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Background: It is often advised to ensure a high-protein intake during energy-restricted

diets. However, it is unclear whether a high-protein intake is able to maintain muscle

mass and contractility in the absence of resistance training.

Materials and Methods: After 1 week of body mass maintenance (45 kcal/kg),

28 male college students not performing resistance training were randomized to

either the energy-restricted (ER, 30 kcal/kg, n = 14) or the eucaloric control group

(CG, 45 kcal/kg, n = 14) for 6 weeks. Both groups had their protein intake

matched at 2.8 g/kg fat-free-mass and continued their habitual training throughout

the study. Body composition was assessed weekly using multifrequency bioelectrical

impedance analysis. Contractile properties of the m. rectus femoris were examined with

Tensiomyography and MyotonPRO at weeks 1, 3, and 5 along with sleep (PSQI) and

mood (POMS).

Results: The ER group revealed greater reductions in body mass (1 −3.22 kg vs.

1 1.90 kg, p < 0.001, partial η² = 0.360), lean body mass (1 −1.49 kg vs. 1 0.68 kg, p

< 0.001, partial η²= 0.152), body cell mass (1−0.85 kg vs.1 0.59 kg, p< 0.001, partial

η² = 0.181), intracellular water (1 −0.58 l vs. 1 0.55 l, p < 0.001, partial η² = 0.445) and

body fat percentage (1 −1.74% vs. 1 1.22%, p < 0.001, partial η² = 433) compared to

the CG. Contractile properties, sleep onset, sleep duration as well as depression, fatigue

and hostility did not change (p > 0.05). The PSQI score (1 −1.43 vs. 1 −0.64, p =

0.006, partial η² = 0.176) and vigor (1 −2.79 vs. 1 −4.71, p = 0.040, partial η² =

0.116) decreased significantly in the ER group and the CG, respectively.

Discussion: The present data show that a high-protein intake alone was not able

to prevent lean mass loss associated with a 6-week moderate energy restriction in

college students. Notably, it is unknown whether protein intake at 2.8 g/kg fat-free-mass

prevented larger decreases in lean body mass. Muscle contractility was not negatively

altered by this form of energy restriction. Sleep quality improved in both groups. Whether

these advantages are due to the high-protein intake cannot be clarified and warrants

further study. Although vigor was negatively affected in both groups, other mood

parameters did not change.

Keywords: fat-free-mass, Tensiomyography, muscle quality, sports nutrition, proteolysis

https://www.frontiersin.org/journals/sports-and-active-living
https://www.frontiersin.org/journals/sports-and-active-living#editorial-board
https://www.frontiersin.org/journals/sports-and-active-living#editorial-board
https://www.frontiersin.org/journals/sports-and-active-living#editorial-board
https://www.frontiersin.org/journals/sports-and-active-living#editorial-board
https://doi.org/10.3389/fspor.2021.683327
http://crossmark.crossref.org/dialog/?doi=10.3389/fspor.2021.683327&domain=pdf&date_stamp=2021-06-15
https://www.frontiersin.org/journals/sports-and-active-living
https://www.frontiersin.org
https://www.frontiersin.org/journals/sports-and-active-living#articles
https://creativecommons.org/licenses/by/4.0/
mailto:roth@sport.uni-frankfurt.de
https://doi.org/10.3389/fspor.2021.683327
https://www.frontiersin.org/articles/10.3389/fspor.2021.683327/full


Roth et al. High-Protein During Dieting

INTRODUCTION

During voluntary weight loss, as much lean bodymass as possible
should be maintained (Artioli et al., 2010). This, referred to as
high-quality weight loss (Churchward-Venne et al., 2013), leads
to a better power-to-mass ratio (O’Connor et al., 2007; Turocy
et al., 2011), improves efficiency of movement (Sundgot-Borgen
and Garthe, 2011), and increases the likelihood of athletic success
(Slater et al., 2005; Chappell et al., 2018). However, following low
energy availability, muscle protein synthesis is reduced leading
to a negative net protein balance, and thus, finally culminates in
muscle mass loss (Carbone et al., 2013; Pasiakos et al., 2013). In
this context, it has been suggested that higher protein intake (2.4
vs. 1.2 g/kg) might restore muscle protein synthesis (Longland
et al., 2016; Macnaughton et al., 2016) due to amino acids
being preferentially used for muscle protein synthesis instead of
gluconeogenesis (Walberg et al., 1988; Wackerhage and Rennie,
2006), with a concomitant decrease in protein breakdown (Kim
et al., 2016; Park et al., 2020). Greater amino acid availability
results in a more pronounced positive protein balance (Pikosky
et al., 2008; Gwin et al., 2020), leads to a muscle sparing effect and
is, therefore, recommended as an efficient strategy to increase the
likelihood of lean mass retention (Phillips, 2008, 2014; Manore,
2015; Murphy et al., 2015; Witard et al., 2019).

