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Humans tend to select motor planning with a high reward and low success compared

with motor planning, which has a small reward and high success rate. Previous

studies have shown such a risk-seeking property in motor decision tasks. However,

it is unclear how to facilitate a shift from risk-seeking to optimal motor planning that

maximizes the expected reward. Here, we investigate the effect of interacting with

virtual partners/opponents on motor plans since interpersonal interaction has a powerful

influence on human perception, action, and cognition. This study compared three types

of interactions (competition, cooperation, and observation) and two types of virtual

partners/opponents (those engaged in optimal motor planning and those engaged in

risk-averse motor planning). As reported in previous studies, the participants took a risky

aim point when they performed a motor decision task alone. However, we found that

the participant’s aim point was significantly modulated when they performed the same

task while competing with a risk-averse opponent (p = 0.018) and that there was no

significant difference from the optimal aim point (p = 0.63). No significant modulation in

the aim points was observed during the cooperation and observation tasks. These results

highlight the importance of competition for modulating suboptimal decision-making and

optimizing motor performance.

Keywords: motor uncertainty, motor decision-making, risk-sensitivity, Bayesian decision theory, aim point

INTRODUCTION

Despite the importance of optimal motor planning, humans select a suboptimal motor plan
in various tasks involving spatial (Wu et al., 2009; Nagengast et al., 2010, 2011a; O’Brien and
Ahmed, 2013; Ota et al., 2019b), timing (Ota et al., 2015, 2016, 2019a; Onagawa et al., 2019), and
spatiotemporal (Nagengast et al., 2011b) control. A suboptimal motor plan, for example, can be
exemplified as aiming at a spot near the goal post in football’s penalty kicks. Such an aim point
might succeed if lucky, but it also increases the probability of kicking outside of the goal post.
Throughout this study, we use the term optimal motor planning as the plan that maximizes the
expected reward.

We can qualitatively evaluate the optimal and risk-neutral motor planning given the variance in
motor performance (Berger, 1985; Trommershäuser et al., 2008). Compared with optimal motor
planning, we refer to risk-seeking as the choice preference for a high reward with a high probability
of failure, whereas we refer to risk aversion as the choice preference for a small reward with a low
probability of failure (Wu et al., 2009). Both risk-seeking and risk-averse strategies are suboptimal
and decrease the expected reward by frequently incurring failure or earning small rewards (Ota
et al., 2015, 2016).
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Previous studies have elucidated the risk-seeking property
inherent in motor planning (Wu et al., 2009; Nagengast et al.,
2010, 2011a,b; O’Brien and Ahmed, 2013; Ota et al., 2015, 2016;
Onagawa et al., 2019). Nevertheless, few studies have investigated
effective ways to improve this property and facilitate optimal
motor planning. One possible way to modulate motor planning
is interactions with others. Previous studies on interpersonal
interaction have found that competition subconsciously changes
our motor action (Naber et al., 2013; Varlet and Richardson,
2015; Vaziri-Pashkam et al., 2017). In a task in which two
participants compete to touch a target the fastest, participants’
reaction times are synchronized, although such synchronization
results in a lower probability of winning (Naber et al., 2013). The
synchronization of motor patterns is observed in competitions
not only in laboratory experiments (Vaziri-Pashkam et al., 2017)
but also in the Olympic Games (Varlet and Richardson, 2015).

In addition to competition, cooperation with others
modulates human motor action (Richardson et al., 2007;
Peng and Hsieh, 2012; Ganesh et al., 2014; Ikegami and Ganesh,
2014). Both competition and cooperation increase the number
of effortful actions relative to a task without others (Peng and
Hsieh, 2012). Moreover, the observation of others’ actions
induces synchronization. When two people sit side-by-side in
rocking chairs, the movement phase angles between the two
rocking chairs can be synchronized (Richardson et al., 2007).

These findings raise the possibility that competing with,
cooperating with, or observing other people influences human
motor planning under risk. Our earlier study in effect
showed that competition with a risk-averse opponent can lead
suboptimal motor planning to be optimal (Ota et al., 2020).
The aim of this study is to follow up on the possibility that
cooperation and observation can also modulate suboptimal
motor planning. To address this question, we recruited six
experimental groups by combining three types of interactions
with two types of virtual partners/opponents (risk-neutral and
risk-averse partners/opponents). We used virtual partners or
virtual opponents since we can arbitrarily manipulate their
properties. For a control group, we also added the individual
group where any partners/opponents were not involved in our
task. A comparison among seven experimental groups allows
us to investigate which types of interpersonal interactions are
effective in modulating a risky motor plan.

