
OPINION
published: 14 June 2021

doi: 10.3389/fspor.2021.655975

Frontiers in Sports and Active Living | www.frontiersin.org 1 June 2021 | Volume 3 | Article 655975

Edited by:

Mohammed Ihsan,

National University of

Singapore, Singapore

Reviewed by:

James Robert Broatch,

Victoria University, Australia

Aaron Petersen,

Victoria University, Australia

*Correspondence:

Angus Lindsay

a.lindsay@deakin.edu.au

Specialty section:

This article was submitted to

Elite Sports and Performance

Enhancement,

a section of the journal

Frontiers in Sports and Active Living

Received: 19 January 2021

Accepted: 18 May 2021

Published: 14 June 2021

Citation:

Lindsay A and Peake JM (2021)

Muscle Strength and Power: Primary

Outcome Measures to Assess Cold

Water Immersion Efficacy After

Exercise With a Strong Strength or

Power Component.

Front. Sports Act. Living 3:655975.

doi: 10.3389/fspor.2021.655975

Muscle Strength and Power: Primary
Outcome Measures to Assess Cold
Water Immersion Efficacy After
Exercise With a Strong Strength or
Power Component

Angus Lindsay 1* and Jonathan M. Peake 2,3

1 Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC,

Australia, 2 School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia, 3 Sport

Performance Knowledge and Innovation Excellence, Queensland Academy of Sport, Brisbane, QLD, Australia

Keywords: cryotherapy, recovery, performance, muscle damage, exercise, excitation contraction coupling

INTRODUCTION

Recovery from exercise-induced muscle damage, fatigue or stress is critical for restoration of
exercise performance. In most exercise activities or sports, performance is regulated through the
physiological capacity of muscle. Therefore, athletes, coaches, and scientists have continued to
explore post-exercise recovery modalities that focus on expediting muscle functional recovery.
Several post-exercise recovery strategies have been developed, tested, and used in amateur and
professional athletes to expedite muscle functional recovery. A cost-effective and well-researched
practice to achieve this goal is cold water immersion (CWI). CWI requires submersion of a limb or
the whole body in cold water of a specified temperature (usually <15◦C) for a specified duration
immediately post-exercise, or over several succeeding days. However, the equivocal findings on
the efficacy of CWI and the extensive number of outcome variables has made it challenging to
interpret and correctly implement this intervention. In this short opinion piece, we briefly review
CWI research and the challenges that practitioners and athletes face when deciding whether to
use CWI as a post-exercise recovery intervention. We then discuss why muscle strength and/or
power should be considered the primary outcome variable in CWI research with a strong strength
and power component, and why excitation–contraction coupling and/or rate of force development
assessment is necessary to evaluate strength/power-specific changes. Finally, we present systematic
evidence that there is a dearth of strength measurements in CWI research, which could be limiting
our understanding of this post-exercise recovery strategy.

A BRIEF HISTORY OF CWI RESEARCH

Some of the first evidence that a single CWI application might be beneficial for recovery from
muscle damage or injury was provided by Hayden (Hayden, 1964) and Hocutt et al. (1982). Both
studies showed that CWI expedited return-to-duty in soldiers after injury, or return to full activity
after ankle sprain, respectively. In contrast, Matsen et al. and Marek et al. showed that application
of cold water to an injury significantly increased oedema (Matsen et al., 1975; Marek et al., 1979).
Subsequent research about the effects of CWI has also produced some contrasting findings. For
example, CWI immediately following blunt trauma to skeletal muscle of rats significantly reduced
oedema formation (Dolan et al., 1997). By contrast, CWI following eccentric contractions did not
affect muscle soreness or strength in humans (Eston and Peters, 1999). More recently, Naderi et al.
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showed that CWI did not attenuate a loss in muscle strength
following a single bout of strength training (Naderi et al., 2021),
whereas Kodejška et al. (2018) demonstrated that CWI increased
the force time integral in handgrip performance compared with
passive recovery in rock climbers. Differences in CWI study
outcomes could be associated with different modes of exercise,
methods or timing of applying CWI and approaches to assessing
muscle damage.