Various studies examining the impact of energy restriction
in active individuals have been conducted (Karila et al., 2008;
Pikosky et al., 2008; Morton et al., 2010; Wilson et al., 2012;
Pasiakos et al., 2013; Rhyu and Cho, 2014; Huovinen et al.,
2015). While most of the studies revealed that energy restriction
was associated with a significant lean body mass loss (Karila
et al., 2008; Pikosky et al., 2008; Morton et al., 2010; Pasiakos
et al., 2013; Rhyu and Cho, 2014), ranging from 34% (∼-1200
kcal/day; Morton et al., 2010) to 84% (∼-2500 kcal/day; Karila
et al., 2008) of the total mass lost per week, some studies reported
no significant lean body mass change during energy restriction
(Huovinen et al., 2015; Wilson et al., 2015). Since all of these
studies differ in total energy deficit, protein intake, sleep duration,
baseline body fat, and type of physical activity performed, which
are all known to significantly influence lean body mass change
(Heymsfield et al., 2011), the exact reasons for the inherent inter-
study differences remain unclear. Although higher protein intake
during energy deficit may lead to amore favorable lean bodymass
sparing when compared to lower intakes (Pikosky et al., 2008;
Mettler et al., 2010; Wilson et al., 2015; Hudson et al., 2020), it is
currently unclear whether a moderately energy-restricted high-
protein diet alone is a sufficient stimulus to maintain lean body
mass and muscle contractile properties in male college students
in the absence of resistance training. Although rapid weight loss
procedures have been shown to negatively affect neuromuscular
performance (Zubac et al., 2020), a moderate energy restriction
may elicit performance-enhancing effects (Pons et al., 2018).

Therefore, the primary aim of this study was to investigate
whether a high-protein moderately energy-restricted diet
can preserve lean body mass in college students in the
absence of resistance training. Furthermore, we investigated
if muscle contractility can be preserved during this type of
energy restriction. Based on currently available evidence, we

hypothesized that a) a high-protein moderately energy-restricted
diet is able to preserve the lean body mass even in the absence
of resistance training and b) contractile properties are not
negatively altered throughout the study. In an attempt to clarify
the observed inter-study differences, this study aimed to tightly
assess moderator variables affecting lean body mass change
(protein intake, sleep duration, body fat, physical activity). Since
the majority of previously conducted studies only used pre-post
measurements, no precise conclusion can be drawn regarding
the time course of lean body mass change. Hence, this study
used weekly body composition measurements which have been
previously described solely for overweight and obese individuals
(Heymsfield et al., 2011).

MATERIALS AND METHODS

Study Design
The two group, parallel research design was adapted fromMettler
et al. (2010) and Philpott et al. (2019) and is illustrated in
Figure 1. Once the participants were pair-matched using the
variable muscle mass divided by body mass, they were randomly
assigned (randomizer.org) to either the energy restriction group
(ER, n = 14) or the eucaloric control group (CG, n = 14). The
study protocol consisted of 1 week under eucaloric conditions
(45 kcal/kg) for both groups followed by a 6-week intervention
period in which the ER group only consumed 30 kcal/kg. The
CG maintained their energy intake. Protein consumption was
at 2.8 g/kg fat-free-mass (FFM) for both groups during the
whole study period.While body composition was assessed weekly
via multifrequency bioelectrical impedance analysis (MFBIA),
contractile function (Tensiomyography and MyotonPRO), sleep
status, and mood were measured in weeks 1, 3, and 5.

The study was approved by the local ethics committee
(#2019-24, Goethe University Frankfurt, GER), was conducted
in accordance with the ethical standards set by the declaration of
Helsinki with its recentmodification of Fortaleza (Brazil, October
2013), and met the ethical standards in sport and exercise science
according to Harriss and Atkinson (2015). Moreover, the study
was preregistered in the International Clinical Trials Registry
Platform (WHO) with the registration number DRKS00017263.

Participants
An a priori power analysis was conducted using G∗Power 3.1
(University Düsseldorf, Germany). The analysis determined that
28 participants were needed for a power of 0.80, with an effect
size of f = 0.22 and an α = 0.05. Given the fact that lean mass
change differs between 0% (Huovinen et al., 2015), 30% (Morton
et al., 2010), and up to 84% of the lost mass per week (Karila et al.,
2008), no exact effect size calculation was possible. Therefore, we
statistically calculated with 30% lean body mass loss and assumed
a moderate effect. Accounting for MFBIA precision error and
individual variability in lean body mass loss, we further lowered
the effect size to detect possible lean mass alterations.

Thirty-five healthy males with no experience in resistance
training, as assessed by a pre-study questionnaire, were recruited
from local sports clubs and university courses (see Figure 2). One
participant declined to participate and three participants were
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FIGURE 1 | Schematic overview of the study design. In week 0, all participants consumed 100% of their energy requirements (45 kcal/kg). For weeks 1–6, the ER

group decreased their energy intake to 30 kcal/kg. Both groups consumed 2.8 g/kg FFM of protein and continued their habitual exercise during the study. As

indicated by the × symbol, body composition was assessed weekly. Contractile properties, sleep, and mood were examined at weeks 1, 3, and 5.

excluded due to lacking protocol compliance (did not adhere
to dietary intake). Finally, 28 healthy males (ER: age 26.57 ±

4.20 years; height 1.83 ± 0.05m; body mass 82.26 ± 8.18 kg;
CG: age 25.29 ± 2.97 years; height 1.81 ± 0.09m; body mass
79.19 ± 6.43 kg) were used for data analysis. Due to hormonal
fluctuations (Cumberledge et al., 2018), only male participants
were included in order to increase reliability. The participants,
who all reported that anabolic-androgenic drugs have never
been consumed before, undertook at least two sport sessions
per week. Since we only aimed for including lean participants,
participants were excluded if their body fat was above 25%;
this is the cut-off value for obesity, as suggested by Beals et al.
(2019). During the study, the participants were asked to continue
their habitual training. All participants were informed about
the goal of the study as well as its conduction; in particular,
interventional strains and requirements were highlighted. Every
individual voluntarily agreed and gave written and informed
consent to participate in the study.