Understanding how to achieve the best performance is an
essential question in movement science. Many world-leading
athletes attempt to exhibit their best performance in the Olympic
Games. To do so, one should consider what the optimal motor
plan is (for example, where is the best aim point for a baseball
pitch or tennis serve?). This study may provide a clue on
the question of how (competition, cooperation, or observation)
athletes should interact with other athletes for their decision-
making training.

METHODS

Participants
We recruited 42 healthy adults (32 males; 20 ± 1.7 years)
in this study. The participants provided written informed

consent before the experiment. This study was approved by the
ethics committees of the Tokyo University of Agriculture and
Technology and was performed in accordance with the relevant
guidelines (No. 29-36) and regulations in the Declaration of
Helsinki 2013. We describe the sample size below.

Experimental Setup and Gain Function
We used a pen tablet to measure the arm-reaching movement
(Wacom, Intuos 4 Extra Large; workspace: 488 × 305mm). The
participants were seated on a chair, and they were instructed to
make a quick out-and-back reaching movement while holding
the pen on a pen tablet (Figures 1A,B). The position of the
digitized pen was sampled at ∼144Hz and was transformed to
the position of a cursor on a vertical display (Asus, VG-248QE, 24
inches) at a refresh rate of ∼144Hz. All stimuli were controlled
using the Psychophysics Toolbox (Brainard, 1997; Pelli, 1997).

The participants first moved a blue cursor (radius: 0.3 cm)
to a white starting position (radius: 0.4 cm) on the display. A
green boundary line then appeared 30 cm forward from the
starting position, indicating a go signal. The participants rapidly
moved the cursor forward and returned it below the starting
position. The maximum amplitude of the reaching movement
in the sagittal plane (y-position) was defined as the endpoint
in each trial and marked as a yellow circle (radius: 0.3 cm). If
the participants did not return the cursor within 600ms, no
endpoint was shown, and a warning message stated “Time-out.
More quickly!” was presented. After a feedback period of 2 s, the
participants proceeded to the next trial.

In each trial, the participants obtained a score depending on
their reaching endpoint. We used an asymmetric gain function
(Figure 1C) in which risk-seeking motor planning has been
confirmed (O’Brien and Ahmed, 2013; Ota et al., 2016). The
closer the endpoint was to a green boundary line, the higher
the score was. If the endpoint fell above the green line, no score
was attributed (i.e., mistrial). The maximum score was obtained
if the endpoint fell on the line. No score was assigned if the
endpoint was less than 7 cm from a starting point, but no such
trial was observed (see Ota et al., 2020 for further details of our
experimental setup).

Experimental Protocol and Task
There were three experimental sessions in the following order:
practice, baseline, and main session (Figure 1D). First, the
practice session of 50 trials was provided to let the participants
be familiar with the reaching movement. From the baseline
session, the gain function was applied. In the baseline session,
there were 5 blocks of 10 trials. In each block, the participants
were instructed to maximize the total score of 10 trials while
performing the reaching movement alone. The score for a trial
and total score were displayed along with the endpoint feedback.
There were 12 blocks of 10 trials in the main session. In this
session, we randomly assigned one of seven experimental tasks
to each participant (i.e., between-subject design). There were (1)
individual task, (2–3) competitive tasks with a risk-averse or
a risk-neutral virtual opponent, (4–5) cooperation tasks with a
risk-averse or risk-neutral virtual partner, and (6–7) observation
tasks with a risk-averse or risk-neutral virtual partner.
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FIGURE 1 | Experimental setting. (A) Apparatus. Participants made a quick out-and-back reaching movement on a pen tablet. Stimuli were presented on a vertical

display. (B) Reaching trajectory in a trial denoted by a cyan curve. A horizontal green line (penalty boundary) was set 30 cm forward from the start position. (C) Gain

function. Participants obtained a score following this asymmetric gain function. (D) Experimental protocol. The participants first practiced the reaching task for 50

trials. They then performed the task under the gain function applied without any partner or opponent (baseline). In the main experimental session, the participants

performed either individual, cooperation, observation, or competition task for 12 blocks of 10 trials. (E) Cooperation task. (F) Observation task. (G) Competition task.

The participants alternated with the virtual partner or opponent in making a reaching movement.
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In the individual task, the participants were instructed
to maximize the total score in each block as they did so
in the baseline session. In the other six experimental tasks,
each trial alternated between the participant’s turn and the
virtual partner/opponent’s turn (Figures 1E–G). That is, after
the feedback period in the participant’s turn, a red cursor
(radius: 0.3 cm) was shown on the display as a start signal of
the virtual partner/opponent’s turn. A movement trajectory of
the red cursor was then automatically manipulated based on
prerecorded sample trajectories made by the experimenter. Each
movement endpoint was determined by the preprogrammed
algorithm described below (see section Manipulation of Virtual
Partner and Opponent). The endpoint was marked as a yellow
circle along with feedback on the score for a trial and the total
score. After this feedback period of 2 s, the turn was switched to
the participants.