Contradictory findings related to repeated CWI applications
have also been reported and confirmed in a recent systematic
review and meta-analysis (Malta et al., 2021). Fu et al. (1997)
showed that when CWIwas regularly applied to rats after exercise
training, it caused advanced ultrastructural damage to myofibrils.
Several human studies have also shown negative adaptive effects
of repeated CWI applications after resistance training (Fröhlich
et al., 2014; Roberts et al., 2015; Yamane et al., 2015; Fyfe
et al., 2019; Poppendieck et al., 2020). However, Lindsay et al.
(2016) showed that repeated CWI applied to mixed martial
artists during a training camp attenuated the inflammatory
response, but did not affect measures of performance. Repeated
CWI applied after high intensity interval training (HIIT) or
a combination of HIIT with low-moderate intensity aerobic
exercise also does not influence indices of performance or
muscle cellular signaling (Halson et al., 2014; Aguiar et al.,
2016; Christiansen et al., 2018). Although these studies represent
only a small proportion of published CWI research, they do
demonstrate the complexity in understanding the value of this
recovery intervention.

INTERPRETING CWI RESEARCH

Regardless of the inconsistencies in CWI study outcomes,
anecdotal evidence suggests that professional athletes from
various sports use CWI as a post-exercise recovery strategy. The
reasons behind this persistent practice are uncertain, but may
reflect a disconnect between the scientific findings of the studies,
and how coaches and athletes interpret these findings. The
practitioners’ guide to determining if, and when, to implement
CWI is confounded by the vast performance, biochemical, and
qualitative analyses that have been used to evaluate its efficacy.
Other than the variability in CWI protocols (which can range
from 4 to 15◦C, 5 to 30min durations, 1 to 10 applications,
immediate to delayed submersion) and level of exercise intensity,
participant sex and training status, the outcome variables of
interest provide an added level of complexity in CWI study
comparisons. First, a practitioner or self-coached athlete without
in-depth scientific knowledge of biological processes, may not
be able to interpret correctly the results of CWI studies that
focus on indices of inflammation, gene expression or rates
of protein synthesis. Second, drawing comparisons between
performance and biochemical or molecular variables could
be challenging for a non-scientist. Physiological performance
analysis offers a direct and interpretable option for practitioners
that is training-specific. We therefore propose that consistently
measuring maximal muscular strength and/or power [product
of load lifted and angular displacement (distance load moved)

divided by time spent moving the load (Sapega and Drillings,
1983;Winter et al., 2016; Horta-Gim et al., 2021)] will provide the
exercise community with a more appropriate understanding of
whether CWI enhances recovery from exercise-induced damage
or fatigue, and improves the performance and work capacity
of athletes. From our perspective as exercise physiologists,
maintenance of muscular strength and power, irrespective of
any changes in muscle ultrastructural integrity, will likely benefit
overall physical performance.