Diet and Exercise
On each day during the study, all participants provided self-
reported dietary intakes (energy, protein, carbohydrates and fats)
using a smartphone app (MyFitnessPal R©) as well as their daily
body mass. For the latter, participants reported to the nearest
0.1 kg on their own digital scales wearing only underwear. The
use of mobile apps for dietary self-reporting is considered to
be reliable (Evenepoel et al., 2020). Every subject had either
previously used this mobile app or was instructed and taught
in a separate one-day workshop given by our lab, as suggested
by Capling et al. (2017). In order to increase the compliance
rate, the participants received cooking recipes and links to
adequate webpages.

In the first week of the study (week 0), both groups had to
match an energy intake of 45 kcal/kg. Since our participants
reported to be highly active, we decided to stay slightly above the
current recommendations of 45 kcal/kg FFM (Economos et al.,

1993; Koehler et al., 2016). At the beginning of the intervention
period, the ER group decreased their energy to 30 kcal/kg for
6 weeks to induce a moderate energy deficit (Chappell et al.,
2018). For data analysis, energy availability was calculated as
recommended (Heikura et al., 2018). Protein consumption was
controlled during the maintenance and the intervention phase
for both groups and was set at 2.8 g/kg FFM (Helms et al.,
2014; Hector and Phillips, 2018; Witard et al., 2019). Due to
(1) the anabolic effect of protein on muscle protein synthesis,
as well as (2) a potential adaptation effect to higher protein
intakes with a subsequent increased risk of protein catabolism
(Millward, 2001), we aimed for the higher end of the current
protein recommendations (Murphy et al., 2015; Bandegan et al.,
2017). The remaining energy was individually distributed to
carbohydrates and fats as preferred by the participants. Every
type of consumed food and drinks (in g and ml respectively)
had to be tracked in the nutritional diary. Supplements could
be consumed ad libitum; however, the participants were asked
to abstain from creatine. Compliance was checked weekly by
screening all submitted protocols. If unclarities appeared (e.g.,
protein intake was too low), we kindly asked the participant to
improve this issue during the following days. Participants were
encouraged to honestly report any non-compliance.

All participants continued their habitual exercise throughout
the study. Moreover, the participants provided a self-reported
exercise diary on a daily basis as described (Lee et al., 2015).
Since resistance training was prohibited during the study, all
types of other sports were allowed. The participants were asked
to provide sport-specific information for each training session
including subjective intensity of the training as well as training
duration. Baseline characteristics (week 0) are shown in Table 1.

Measurements
Body composition was assessed using MFBIA, 3-compartment
model (Nutriguard-MS Vers. 2, Data-Input, Darmstadt,
Germany). Examination was conducted as described in the
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FIGURE 2 | Flow chart of the study conduction following Moher et al. (2001).

TABLE 1 | Baseline characteristics in the energy-restricted group (ER) and the control group (CG) during the maintenance week (week 0).

ER CG p-value

Age (years) 26.57 ± 4.20 25.29 ± 2.97 0.358

Height (m) 1.83 ± 0.05 1.81 ± 0.09 0.836

Body mass (kg) 82.24 ± 8.18 79.19 ± 6.43 0.328

BMI (kg/m²) 24.68 ± 2.19 24.55 ± 2.54 0.890

Physical activity (minutes/week) 403.27 ± 292.30 389.00 ± 232.03 0.907

Lean mass (kg) 65.87 ± 6.19 64.04 ± 5.36 0.451

Fat mass (%) 20.12 ± 3.90 19.16 ± 3.48 0.534

Energy intake (kcal/day) 3355.88 ± 510.67 3355.61 ± 332.87 0.999

Protein intake (g/day) 182.20 ± 25.55 160.10 ± 22.36 0.036#

# Indicates a significant baseline group difference (p < 0.05) during week 0 as assessed by independent t-test or Mann-Whitney U-test (data in means ± standard deviation).

manufacturer’s manual following the ESPEN guidelines (Kyle
et al., 2004). Briefly, two adhesive electrodes (Bianostic AT,
Data-Input, Darmstadt, Germany) were placed on the dominant
side of the body: the dorsal surface of the hand and foot proximal
to the metacarpal-phalangeal and metatarsal-phalangeal joints.
Another two electrodes were placed at the pisiform prominence

of the wrist, with the proximal side covering half of the ulnar
tubercle, as well as between the medial and lateral malleoli, with
the proximal side covering half of the medial malleolus. The
dominant side was determined by asking the participants for
their dominant side and was maintained for every measurement.
In this context, three frequencies (5, 50, and 100 kHz) were
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used at a current of 800 µA. Uncertainties of resistance (R)
and reactance (Xc) given by the manufacturer were depicted
as ± 1 ohm and ± 1 ohm, respectively, whilst the precision of
measurement was given as 0.5% and 2.0% differing from the
value, respectively.