Instructions differed in three types of interactions. In the
competitive task, the participants were asked to achieve a higher
total score than their virtual opponents at the end of each
experimental block (10 trials). At the end of each block, a message
stated “You win” or “You lose” was displayed (Figure 1G). In
the observation task, the participants were shown the movement
trajectory, movement endpoint, score in a trial, and total score
of the virtual partner as in the competitive task. However, the
participants were instructed to maximize their own total score.
At the end of each block, the participant’s total score was shown
(Figure 1F). In the cooperation task, the experimental setup was
the same as those two tasks, but the participants were instructed
to maximize the sum of their and their virtual partner’s total
scores. The sum of total scores was displayed at the end of each
block (Figure 1E).

Risk Sensitivity
When the trial-to-trial fluctuation of the movement endpoint is
modeled as a Gaussian function N

(

x
∣

∣µ, σ 2
)

, the expected gain
G (µ) for a particular plannedmovement endpointµ is defined as

G (µ) =
∫ ∞

−∞
f (x)N

(

x
∣

∣µ, σ 2
)

dx , (1)

where x is the actual movement endpoint, σ is the standard
deviation of the movement endpoint, and f (x) is a gain function
(Berger, 1985; Trommershäuser et al., 2008). One assumption
behind this calculation is that the participant plans the true
aim point µ (unobservable variable), while the actual movement
endpoint x can vary in every trial due to inherent noise in
the motor system. Since x follows a Gaussian distribution
(Trommershäuser et al., 2008), we estimated the participant’s aim
point µ by taking the average movement endpoint in each block.

Although the observed movement endpoint x fluctuates,
it is theoretically possible to calculate the expected gain by
defining a probabilistic model of x and averaging the gain
across all possible x values. Because the probabilistic model of
the movement endpoint approximates a Gaussian distribution
(Trommershäuser et al., 2008), we model the expected gain using
Equation (1). The other assumption behind this model is that
an aim point µ is constant within each block. A previous study
shows contradictory evidence to this assumption, that is, an aim

point can be corrected in the absence of perturbations (van Beers,
2009). The change in aim points might increase the movement
variability σ . However, in our previous study (Ota et al., 2020),
we validated that this is not the case. We found that there was
no significant difference in the movement variabilities between
the individual task where participants could update their aim
point and the fixed target condition where the target point was
fixed at the point where participants aimed in the individual task.
Therefore, whether participants might or might not change their
aim point would not jeopardize our argument.

Although it is possible to compute the expected gain with
a general form of f (x) by using a numerical or Monte Carlo
integral, Equation (1) is analytically tractable in the current
setting or in the case when f (x) is a piecewise linear function (see
Supplementary Material). After calculating G (µ) by changing
the value of µ, we can find the optimal aim point to maximize
the expected gain: µ∗ = argmaxµG (µ). Thus, we can discuss the
participant’s risk sensitivity by comparing the participant’s aim
point and µ∗. When the participant’s aim point is larger than
µ∗, their motor plan can be considered risk-seeking (O’Brien and
Ahmed, 2013; Ota et al., 2016). When the participant’s aim point
is smaller thanµ∗, their motor plan can be considered risk-averse
(O’Brien and Ahmed, 2013; Ota et al., 2016). When there is no
significant difference, the motor plan is optimal or risk-neutral.
The risk-seeking strategy indicates that participants seek a high
one-trial gain with a high probability of failure. The risk-averse
strategy indicates that participants seek a low one-trial reward
and to avoid a high probability of failure. Both strategies are
suboptimal in terms of maximizing the expected gain.

To determine the optimal aim point in each block, we
estimated the participant’s movement variance σ 2. In our
previous study (Ota et al., 2020), we estimated the movement
variance based on the variability of the endpoint in each block
(i.e., 10 trials). To obtain a more reliable measurement, this
study utilized the variability of endpoints in the past 40 trials.
As a result, the risk sensitivity for the 1st to 4th block was
not evaluated.

Manipulation of Virtual Partner and
Opponent
We used a virtual partner or opponent in this study. The
advantages of using a virtual partner/opponent are as follows:
First, we can arbitrarily manipulate their risk sensitivity. Second,
we can set their movement accuracy to the same degree as
the participant’s movement accuracy. These advantages enable
us to examine the influence of interaction type while changing
the partner’s/opponent’s risk sensitivity and controlling their
movement accuracy, which is a possible confounding factor.

