intraclass correlation coefficients (ICC) with two-
way mixed single measure analyses for consistency between
the post-intervention and the retention trials of the control
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group. ICCs were interpreted according to Shrout (1998) as
indicating insufficient reliability (<0.40), fair reliability (0.40–
0.60), moderate reliability (0.60–0.80), and substantial reliability
(>0.80). Next, sensitivity to change was assessed by the effect size
(ES) calculated with the mean difference over time divided by
the standard deviation of the difference for the pre- and post-
intervention trials of the whole cohort. An ES of 0.2 and lower
reflects a mean difference of two measurements of <0.2 standard
deviations, which can be interpreted as a trivial effect, even if
results are significant. An ES between 0.5 and 0.8 is considered
as a medium effect and above 0.8 as a large effect (Cohen, 1992).
Finally, concurrent validity of the retention trial was tested with
Pearson’s correlation coefficient between the QRP and recovery
performance based on trunk velocity deviation (Rieger et al.,
2020). Pearson’s r were interpreted as weak (below r = 0.3),
moderate (r = 0.31–0.69), and strong (above r = 0.7).

RESULTS

Measures of trunk velocity deviation resulted in substantial
between session reliability of ICC = 0.897 for ML perturbations
and ICC= 0.855 for AP perturbations (Figure 3). The sensitivity
to change was ES = 0.977 for ML perturbations and ES = 1.028
for AP perturbations which is considered to be a large effect.

For the QRP measures, between session reliability ranged
from fair to substantial for ML perturbations with ICC = 0.486–
0.935 and from insufficient to substantial for AP perturbations
with ICC = 0.290–0.882 (Figure 3). The sensitivity to change
ranged between small ES = 0.005–0.434 for ML perturbations
and between small to medium ES = 0.028–0.520 for AP
perturbations (Figure 3). Concurrent validity with the recovery
performance based on trunk velocities ranged from weak to very
strong r = 0.09–0.938 for ML perturbations and from weak to
strong r = 0.009–0.775 for AP perturbations (Figure 3).

No single QRP method was superior to the other calculations.
See Supplementary Table 1 for full details.

DISCUSSION

We developed and evaluated a new method of quantifying
recovery performance after treadmill-based gait perturbations
using center of pressure data (CoP) obtained from a treadmill-
embedded force plate. We compared various implementations
of the QRP, with respect to test-retest reliability, sensitivity to
change and concurrent validity. Results showed a wide range
across these implementations for reliability, sensitivity, and
concurrent validity, suggesting that no option is superior and
that a choice between these implementations must be made
dependent on the constraints and demands of the setting in
which the QRP will be used. Theoretically, when evaluating a
perturbation protocol only using decelerations of the belt, a
QRP based on a non-normalized pre-perturbation episode of
5 s combining AP and ML dimension as input would provide
substantial reliability (ICC = 0.855), medium sensitivity to
change (ES = −0.496) and moderate validity (r =-0.476). For
a ML perturbation protocol, a QRP based on a normalized
unperturbed walking trial with only the AP dimension as

input would provide high reliability (ICC = 0.935) with small
sensitivity to change (ES=−0.434), which is still the largest effect
size across all options for ML perturbations, and strong validity
(r = −0.854).

The change from the normal walking pattern can be quantified
using Pearson’s correlation coefficient or using an area under
the curve describing the difference in the time series of the
CoP patterns between perturbed and unperturbed gait as a
measure of deviation. Both options provide similar results for
test-retest reliability and sensitivity to change across all options.
In general, the correlation-based option yielded less variable
results compared to the deviation-based options, especially for
concurrent validity, suggesting correlation-based calculations of
the QRP to be more consistent across different perturbations.

Our pilot study suggested that the change from the normal
walking pattern was larger in the AP compared to the ML
dimension, when perturbations were applied in AP direction
and vice versa for perturbations in ML direction. However,
similar performance of the QRP was found when using CoP
data from either the AP or ML dimension or when AP and ML
dimensions were combined. When using the QRP in a setting
where perturbations in AP and ML direction are applied, then
a correlation-based option using combined AP andML CoP data
provides more reliable and sensitive results for both AP and ML
perturbations compared to a deviation-based option combining
AP and ML CoP data. Further, when combining CoP data from
the AP andML dimension, the recovery reaction can be captured
more completely yielding a more comprehensive analysis of the
recovery performance.

For clinical practice, the QRP should preferably not rely on
detection of gait events, as automatic detection of gait events
from a COP trajectory may not always produce reliable results,
due to the large variability in reactive stepping response. Multiple
recovery strategies have been observed for trips (Eng et al.,
1994) and slips (Yang et al., 2008) and some subjects perform
cross-over steps (Vlutters et al., 2016) and backward steps (Yang
et al., 2014). In the present study, we manually checked for false
or missing gait events. In a clinical setting, this may not be
possible and the gait event detection algorithm needs to detect
gait events accurately, which may be limited due to the manifold
stepping responses after a perturbation. Test-retest reliability
and sensitivity to change of QRP based on a gait episode
consisting of 5 s were comparable to those of QRP based on a
gait episode consisting of three gait cycles, although concurrent
validity was lower, when using time-based episodes. Moreover, as
detection of gait events is required to calculate spatial-temporal
gait parameters such as step length and step time, such measures
that use the time or steps required to recover to baseline values
of spatial-temporal parameters (Krasovsky et al., 2012) are less
suitable for clinical practice than the QRPmeasures we proposed.