MFBIA (whole body) was tested weekly in a supine position.
The same experienced examiner carried out the standardized
measurements throughout the entire study period. Participants
visited the lab after an overnight fast between 8 and 11 a.m. and
emptied their bladder to control for hydration status between
the different measurements (Turocy et al., 2011; Bosy-Westphal
and Müller, 2014). This was verified by extracellular/intracellular
water ratio which is described as a highly sensitive indicator of
hydration status change (Wang et al., 2007; Inal et al., 2014;
Brzozowska et al., 2019). For instance, deviating toward 1 would
suggest a water shift to the extracellular space which is indicative
of water loss. Furthermore, the participants were asked to abstain
from physical activity the day before testing. Following every
testing, a second measurement was conducted to ensure correct
values. If the values deviated by more than 3 units digit, a
third measurement was conducted and the mean values were
calculated. In the context of tracking body composition changes,
MFBIA is considered as a reliable tool (Moon, 2013; Bosquet
et al., 2017) during hypercaloric (Schoenfeld et al., 2020b) and
hypocaloric conditions (Antonio et al., 2019a) in an athletic
population, producing similar values as Dual Energy X-ray
Absorptiometry (DXA) in males (Golja et al., 2020). Moreover,
MFBIA appears to be valid in detecting total body water changes
(Utter et al., 2012).

Tensiomyography (TMG; TMG-BMC Ltd., Lublijana,
Slovenia) was used to assess the contractile function of the
m. rectus femoris (dominant side, supine position). TMG is a
method to assess radial deformation of the muscle after a single
electrical stimulus. Before the first measurement, the center of
the anterior inferior iliac spine and the upper edge of the patella
was defined, the thickest part of the muscle belly manually
palpated and marked with a skin-friendly pen. Subsequently,
a high-precision digital displacement sensor was applied
perpendicularly to the muscle belly with a spring constant of
0.17N mm−1 (Macgregor et al., 2018) and retracted into its
housing by ∼2 cm. If necessary, the sensor position was slightly
adjusted to locate an area with the greatest amount of muscle
belly to sustain an optimal point (Šimunić, 2012). In order to
ensure precise inter-day reliability, we strongly encouraged the
participants to redraw the marked points following water or
sweat-yielding events.

Muscle twitch was induced through a single 1-ms-
wide electrical stimulus with the cathode placed distal and
symmetrically to the anode (Zubac et al., 2017). The electrodes
(self-adhesive; dura-stick plus, 50 × 50mm), which had an
inter-electrode distance of 5 cm as suggested by Piqueras-Sanchiz
et al. (2020), were attached on shaved skin. A Blackrole R© was
deposited under the dominant leg to ensure a leg angle of
120◦ as suggested (Paula Simola et al., 2015; Sánchez-Sánchez
et al., 2018). In order to identify peak muscle response, we
progressively increased the intensity at a 10mA interval every
30 s, beginning with 30mA (Lohr et al., 2018; Wilson et al., 2018)

up until there was no further increase in the amplitude or until
maximal output was reached (110mA) as recommended by
Šimunić (2012). Only the curve with the highest maximum of
radial displacement was included in the analysis (García-García
et al., 2018). In addition to the five standard TMG parameters,
which include the maximal radial muscle displacement (Dm),
contraction time (Tc), delay time (Td), sustain time (Ts), and half
relaxation time (Tr), we calculated muscle contraction velocity
(Vc) as Dm divided by the sum of Td and Tc (Loturco et al.,
2016) multiplied by 1000 (mm/s). Relative reliability (ICC) was
excellent for Dm, Tc, Vc, and Td during inter-day testing, with Tr

being the least reliable parameter (Rodriguez Matoso et al., 2010;
Šimunić, 2012; Ditroilo et al., 2013; Lohr et al., 2018, 2019).

MyotonPRO (MMG; Myoton Ltd., Tallinn, Estonia) was used
to extend the muscle quality assessment. In general, MMG is
utilized to evaluate viscoelastic characteristics of skeletal muscles
and other soft tissues (Aird et al., 2012). MMG causes a light
mechanical impulse (0.15N for 15ms) to the relaxed muscle and
records the natural oscillation of myofascial tissue by a 3-axis
digital acceleration sensor sampled at 3200Hz (Gavronski et al.,
2007; Viir et al., 2011). From this raw data, MMG calculates
the parameters of stiffness (S, N/m), logarithmic decrement (D,
without unit), frequency (F, Hz), relaxation time (R, ms), and
creep (C, without unit).

MMG was placed perpendicularly on the same palpated
point as described in the TMG section. Per measurement, we
applied three measures in multiscan mode, producing five single
measures with a 1 s interval. If two of the measures were equal,
this value was taken; otherwise, a mean value was calculated.
If the coefficient of variation was above 3%, this measure was
repeated (Lohr et al., 2018). Most of the studies confirmed good
to excellent inter-day reliability for S, D, and F when m. rectus
femoris was examined (Bizzini and Mannion, 2003; Zinder and
Padua, 2011; Aird et al., 2012; Mullix et al., 2012). Both MMG
and TMG were assessed at weeks 1, 3, and 5.

The German version of the Profile of Mood States (POMS-
G) was utilized to detect possible mood changes during the
study period (McNair et al., 1981; Bullinger et al., 1990). A
pathopsychological state might affect training performance and,
hence, may have an effect on lean mass retention (Franchini
et al., 2012; Sundgot-Borgen et al., 2013; Stults-Kolehmainen
et al., 2014). Consequently, POMS-G was assessed at weeks 1,
3, and 5. The POMS-G is a frequently-used, reliable and valid
questionnaire (Albani et al., 2005; Grulke et al., 2006). In contrast
to the original version (McNair et al., 1992), POMS-G is a short
form consisting of 35 items and 4 scales (depression-anxiety,
fatigue, vigor, and hostility). Each item is assessed on a 7-point
Likert scale and retrospectively examines mood state during
the last 24 h. Due to its similarities to the English version, our
findings can also relate to studies using the English version
(Kellmann and Golenia, 2003).