The motor plan [i.e., true aim point µ in Equation (1)]
of the virtual partner/opponent was determined based on the
estimated movement variance σ 2 in the past 40 trials for each
participant. We prepared two properties: the risk-neutral (i.e.,
optimal) property and risk-averse property. For the first property,
we set the true aim point at the optimal value for all 12 blocks.
For the second property, we gradually changed the true aim
point from optimal to risk-averse. In the first four blocks (i.e.,
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6th−9th blocks in Figure 2), the true aim point was set at the
optimal aim point. In the next 4 blocks, the true aim point
decreased in steps of 0.015 (i.e., 0.985µ∗ at the 10th block, 0.97µ∗

at the 11th block, 0.955µ∗ at the 12th block, and 0.94µ∗ at
the 13th block). In the remaining four blocks, the aim point
was set to 0.925µ∗. After determining the true aim point, we
generated the actual endpoint of the virtual partner or opponent
by adding Gaussian noise, in which the variance was the same
as the calculated movement variance σ 2 in each participant. The
average movement endpoints for these two properties are shown
in Figure 2.

We did not add risk-seeking partners/opponents because they
were likely to obtain 0 points; consequently, the participants
could be deterred from following the task instructions (see
Ota et al., 2020 for further details of manipulation of
virtual opponent).

Sample Size
The sample size was determined based on a priori power analysis
using G∗power (Faul et al., 2007). In our previous study (Ota
et al., 2020), we found that a risk-seeking strategy taken at
baseline was modulated to risk neutrality during competition
with a risk-averse opponent. A comparison of the aim point
(average endpoint) in the first 50 trials with that in the last 50
trials provided the effect size of d = 1.63. The a priori power
analysis, with the paired t-test 0.05 significance criterion, 0.8
detection power, and 1.63 effect size, provided a sample size of
6 for each experimental group.

In our previous study (Ota et al., 2020), we ran four out
of seven experimental groups: individual task, two competitive
tasks, and observation task with a risk-averse partner. In those
tasks, we chose the data from the first 6th participants who
had participated in our previous study. For the remaining three
tasks that had not been examined before running this study
(observation with a risk-neutral partner and two cooperation
tasks), we recruited 18 additional participants.

This study performed an a priori power analysis based on the
modulation of the aim point rather than the modulation of risk
sensitivity that was used for the a priori power analysis performed
in our previous study (Ota et al., 2020). Because the evaluation of
risk sensitivity required the past 40 trials, in calculating motor
variability, the risk sensitivity for the first 40 trials in the baseline
was not evaluated in this study. To fairly compare 50 trial data in
the baseline and the main sessions, we performed a priori power
analysis for the aim point. Notably, the following results were
consistent with our earlier findings, regardless of the difference
of the a priori power analysis.

Statistical Analysis
Based on a priori analysis, we first examined whether the
interaction types tested in this study affected the participant’s aim
point. We performed a paired t-test on the aim point (dependent
variable) between the baseline session (1st−5th blocks) and
main session (13th−17th blocks) (independent variable) for each
group (see section Modulation of Average Endpoint Through
Interaction). We then performed a paired t-test on the aim
point (dependent variable) between the participant’s actual data

and the optimal aim point data (independent variable) for each
group at two different time phases, baseline session and main
session (see sections Risk-Seeking Property at the Baseline and
Modulation of Risk Sensitivity). As the paired t-test was repeated
for seven groups, Holm’s correction was introduced to correct the
statistical threshold. Since we estimated the optimal aim point
given the past 40 trials, we included the endpoint data at the 5th
block to examine whether the actual aim point was significantly
different from the optimal aim point at baseline. For the same
reason, we included the endpoint data across the 14th−17th
blocks (i.e., the last 40 trials) to examine the difference in the
actual and optimal aim point at the main session.

p < 0.05 was considered statistically significant. Cohen’s d
was calculated as an index of effect size. We use symbols ps and
ds to denote multiple p-values (p) and Cohen’s effect sizes (d),
respectively, when multiple statistical tests are applied.