MUSCLE STRENGTH/POWER AND

MECHANISMS OF STRENGTH/POWER

LOSS

Muscle strength and power outcomes is a multi-faceted
coordination of electrical and chemical events, together with
interactions between structural components of muscle tissue.
Strength and power are measured using the 1-repetiton
maximum (actual or estimated), or with force transducers or
plates associated with lab-based dynamometers that measure
absolute torque production and rate of force development. Loss
of muscle strength associated with eccentric contractions (which
lengthen the muscle during simultaneous force production) can
be primarily attributed to excitation–contraction uncoupling,
and to a lesser extent, loss of contractile protein and structural
damage (Warren et al., 2001, 2002). Therefore, post-exercise
recovery interventions should target the processes of excitation–
contraction coupling to accelerate recovery from eccentric
contraction-biased exercise. The triad of skeletal muscle is the
site of excitation–contraction uncoupling following eccentric
contraction-induced strength loss. More specifically, it is the
voltage-sensitive dihydropyridine receptors (DHPR) located in
the T-tubules and the ryanodine receptor (RyR) calcium release
channel of the sarcoplasmic reticulum (Ingalls et al., 1998;
Warren et al., 2001, 2002; Corona et al., 2010; Baumann et al.,
2014). The sensitivity of both the DHPR and RyR are not affected
by eccentric contraction-induced strength loss (Ingalls et al.,
2004a). However, the expression of proteins that associate with
the DHPR and RyR to modulate cross-talk and calcium release
is significantly decreased (Corona et al., 2010; Baumann et al.,
2014). Thus, assessing the effectiveness of CWI for restoring
muscle strength could include molecular measurement of the
DHPR, RyR, junctophilin, FKPB12, calmodulin, or calsequestrin
(proteins associated with the triad of muscle fibers and known
to interact with channels and receptors regulating skeletal
muscle calcium kinetics). Because cold acclimation can influence
calcium handling/kinetics of skeletal muscle and improve indices
of muscle performance (Bruton et al., 2010), additional calcium
measurements following CWI could supplement analyses of
excitation–contraction coupling. However, we do acknowledge
that such measurements of proteins following CWI would
require time course evaluation, multiple muscle biopsies that
would complicate human studies with respect to recruitment
and full participation, and confound interpretations of findings
by non-scientists.
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Researchers can indirectly assess excitation–contraction
uncoupling in vivo by comparing the low-frequency to high-
frequency torque loss prior to and following CWI. The
greater reduction in low-frequency torque compared with high-
frequency torque indicates excitation–contraction uncoupling
(Edwards et al., 1977; Jones et al., 1982; Ingalls et al., 2004b).
Cheng et al. (2017) showed that in isolated single muscle
fibers of mice, cold application following fatiguing contractions
dampened submaximal force without altering maximal force
during recovery. In fact, the ratio of submaximal to maximal
force was lowest with the coldest temperature, suggesting greater
excitation–contraction uncoupling with colder applications.
Additionally, we acknowledge that force-generating capacity
during rapid, dynamic movements is also relevant to athletic
performance and may represent a more sensitive measure
to detect changes in neuromuscular function. Rate of force
development can generally be determined by measuring the
change in peak force divided by a change in time (maximal rate
of contraction to accommodate for inter-individual variability in
peak force development time) using lab-based force transducers
and associated software. Central nervous system (CNS) fatigue
likely also influences recovery of muscle strength and/or power
following a single or repeated applications of strenuous exercise
(Peiffer et al., 2009). Therefore, measuring CNS fatigue would
also improve the assessment of muscle function recovery. Non-
invasive CNS assessments could use an interpolated twitch
during a maximal voluntary contraction (Allen et al., 1995) but
would require the use of stimulation units. Collectively, more
research of this nature will help to improve understanding of how
CWI influences muscle function.

Loss of muscle strength and/or power can also be caused by
fatiguing contractions (i.e., short-term strength and/or power
loss caused primarily by energy depletion, and/or short-term
“reversible” decrements in excitation contraction coupling)
or blunt force trauma—the latter of which causes damage
to structural and force-generating proteins of the muscle.
Therefore, restoration of muscle strength and/or power by
CWI would ideally need to affect several components of
excitation contraction-coupling, synthesis of essential proteins,
and restoration of the muscle architecture. CWI is thought to
expedite recovery from exercise by lowering skin, intramuscular
and body temperature, cardiovascular strain, blood flow and
increasing metabolism, blood pressure and heart rate (Bleakley
and Davison, 2010b; Ihsan et al., 2016). Although CWI does not
influence glycogen resynthesis rates after exhaustive exercise in
humans (Gregson et al., 2013), other cryotherapy applications
can reduce inflammatory cell infiltration after soft tissue injuries
in animal studies (Bleakley and Davison, 2010a) and CWI can
lower inflammatory biomarkers after contact sport (Lindsay
et al., 2017) and resistance exercise in humans (Missau et al.,
2018). However, there are equivocal findings that CWI does not
affect muscle-specific or circulating inflammatory biomarkers
after resistance exercise (Peake et al., 2017a), repeated sprints
(White et al., 2014) or volleyball training (De Freitas et al.,
2019) in humans. This variation may be attributed to the level
of muscle damage imposed by the initial exercise. The first
wave of responders to sites of muscle damage (strength and/or