Duration of sleep (sleep onset and hours of sleep per night,
assessed with a sleep diary) and subjective sleep quality (PSQI-
G) were assessed daily and at weeks 1, 3, and 5, respectively.
While sleep has mediating effects on testosterone production and
muscle protein synthesis (Leproult and van Cauter, 2011; Pejovic
et al., 2013), we aimed to clarify the effect of a high-protein energy
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restriction on sleep quality in healthy male college students. The
PSQI is a reliable clinical sleep-behavior questionnaire which was
also validated for the general population (Buysse et al., 1989). In
contrast to the original version, the PSQI-G assesses the global
sleep score in a 2 week interval (Riemann and Backhaus, 1996).
The questionnaire contains 19 questions each using Likert scales
from 0 to 3 and is categorized into seven sub-variables which are
summed up to the PSQI-G score. Regarding cut-off values, scores
>5 are associated with a poor sleep condition and ≤5 with a
good sleep condition (Zhou et al., 2016). During the intervention,
we used the standardized procedure as reported (Riemann and
Backhaus, 1996).

Statistical Analysis
A general linear two-way mixed ANOVAwith repeated measures
[group (2) × time (3/6)] and pairwise comparisons (Bonferroni
correction) was performed separately for each dependent variable
(SPSS version 24.0, Chicago, IL, USA). When a significant
group × time interaction was revealed or the Box’s test exposed
statistical significance, the simple main effects were examined
separately using (a) repeated-measures ANOVA (time) and (b)
univariate ANCOVA covarying for t1 (group). Before tests were
calculated, the research team did an (a) visual review of boxplots,
(b) test of normal distribution with the Shapiro-Wilk’s test,
(c) Levene’s test for homogeneity of variance, (d) Box’s test of
equality of covariance matrices, as well as (e) Mauchly’s test of
sphericity. Dependent t-tests were further carried out to evaluate
changes between week 0 and week 1. All tests were based on a
5% level of significance. Data are presented as means± standard
deviation. When possible, effect sizes were reported.

RESULTS

Body Composition
A significant group × time interaction was found for body mass
[F(3.488,90.676) = 14.604, p< 0.001, partial η²= 0.360]. The simple
main effect for time revealed a significant body mass loss in the
ER group [F(5,65) = 12.745, p< 0.001, partial η²= 0.495] between
week 1, week 5, and week 6 and a body mass gain in the CG
[F(5,65) = 6.033, p < 0.001, partial η² = 0.317]. Additionally,
significant between-group differences were exhibited beginning
at week 2 [F(1,25) = 5.156, p = 0.032, partial η² = 0.171].
Consequently, BMI changed significantly from week 1 to week
6 (p < 0.001; Table 2).

A significant group × time interaction was found for lean
body mass [F(5,130) = 4.673, p < 0.001, partial η² = 0.152;
Figure 3]. While lean body mass significantly declined over time
in the ER group [F(5,65) = 6.181, p< 0.001, partial η²= 0.332], the
CG increased lean body mass [F(5,65) = 4.369, p = 0.002, partial
η² = 0.252]. For the ER group, a significant difference was solely
observed between week 3 and week 6 (p = 0.002). Contrarily,
between-group differences revealed statistical significance at the
beginning of week 3 [F(1,25) = 6.921, p< 0.05, partial η²= 0.217].
The lean body mass change ranged from +1 kg to −5.2 kg in the
ER group and, on average, accounted for 47% of the lost body
mass. Hydration status as assessed by extracellular/intracellular
water ratio was constant throughout the study in both groups

(p > 0.05). Further MFBIA derived parameters are collated in
Supplementary Table 6.

Similar to what has been reported for lean bodymass, the body
cell mass, representing the protein-rich and metabolically-active
compartments of the body, showed a significant group × time
interaction [F(3.190,82.951) = 5.740, p < 0.001, partial η² = 0.181].
While the simple main effect for time also exhibited a significant
decrease in the ER group [F(5,65) = 6.851, p = 0.003, partial η²
= 0.345] as well as a significant increase in the CG [F(5,65) =
4.078, p = 0.003, partial η² = 0.239], between-group differences
were found at the beginning of week 2 [F(1,25) = 4.871, p < 0.05,
partial η² = 0.163]. Pairwise comparisons over time located the
meaningful differences in the ER group between week 3, week 5
and week 6 (p < 0.05). While we did not find a group × time
interaction for extracellular mass (p = 0.10), the main effect for
time revealed a change in both groups [F(5,130) = 2.592, p =

0.029, partial η²= 0.091]. However, no significant between-group
differences were observed for the extracellular mass (p= 0.993).