To investigate how the participant’s aim point was modulated
during three types of interactions, we fit a generalized
linear model (GLM) on the relation between the participant’s
average endpoint data As and the virtual partner’s/opponent’s
average endpoint data Av (see section Influence of the
Partners/Opponents on Motor Planning). Since we focused on
how the partners or opponents affected the participant’s aim
point compared with the baseline, we subtracted the average
endpoint at the baseline (1st−5th blocks) Ai from both measures
of Av and As. Thus, the dependent variable y was As − Ai, and
the independent variable x was Av − Ai. For the same reason, we
pooled the data in the risk-neutral and risk-averse groups within
the same interaction type and fit the GLM to the pooled data for
each type of interaction. In total, 144 endpoint data points (12
blocks × 6 participants × 2 properties) were included for GLM
fitting in each interaction. We tested a constant model y = b0,
a first-order equation model y = b0 + b1x and a second-order
equation model y = b0 + b1x + b2x

2, where b0 is an intercept
(constant) and b1 and b2 are regression coefficients for the linear
term and the quadratic term, respectively. For each interaction
type, we chose the best model by adding the linear term and
then the quadratic term and by examining whether the added
regression coefficient was significant or not (Wald test).

RESULTS

Modulation of Average Endpoint Through
Interaction
Figure 2 indicates the arm-reaching movement endpoints
averaged across all participants in each group. We compared the
average endpoint across the 1st−5th blocks (baseline session) and
that across the 13th−17th blocks (main session) (the shaded areas
in Figure 2). The average endpoint significantly decreased during
competition with a risk-averse opponent from the baseline blocks
(Figure 2D, paired t-test, p= 0.018, d= 1.42). In the competition
with the optimal opponent, there was a significant increase in
the average endpoint from the baseline session to the main
session (Figure 2G, paired t-test, p = 0.041, d = −1.11). There
were no significant modulations in the average endpoint in the
cooperative groups and observation groups from the baseline to
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FIGURE 2 | Block-to-block variation in the mean endpoint (i.e., aim point). The data from the baseline to the main session are shown in the individual group (A), in the

cooperation groups with a risk-averse partner (B) or a risk-neutral partner (E), in the observation groups with a risk-averse partner (C) or a risk-neural opponent (F),
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from the 13th to 17th blocks). The asterisks indicate p < 0.05.

the main session (Figures 2B,C,E,F; paired t-tests; ps > 0.24,
ds < 0.39). Similarly, in the individual group, there was no
significant difference (Figure 2A, paired t-test, p = 0.057, d =

−0.24). The effect size observed in the competition with a risk-
averse opponent was d = 1.42, and this effect was 3.6 times
larger than the strongest effect size shown in the other five types
of interaction (i.e., d = 0.39 in the observation with the risk-
averse partner; median effect size was 0.01 among the other five

interactions). In sum, both the individual situations and five types
of interaction did not modulate the average endpoint as shown in
the competition with a risk-averse opponent.

Risk-Seeking Property at the Baseline
Although our results show the effect of virtual opponents on
motor planning, the modulation of the aim point does not solely
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indicate that the participants made the optimal motor plan.
Therefore, we focused on the risk sensitivity analysis below.

We first tested whether the participant’s aim point was
different from the optimal aim point in the individual setting. At
the 5th block in the baseline session, the average endpoint was
significantly larger than the optimal aim point in all seven groups
(circles in Figures 3A–G, paired t-tests with Holm correction,
ps < 0.023). When the participants in the individual group
continued the individual task after the baseline, a significant
deviation from the optimal aim point was still found in the last 40
trials in the main block (shaded area in Figure 3A, paired t-test
with Holm’s correction, p = 0.002). Therefore, the participants
in all seven groups took a risk-seeking strategy at baseline, and
the participants in the individual group persisted a risk-seeking
strategy thereafter.

Moreover, we found a significant deviation from the optimal
aim point in the last 40 trials (blocks 14th−17th) in five types of
interaction except for competition with a risk-averse opponent
(shaded area in Figures 3B,C,E–G, paired t-tests with Holm’s
correction, ps < 0.023). These results suggest that a risk-seeking
property still exists during cooperation tasks, observation tasks,
and competitive task with the optimal opponent.

Modulation of Risk Sensitivity
We then tested a difference in the actual and optimal aim
point in the 14th−17th blocks in the competition with a risk-
averse opponent group and found no significant deviation
from the optimal aim point [shaded area in Figure 3D, the
difference from the optimal = −1.52 ± 2.92 (mean ± s.e.m.),
paired t-test with Holm correction, p = 0.62]. Taken together,
these results indicate that among the combinations tested in
this study, competition with a risk-averse opponent reduced
the participant’s aim point from the baseline. Since the risk-
sensitivity value at the competition was not significantly different
from the risk-neutral value, optimalmotor planning was induced.