Given the natural variation in walking behavior, segmenting
data into gait cycles almost always results in gait cycles of
different duration. Therefore, time-normalization is commonly
used for comparison of gait patterns. Similarly, during recovery
performance, time normalization of the gait cycles may improve
the comparison of perturbed and unperturbed gait cycles.
However, it may unnaturally stretch gait cycles in case of false
or missing gait events. In the current study we corrected false or
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FIGURE 3 | Boxplots of outcomes for different methodological choices of QRP implementations, x-axis: ML, medio-lateral perturbation; AP, anterior-posterior

perturbation, light blue squares indicate the results of the trunk velocity deviation measure.

missing gait events and our data suggests that normalizing the
data provides comparable performance for test-retest reliability
and sensitivity to change, but increases variability for concurrent
validity results compared to non-normalized data.

If no separate reference trial is available, correlation-based
QRP measures provide more reliable outcomes than deviation-
based measures. However, using a normalized separate reference
trial provides the highest concurrent validity across all options.
This may be because the same choice was made for the reference
measure based on trunk velocities (Rieger et al., 2020). A
reference containing three pre-perturbation gait cycles provide
similar performance on reliability, sensitivity and validity than a
separate reference trial and both options have higher concurrent
validity compared to a 5 s pre-perturbation time window as
reference. With respect to the length of the time window
analyzed, we have previously shown that recovery of the trunk

kinematics is achieved within three gait cycles after perturbations
of a magnitude such as applied here. This suggests that a pre-
and post-perturbation episode of three cycles would be sufficient
(Rieger et al., 2020). However, this depends on reliable automatic
gait event detection and as mentioned before, this may limit
this option.

In clinical practice, online feedback of recovery performance
to the therapist is key for monitoring and adjusting perturbation
difficulty within a training session. It provides the therapist
with objective recovery performance for each perturbation as
is preferable over subjective visual judgement. This is possible
when the measurement uses pre-perturbed walking as reference.
As an alternative, the use of data from a separate reference
trial is possible and the advantage may be that anticipation
to perturbations does not affect the reference COP pattern. In
addition, more gait cycles can be recorded, resulting in a more
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precise average gait cycle. However, such a trial needs to be
taken in the beginning of a training session and may be affected
by a lack of familiarization. Therefore, recording a separate
reference trial may be time consuming and may need to be
recorded in every training session, as a participant’s walking
speed may change over sessions. Finally, participants may adapt
their gait pattern between two perturbations, which is likely to be
different compared to the gait pattern of a separate, unperturbed
walking reference trial. This would favor for using three pre-
perturbed gait cycles, as this provides similar results as a separate
reference trial of unperturbed walking. Moreover, we have
previously shown that improvement in recovery performance is
independent of adaptive changes in the gait pattern (Rieger et al.,
2020).

In the current study we evaluated the CoP based QRP
measures against a recovery performance based on trunk velocity
deviations obtained with motion capturing. It could be argued
that the recovery performance measure based on trunk velocity
deviations is not yet accepted as a golden standard for quantifying
balance recovery after gait perturbations. Alternatively, the
concept of Margins of Stability (MoS) has been used to
quantify stability of walking. However, stepping responses
after a perturbation are manifold, including jumping, skipping,
repositioning of the perturbed foot, various side or cross-over
steps (Mccrum et al., 2018) and these are difficult to analyze
within this framework. Moreover, the MoS concept is based on
the assumption that the body can be modeled as an inverted
pendulum. In responses after gait perturbations, this assumption
is likely to be violated (Bruijn et al., 2013; Hak et al., 2013)
Consequently, gait adaptations after experiencing a perturbation,
e.g., walking with flexed knees to lower the CoM, may limit the
applicability of the MoS (Hof et al., 2005). Therefore, measures
based on the deviation in trunk velocities from unperturbed
walking provide high test-retest reliability and sensitivity to
change and has potential to become the golden standard to
quantify recovery after gait perturbations.

Limitations
In our study, only treadmill belt decelerations were used in the
AP direction to provoke backward balance loss and contra-lateral
sway perturbations in the ML direction. These perturbations
were selected as they are considered themost challenging for each
direction eliciting the strongest recovery responses (Roeles et al.,
2018; Rieger et al., 2020). However, this implies that information
is lacking for perturbations using belt accelerations and ipsilateral
sway perturbations. In addition, only one intensity level as
perturbation difficulty was used and treadmill speed was fixed for
all participants. Further investigation of validity for a variety of
perturbation types after more or less challenging perturbations,
at various gait speeds and across different target groups are
recommended. Finally, we recommend that future recovery
performance measures could be based on inertial measurement
units (Faber et al., 2009; Miller and Kaufman, 2019) or a simple
camera system, such as the Kinect, to capture trunk kinematics
(Shani et al., 2017), as this provides more reliable and sensitive
outcomes compared to CoP based measures.

For this study we used selected conditions from a previous
study (Rieger et al., 2020). For test-retest reliability we selected
data exclusively from the control group in that study as
some systematic changes we found between time points in
the training group. We additionally evaluated reliability over
the whole cohort, which confirmed our conclusion that the
QRP measure was less reliable than the reference measure
based on trunk kinematics. To assess concurrent validity, we
used the retention trial over the whole cohort, excluding the
pre- and post-intervention trials. Additional evaluation of the
effect sizes per group did not lead to a different conclusion.
Furthermore, additional analysis of the concurrent validity in the
baseline and post-intervention trials did not yield substantially
different results.

Conclusion
Quantifying recovery performance using center of pressure
data from a force-plate embedded treadmill device can achieve
sufficient reliability and concurrent validity, although less reliable
and sensitive to change than trunk velocity measures.
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