A significant group × time interaction was seen for total
body water [F(5,130) = 4.681, p < 0.001, partial η² = 0.153].
The simple main effect for time revealed a significant decline in
total body water in the ER group [F(5,65) = 6.093, p < 0.001,
partial η² = 0.319] as well as a significant increase in the CG
[F(5,65) = 4.259, p = 0.002, partial η² = 0.247], with pairwise
comparisons revealing statistical meaningful differences between
week 3 and week 6 in the ER group (p = 0.003). Moreover, we
identified a significant between-group difference for total body
water change beginning with week 4 [F(1,25) = 4.676, p < 0.05,
partial η² = 0.158]. Total body water can be further divided
into intracellular and extracellular water. Since both variables
revealed a significant Box’s test, only the simple main effects were
interpreted. While the ER group showed a significant decrease
of intracellular water over time [F(5,65) = 10.426, p < 0.001,
partial η² = 0.445], no change could be detected in the CG (p
= 0.335). Pairwise comparisons showed significant differences in
the ER group between week 1 and week 6, week 2 and week 6,
week 3, week 5 and week 6 as well as week 4 and week 6 (p <

0.05). Furthermore, significant between-group differences were
found at the beginning of week 5 [F(1,25) = 5.848, p = 0.023,
partial η²= 0.190]. Similar to the extracellular mass, extracellular
water decreased only in the ER group [F(5,65) = 3.160, p= 0.013,
partial η²= 0.196], but did not in the CG (p= 0.380). Herein, no
between-group differences were observed (p > 0.05).

The body fat percentage showed a significant group × time
interaction [F(5,130) = 19.819, p < 0.001, partial η² = 0.433]. The
simple main effect for time exhibited a significant decrease in the
ER group [F(2.202,28.623) = 14.632, p < 0.001, partial η² = 0.530]
as well as a significant increase in the CG [F(2.080,27.036) = 6.287,
p = 0.005, partial η² = 0.326]. We found a significant difference
in the simple main effect for group beginning with week 2 [F(1,25)
= 11.036, p < 0.05, partial η²= 0.306].

Diet and Exercise
Food diary analysis showed that the participants in the ER group
consumed less energy compared to the maintenance period (p <

0.001) and the CG (p < 0.001). Regarding energy and protein
intake, compliance was>90% on average per group. In individual
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TABLE 2 | Overview of body composition changes in the energy-restricted group (ER) and the control group (CG).

Week 0 Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 1

Body mass (kg) ER 82.26 ± 8.18 80.58 ± 8.18§ 80.14 ± 8.85# 79.93 ± 8.47# 79.13 ± 8.41# 77.92 ± 7.76# 77.36 ± 8.00*x# −3.22

CG 79.19 ± 6.43 77.49 ± 6.62 78.41 ± 6.34# 79.79 ± 6.19
†
# 79.37 ± 6.81# 79.26 ± 6.58# 79.39 ± 6.09x# 1.90

BMI (kg/m²) ER 24.68 ± 2.19 24.11 ± 2.41 23.13 ± 2.19x# −0.98

CG 24.55 ± 2.54 23.71 ± 2.46 24.29 ± 2.45x# 0.58

Lean body mass (kg) ER 65.87 ± 6.19 64.81 ± 5.89§ 64.82 ± 6.50 64.98 ± 6.18# 64.54 ± 5.85# 63.69 ± 5.78# 63.32 ± 5.84*x# −1.49

CG 64.04 ± 5.36 63.33 ± 5.33 63.93 ± 5.31 64.94 ± 5.12
†
# 64.46 ± 5.63# 64.11 ± 4.96# 64.01 ± 5.14# 0.68

Body cell mass (kg) ER 37.92 ± 3.69 37.69 ± 3.80 37.69 ± 4.03# 37.89 ± 3.76# 37.41 ± 3.71# 37.05 ± 3.72# 36.84 ± 3.82*# −0.85

CG 36.95 ± 3.44 36.66 ± 3.48 37.26 ± 3.71# 37.50 ± 3.44
†
# 37.32 ± 3.74# 37.19 ± 3.49# 37.25 ± 3.74# 0.59

Body fat (%) ER 20.12 ± 3.90 19.44 ± 4.50 18.91 ± 4.56# 18.58 ± 4.36
†
# 18.24 ± 4.64# 17.85 ± 4.39# 17.70 ± 4.40x# −1.74

CG 19.16 ± 3.48 17.96 ± 3.90 18.33 ± 3.87# 18.72 ± 3.72
†
# 18.74 ± 3.96# 19.92 ± 4.14# 19.18 ± 3.57x# 1.22

Intracellular water (l) ER 28.32 ± 1.94 27.98 ± 1.90§ 27.91 ± 2.03 28.09 ± 1.94 27.91 ± 1.86 27.65 ± 1.90# 27.40 ± 1.96*x −0.58

CG 27.43 ± 2.22 27.25 ± 2.11 27.49 ± 2.20 27.79 ± 2.07 27.86 ± 1.76 27.82 ± 1.65# 27.80 ± 1.73 0.55

Extracellular water (l) ER 19.92 ± 2.68 19.47 ± 2.44 19.49 ± 2.74 19.47 ± 2.60 19.35 ± 2.45 18.99 ± 2.36 18.96 ± 2.38 −0.51

CG 19.42 ± 3.12 19.11 ± 2.28 19.32 ± 2.19 19.71 ± 2.50 19.32 ± 2.39 19.09 ± 2.04 19.07 ± 2.08 −0.04

§ Indicates a significant difference between week 0 and week 1 (p < 0.05);
†
indicates a significant difference between week 1 and week 3 (p < 0.05); *indicates a significant difference

between week 3 and week 6 (p < 0.05). x indicates a significant difference between week 1 and week 6 (p < 0.05). # indicates a significant between-group difference as shown by the

simple main effect for group (p < 0.05); ∆ was calculated as week 6–1.