Influence of the Partners/Opponents on
Motor Planning
Finally, we investigated how the virtual partner’s/opponent’s
motor plan modulated the participant’s motor plan (Ota et al.,
2020). Because we assumed that block-to-block variation was
more important to the average endpoint than to movement
variability or risk sensitivity, this analysis focused on the average
endpoint. Figure 4A shows the plots of the participant’s average
endpoint As against the virtual partner’s/opponent’s average
endpoint Av, relative to the average endpoint at the baseline Ai,
for three types of interactions. A negative value on the y-axis (i.e.,
As − Ai) indicates a decrease in the participant’s endpoint from
the baseline. A negative value on the x-axis (i.e.,Av−Ai) indicates
that the partners or opponents exhibit smaller endpoints than the
participant’s baseline endpoint.

We fit a general linear model (see section Statistical Analysis).
Figures 4B–D show the fitted intercept, regression coefficient for
the linear term, and that for the quadratic term. In competition
(blue line, shaded area, or dots) and cooperation (red line, shaded
area, or dots), the second-order equation model was selected (for
competition, R2 = 0.460 and p = 5.31×10−20 from the constant
model; for cooperation, R2 = 0.109 and p = 1.39 × 10−4

from the constant model). In observation (green line, shaded
area, or dots), the first-order equation model was selected (R2 =

0.283 and p = 4.19 × 10−12 from the constant model). The
second-order equation indicated the non-linear influence of the
partner/opponent on the participants’ motor plan. In contrast,
observation has a linear influence in the current experimental
setting. In Figure 4A, the upper bound of the 95% confidence
interval in competition (blue-shaded area) was smaller than the
lower bound of the interval in cooperation (red-shaded area)
and observation (green-shaded area) when −30 ≤ Av − Ai ≤

−10. This suggests that competition with risk-averse opponents
had a larger inhibitory effect on the endpoint than the other
types of interactions with risk-averse opponents. In summary,
competition was more effective than cooperation or observation
in inhibiting a risky motor plan.

We also fit a GLM on the modulation of the participant’s aim
point from the previous block. We used the difference in the
aim points from the tth to t + 1th block, As,t+1 − As,t , as the
dependent variable y and the aim point in the tth block, As,t ,
as the independent variable x. In this GLM, we chose the same
model selected above for each interaction type (second-order
equation for competition and cooperation, first-order equation
for observation) for a fair comparison. As a result, we found
the R2 value of 0.160 in the competition. Compared with the
R2 of 0.460 when fitting to the relation between the participant’s
and opponent’s aim points, the fitting performance decreased.
Therefore, the participants were likely to determine their strategy
based on their opponent’s behavior rather than on their own aim
point in the previous block. In the cooperation groups, we found
the R2 value of 0.351, which was a better fit than the fit in Figure 4
(R2 = 0.106). This indicates that the participants determined
their aim points primarily based on their own aim point in the
previous block with little reference to their partner’s behavior. In
the observation groups, we found the R2 value of 0.319, which
was slightly better than the fit in Figure 4 (R2 = 0.283). Although
the influence of cooperation and observation was supported by
several findings (Richardson et al., 2007; Peng and Hsieh, 2012;
Ganesh et al., 2014; Ikegami and Ganesh, 2014), the influence was
not as large in motor planning in our decision-making task.

DISCUSSION

Summary of Results
Previous studies have investigated the optimality of human
motor planning. Although risk-averse or risk-neutral motor
planning has been observed for several tasks (Trommershäuser
et al., 2003, 2005; Nagengast et al., 2010; Onagawa et al., 2019)
and there is an individual difference (see Nagengast et al., 2011b;
Ota et al., 2016), humans generally demonstrate a risk-seeking
motor planning strategy not only in a continuous motor decision
task such as the one used in this study (Nagengast et al., 2011b;
O’Brien and Ahmed, 2013; Ota et al., 2015, 2016, 2019b) but also
in a two-alternative forced choice task (Wu et al., 2009; Nagengast
et al., 2011a). A suboptimal motor plan is possibly caused by
overconfidence and is also seen in real sports fields (Neiman
and Loewenstein, 2011; Skinner, 2012). However, only a few
studies have examined how to modify the risk-seeking tendency.
The current study addressed this question using interpersonal
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FIGURE 3 | Block-to-block variation in the difference in average endpoint from the optimal aim point to the participant’s aim point (i.e., risk-sensitivity). (A) Individual

group (B) cooperation group with a risk-averse partner (C) observation group with a risk-averse partner (D) competition group with a risk-averse partner