power loss) includes granulocytes, and mononucleated cells such
as macrophages, eosinophils and monocytes. Considering that
cold-stress limits mononuclear cell activity (Lindsay et al., 2016;
Reynés et al., 2019), and inflammation is integral to muscle
repair and regeneration (Peake et al., 2017b), it follows that CWI
may in fact delay the sequence of events involved in muscle
repair (Tidball, 2011) and the recovery of muscle strength and/or
power. Additionally, CWI may slow recovery from structural
protein damage, because protein synthesis, ribosomal biogenesis
and anabolic signaling are temperature-dependent (Roberts et al.,
2015; Figueiredo et al., 2016; Fuchs et al., 2020). Overall, the
mechanisms by which CWI may affect recovery of muscle
strength and/or power have not definitively been determined.

Ensuring muscle strength and power measurements
are considered as a primary outcome measure for CWI
studies investigating forms of exercise in which recovery of
strength/power is important (independent of inflammatory
status or the ultrastructural integrity of the muscle) is critical.
This is because even muscle that is severely structurally
compromised, with a steady state of inflammation and
heightened sensitivity to exercise-induced loss of sarcolemmal
excitability, can produce strength and power. For example,
skeletal muscle from dystrophin-deficient mice, a model of
Duchenne muscular dystrophy, undergoes continuous cycles of
degeneration and regeneration, inflammation, exercise-induced
loss of sarcolemmal excitability and replacement of muscle
with adipose and fibrotic tissue (Tanabe et al., 1986; Baumann
et al., 2020). Functional analyses indicate that absolute strength
and rate of force development during a twitch and tetanic
contraction of these dystrophin-deficient muscles in mice is
not different to healthy skeletal muscles (Lindsay et al., 2019).
However, although inflammatory status and skeletal muscle
integrity might not affect muscle strength and/or power in a
diseased state, it may predispose muscle of healthy individuals to
greater levels of exercise-induced stress that could, in turn, lead
to poorer long-term performance or extended recovery periods.

BRIEF SYSTEMATIC REVIEW—CWI AND

MUSCLE STRENGTH

Despite the variation in outcome variables and advancements
in muscle strength and power assessment technologies for CWI
research in humans, relatively few studies have included the
measurement of muscle strength and power as a measure of the
effectiveness of CWI. A literature search in PubMed identified
a total of 427 peer-reviewed studies on “cold water immersion”
AND “muscle” (01/12/2020). Of these 427 studies, 31 (7%)
measured muscle strength prior to and following exercise and
CWI. Of the 31 studies that measured strength prior to and
following an intervention, 14 studies showed positive effects for
CWI over a passive or active recovery modality on strength
and/or power variables, six studies showed that CWI was
detrimental to muscle strength and/or power, and 11 studies
showed no effect. Twenty-one of the 31 studies completed only
a single application of CWI, whereas 10 studies completed two or
more applications of CWI. Overall, our literature search of CWI
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andmuscle strengthmeasurements provides conflicting evidence
that CWI has beneficial effects for muscle strength variables.

CONCLUSION

The efficacy of CWI has been tested and studied for decades, with
large variation in outcomes. Although outcome measures remain
relatively constant, the difficulty in assessing CWI as a strategy
for post-exercise recovery is associated with the variability in the
intervention itself. While investigating CWI protocol variables
does provide additional information, it somewhat contributes
to the level of confusion accompanying this modality for
amateur and professional athletes. Therefore, we re-iterate that
independent of the CWI protocol used in a study setting, that
measures of absolute or relative muscle strength and/or power
should be the primary measurement. This approach will at least

offer scientists, athletes and coaches a comparison among CWI
studies in the outcome variable that is relatively easy to interpret,
and matters most to athletic performance.
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