FIGURE 3 | Visual representation of measured parameters. The figure shows body mass change (kg) (A), 1 lean body mass (week 6–1; kg) (B), body cell mass

change (kg) (C) as well as 1 intracellular water (week 6–1; l) (D). Data is plotted as means ± standard deviation. # Illustrates a significant difference between groups (p

< 0.05).
†
Indicates a significant difference between week 1 and week 3 (p < 0.05); *Indicates a significant difference between week 3 and week 6 (p < 0.05).

x Indicates a significant difference between week 1 and week 6 (p < 0.05). •, energy-restricted group (ER); �, control group (CG).
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numbers, the energy intake of the ER group equated to 29.65 ±

1.63 kcal/kg with an energy availability of 31.36 ± 3.13 kcal/kg
FFM, respectively (Table 3). In contrast, energy intake of the
CG equated to 42.64 ± 2.57 kcal/kg with an energy availability
of 48.98 ± 3.36 kcal/kg FFM. Based on Hall’s formula (Hall,
2008), the calculated energy deficit was ∼-535 kcal/day for the
ER group and 316 kcal/day for the CG. Except for week 0, no
significant differences were found for protein consumption (p >

0.05). Retrospectively, protein consumed was 2.77 ± 0.26 g/kg
FFM for the ER group and 2.62 ± 0.33 g/kg FFM for the CG.
While the ER group significantly reduced fat and carbohydrate
intake between the maintenance and the intervention period
(p < 0.001), significant between-group differences were spotted
in the individual fat (ER: 0.95 ± 0.21 g/kg; CG: 1.45 ± 0.36
g/kg) and carbohydrate (ER: 2.89 ± 0.44 g/kg; CG: 4.79 ± 0.96
g/kg) intake throughout the study period (p < 0.001). During
the study, the participants in both groups supplemented protein
shakes, multivitamin supplements to avoid deficiencies, omega-3
and caffeine.

The participants continued their habitual training during
the study. In summary, 14 different sports were practiced:
gymnastics, bouldering, climbing, soccer, spikeball, bicycling,
jogging, table tennis, swimming, volleyball, basketball, boxing,
dancing, and paddleboarding. No significant differences in
minutes of sport per week, as well as subjective intensity during
training were found between the groups (p > 0.05). Training
sessions per week varied for both groups between 1 and 6 sessions
(ER: 4.46± 1.76; CG: 2.86± 1.29, p= 0.012).

Contractile Properties
For TMG, no significant differences were found for Ts (ER:
1 −4.82ms; CG: 1 16.63ms), Tr (ER: 1 −16.65ms; CG: 1

16.90ms) and Td (ER: 1 1.28ms; CG: 1 0.34ms, all p >

0.05). Although group allocation had no effect on Tc (ER: 1

3.04ms; CG:1−0.47ms), Dm (ER:1 0.91mm; CG:1 0.66mm),
and Vc (ER: 1 3.84 mm/s; CG: 1 10.85 mm/s) change, there
appears to be an increasing trend in the ER group (p = 0.10)
as well as in the ER and the CG (p = 0.066) for Tc and
Dm over time, respectively (Figure 4; Supplementary Table 7).
Lastly, Vc significantly increased to week 3 but returned to
baseline at week 5.

For MMG, no significant differences were found for stiffness
(ER:1−4.42N/m; CG:1−4.62N/m), decrement (ER:1−0.04;
CG: 1 −0.01), relaxation time (ER: 1 0.37ms; CG: 1 0.08ms)
and creep (ER:1 0.02; CG:1 0.00, all p> 0.05). While frequency
did not change over time (ER: 1 0.00Hz; CG: 1 0.04Hz, p >

0.05), the groups differed by trend (p = 0.057). An overview of
the MMG values is found in Table 4.

Sleep and Mood Analysis
No significant differences were detected for sleep in hours per
night and time to fall asleep (p > 0.05). While the PSQI-G score
significantly decreased over time [F(2,52) = 5.568, p = 0.006,
partial η²= 0.176], no significant differences were found between
the ER group (1 −1.43) and the CG (1 −0.64; p= 0.247).

Profile of mood states analysis did not reveal a significant
difference for depression/anxiety (ER: 1 −2.36; CG: 1 2.50),

fatigue (ER: 1 −3.43; CG: 1 1.22), and hostility (ER: 1 −3.64;
CG: 1 1.64; all p > 0.05). However, vigor decreased significantly
over time [F(2,52) = 3.417, p = 0.040, partial η² = 0.116] with
no differences between the ER group (1 −2.79) and the CG
(1 −4.71; p= 0.583; Table 5). In this context, sleeping hours per
night correlated with vigor change (r = 0.422, p= 0.025).

DISCUSSION

Body Composition
In this study, we tested the effect of a high-protein moderate
energy restriction on body composition change. Generally,
maintaining muscle mass is an important health factor due to
role of muscle as a primary site of postprandial glucose disposal,
lipid oxidation and resting energy expenditure (Hector and
Phillips, 2018). In the context of sports, temporary phases of
energy restriction are used to reduce body mass while trying
to maintain as much lean body mass as possible (Artioli et al.,
2010). In particular, lean body mass retention is not only crucial
for athletic performance (Wolfe, 2006), but also correlates with
athletic success (Slater et al., 2005; Chappell et al., 2018).