(E) cooperation group with a risk-neutral partner (F) observation group with a risk-neutral partner (G) competition group with a risk-neutral partner. A positive

risk-sensitivity value denotes a risk-seeking strategy, whereas a negative value denotes a risk-averse strategy. The horizontal dotted line indicates the optimal and

risk-neutral value (i.e., the difference is 0). The solid-colored curves indicate the averaged data across participants, and the shaded areas indicate the s.e.m. (6–17

blocks). The participant’s average at the 5th baseline block is represented as a filled circle. The vertical dotted lines indicate the timing when the experimental session

changed from the baseline to the main session. The asterisks denote a significant difference (p < 0.05) from the optimal aim point at the 5th baseline block or at the

14th–17th blocks (the gray-shaded area).

interaction since interactions with others influence human
actions (Richardson et al., 2007; Peng and Hsieh, 2012; Ganesh
et al., 2014; Ikegami and Ganesh, 2014). We tested a competition,
cooperation, and observation scenario with either risk-neutral or
risk-averse opponents/partners. We confirmed that competition
with a risk-averse opponent reduced the participant’s aim point
(Figure 2) and that the changed motor plan became risk-neutral
(Figure 3). This outcome was explained by non-linear and
inhibitory influences that emerge via competition (Figure 4). Our

results confirm that competition with a risk-averse opponent has
a larger influence than cooperation or observation in terms of
modulating a motor plan under risk.

Why Did the Motor Plan Approach the
Optimal Point?
We have already excluded several possibilities for this question.
The first possibility is that social facilitation induced by
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FIGURE 4 | The influence of the virtual partner/opponent’s motor plan on the participant’s motor plan. (A) The horizontal and vertical axes indicate the virtual partner’s
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to evaluate the influence relative to the baseline performance. Each rectangle indicates the data in risk-neutral groups, whereas each circle denotes the date in
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(green line). Shaded areas around the solid lines indicate 95% confidence intervals of the fitting line or curves. (B) The fitted intercept and its 95% confidence interval.

(C) The fitted regression coefficient for the linear term. (D) The fitted regression coefficient for the quadratic term.

opponents (Zajonc, 1965) affects motor planning. If this were
true, the same effect observed in competition should have
been found in observation and cooperation. Second, the binary
outcome (i.e., win or lose) affected motor planning. Our earlier
study examined this possibility by setting a binary outcome
condition in which participants were instructed to exceed the
total score that was presented at the beginning of each block
(Ota et al., 2020). The results showed that attempting to
exceed the total score without an opponent does not change
motor planning.

Our hypothesis is that the opponent’s action has a non-linear
and inhibitory influence on motor planning (Figure 4). When
the opponents obtained a higher score than the participants (i.e.,
Av − Ai ≥ 0), the participants sought a higher score than the
baseline (i.e.,As−Ai ≥ 0).When the opponents obtained a lower
score than the participants (i.e., Av − Ai ≤ 0), the participants
sought a lower score than the baseline (i.e., As − Ai ≤ 0).
These effects of the opponents can be considered synchronization
in competitive tasks (Naber et al., 2013; Varlet and Richardson,
2015). However, if such synchronization were the factor, the
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participants should have exhibited a risk-averse strategy when
their opponents were highly risk-averse (i.e., As − Ai ≤ −40).
This was not the case in this study: the participants did not
further decrease their aim point when their opponents were
highly conservative.

Thus, we speculate that a win-stay lose-shift strategy (Nowak
and Sigmund, 1993) was utilized along with the effect of the
synchronization. That is, participants maintain the same strategy
when they win the competition and switch the strategy when they
lose. The participants would not decrease their aim point after
their opponents began adopting highly conservative behavior, as
the participants could already easily beat the opponent. There is
no reason to adopt a win-stay lose-shift strategy in cooperation
and observation tasks due to the nature of the tasks. Based on our
earlier work (Ota et al., 2020) and this study, we now consider
that the mixture effect between non-linearity (win-stay lose-
shift) and inhibition (synchronization) is a possible candidate for
why motor planning was optimized. Indeed, a previous study
proposed a preliminary model that predicted optimal motor
planning without knowledge of motor variability but by a shift in
an aim point in response to having a negative outcome (Brenner
and Smeets, 2011).

If the participants used a win-stay lose-shift strategy, one
might consider when they predicted their opponent’s score
and determined their strategy. We consider three possibilities
for this question as follows: before each experimental block,
during the block, and both before and during the block. Trial-
to-trial variability can be a problematic and noisy factor in
attempting to clarify which of the three possibilities is at
play. One possible way to estimate the unobservable true aim
point and its fluctuation is to use some variants of the state
space model (Ghahramani and Hinton, 2000; Takiyama et al.,
2009; Takiyama and Okada, 2011; Naruse et al., 2013). For
example, if the true aim point is invariant within each block
and varies between blocks, it is plausible that the strategy
is determined before each block on the basis of the prior
history of the opponent’s total scores. If, on the other hand,
the true aim point varies within each block and is invariant
between blocks, the strategy is likely determined during the
block based on upcoming information on the opponent’s score
in each trial.

Relevance to Previous Literature in Motor
Control and Learning
In general, there are (at least) three stages in human movement:
the planning stage to make a movement plan, the control stage to
control a movement as planned, and the learning stage to acquire
the internal model and update a motor plan given an error. In
the long history of motor control and learning literature, the
target (i.e., motor plan) has been visually guided in most cases
(Flash and Hogan, 1985; Uno et al., 1989; Lackner and Dizio,
1994; Shadmehr and Mussa-Ivaldi, 1994; Harris and Wolpert,
1998; Todorov and Jordan, 2002; Takiyama et al., 2015). It has
been shown that humans optimally control an arm-reaching
movement to the given target (Flash and Hogan, 1985; Uno et al.,
1989; Harris and Wolpert, 1998; Todorov and Jordan, 2002).
Humans also adapt to environmental changes such as mechanical

perturbation (Lackner and Dizio, 1994; Shadmehr and Mussa-
Ivaldi, 1994) or visuomotor transformation (Takiyama et al.,
2015). The problem lies in the planning stage, where ones need to
decide on a target by themselves. In this stage, previous findings
show a risk-seeking tendency (Wu et al., 2009; Nagengast et al.,
2011a,b; O’Brien and Ahmed, 2013; Ota et al., 2015, 2016). The
current study added a new finding regarding how three types of
interpersonal interactions modulate a risk-seeking tendency.

Although observing another person who is learning to reach
in a novel environment enhances motor learning (Mattar and
Gribble, 2005; Malfait et al., 2010; McGregor et al., 2016),
observing the performance of a risk-neutral virtual partner did
not facilitate a risk-neutral motor plan. A lack of benefit of the
observation in motor planning may or may not reflect a lack
of engagement in the neural network engaged in observation
(Malfait et al., 2010; McGregor et al., 2016) due to the
virtual partner.

LIMITATIONS

In our study, we defined the optimal aim point as the one
for maximizing one’s own expected gain. This may not be
optimal in terms of maximizing the chance of winning to the
opponents. However, our simulation showed that the difference
in these two aim points is marginal, at least in our experimental
setting (Supplementary Figure 1). We found that two aim points
overlap when the opponent is nearly risk-neutral. The difference
was shown only when the opponents were highly conservative,
and the maximization of the chance of winning slightly shifted
the aim point lower than the maximization of expected gain.
Therefore, the participant’s strategy might be riskier than the
one maximizing the chance of winning. Since the opponent’s aim
point is unobservable in an actual experiment, the participants
might shift their aim point toward the maximization of expected
gain (see Supplementary Material for further discussion on
this issue).

As for another limitation, it is still unclear whether our
results are invariant in human–human interactions. Since most
of the participants demonstrate risk-seeking behavior, we used
virtual partners/opponents whose risk sensitivity and movement
accuracy can be arbitrarily manipulated. Validating our findings
in interactions with human participants is promising for
future research.

CONCLUSION

This study examined the effects of three types of interpersonal
interactions on human motor planning under risk. We
demonstrate that competition with a risk-neural opponent
increases the participant’s aim point from the baseline, whereas
competition with a risk-averse opponent decreases the aim point.
There were fewer effects in the modulation of motor plans
during cooperation with risk-neutral/risk-averse partners and
observation with those partners. Among the interaction types
tested in this study, only competition with a risk-averse opponent
leads to the optimal motor plan.
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These results provide rich practical implications for decision-
making training programs in sports and e-sports. That is, our
results suggest that it is not always good to compete with
strong (i.e., risk-neural and optimal) opponents. To improve
a suboptimal and risk-seeking strategy in real sports fields
[e.g., a shot selection problem in basketball players in NBA
(Neiman and Loewenstein, 2011; Skinner, 2012)], one might
need competition with various types of opponents, especially
with more conservative and weaker opponents than them. Such
training may provide athletes with a clue on what decision
strategy should be taken. Our results also show behavioral
evidence that humans flexibly change their decision strategy
depending on the level (strength) of their virtual opponents
(Figure 4). Therefore, this work highlights the importance
of adjusting the level of computer opponents to improve
performance in e-sports athletes. We hope that the results of this
work contribute to the further development of decision-making
training programs in sports and e-sports.
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