In the ER group, lean body mass decreased significantly
between week 3 and week 6 with an average total loss of−1.49 kg.
According to Siedler et al. (2021), BIA day-to-day variance in lean
body mass is as high as 0.9 kg. However, since the decrease in
lean body mass is greater than what could be explained by BIA
precision error, our data suggest real lean body mass loss in the
ER group. With that said, we conclude that the investigated high-
protein moderate energy restriction is likely not able to prevent
lean mass loss in college students in the absence of resistance
training. Consequently, our hypothesis is rejected. Notably, it
is unknown whether protein intake at 2.8 g/kg FFM prevented
larger decreases in lean body mass. Contrarily, lean body mass
was not negatively altered in the CG. Since the CG increased body
mass, this indicates a slight caloric surplus.

The energy-restriction-induced reduction of lean body mass
is in accordance with the majority of studies (Karila et al., 2008;
Pikosky et al., 2008; Morton et al., 2010; Wilson et al., 2012;
Pasiakos et al., 2013; Rhyu and Cho, 2014), albeit conflicting
results exist (Paoli et al., 2012; Huovinen et al., 2015; Wilson
et al., 2015). Since caloric intake, total protein consumption,
sex, and sleep duration were taken into account, the inter-study
differences may, at least partly, be explained by the magnitude
of mechanical tension the body is exposed (Callahan et al.,
2021). In one of the studies reporting no significant lean mass
change, Paoli et al. (2012) recruited elite artistic gymnasts using
a keto-approach (−400 kcal/day, high-protein). With respect
to their training regimen, an intense schedule of body weight
exercises was carried out which might have led to a greater
fiber recruitment of the loaded muscles. In turn, this could
have acted as an anabolic stimulus and, in connection with the
small energy restriction applied (Karila et al., 2008; Heymsfield
et al., 2011), may have led to the retention of muscle mass. This
seems to be in accordance with our study showing individual
variation in lean mass change in the context of the different
types of physical activity performed. Notably, given the fact that
Paoli et al. (2012) studied elite athletes, we cannot rule out
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TABLE 3 | Energy intake, dietary intake, and physical activity in the energy-restricted group (ER) and the control group (CG) during the study.

Week 0 Week 1 Week 2 Week 3 Week 4 Week 5 Week 6

Energy

(kcal/day)

ER 3355.88 ± 510.67 2396.82 ± 248.86
§#2386.65 ± 279.88# 2362.62 ± 309.36# 2372.48 ± 290.45# 2351.33 ± 291.52# 2382.41 ± 249.81#

CG 3355.61 ± 332.87 3356.78 ± 333.46# 3331.54 ± 346.68# 3340.70 ± 386.22# 3320.97 ± 328.05# 3336.28 ± 344.55# 3330.19 ± 515.20#

Protein (g/day) ER 182.20 ± 25.55# 180.32 ± 24.26 178.59 ± 26.88 179.44 ± 22.16 179.92 ± 20.03 180.09 ± 22.47 190.35 ± 22.75

CG 160.10 ± 22.36# 166.81 ± 26.15 166.78 ± 24.34 168.88 ± 28.89 171.16 ± 25.66 172.19 ± 26.62 160.47 ± 31.99

Fat (g/day) ER 113.24 ± 25.50 79.22 ± 11.41
§# 75.86 ± 21.37# 76.13 ± 23.18# 78.30 ± 20.31# 71.26 ± 14.92# 71.64 ± 15.62#

CG 109.12 ± 29.16 122.63 ± 29.29# 119.99 ± 30.15# 123.87 ± 38.59# 119.04 ± 32.21# 122.51 ± 35.93# 104.81 ± 34.63#

Carbohydrates

(g/day)

ER 383.93 ± 92.21 233.77 ± 34.84
§# 239.46 ± 43.76# 230.80 ± 44.06# 231.31 ± 39.12# 236.45 ± 43.20# 226.39 ± 33.86#

CG 388.95 ± 88.91 358.33 ± 93.79# 367.31 ± 75.96# 352.66 ± 84.81# 366.58 ± 71.76# 366.60 ± 91.18# 411.44 ± 77.61#

Physical activity

(minutes/week)

ER 403.27 ± 292.30 343.08 ± 221.83§ 294.17 ± 195.68 273.46 ± 175.55 255.83 ± 139.74 367.73 ± 342.91 257.62 ± 143.89

CG 389.00 ± 232.03 221.43 ± 178.02§ 268.08 ± 179.66 317.00 ± 195.83 235.83 ± 147.54 234.62 ± 172.22 231.07 ± 135.49

§Significantly differed from week 0 (p < 0.05); # indicates a significant between-group difference (p < 0.05).

FIGURE 4 | Visual representation of contraction time [Tc in ms; (A)] and maximal displacement (Dm in mm) change (B). Data is plotted as means ± standard

deviation. • = energy-restricted group (ER), � = control group (CG).

TABLE 4 | Overview of the MyotonPRO analysis [energy-restricted group (ER), control group (CG)].

Week 1 Week 3 Week 5

Stiffness (N/m) ER 246.01 ± 25.20 243.30 ± 23.51 241.59 ± 26.60

CG 258.70 ± 23.15 252.00 ± 27.69 254.08 ± 27.67

Decrement ER 1.39 ± 0.19 1.41 ± 0.20 1.35 ± 0.22

CG 1.42 ± 0.23 1.37 ± 0.23 1.41 ± 0.30

Frequency (Hz) ER 13.98 ± 0.94 14.07 ± 0.88 13.98 ± 0.86

CG 14.77 ± 1.11 14.59 ± 1.16 14.81 ± 1.18

Relaxation time (ms) ER 21.93 ± 1.85 22.12 ± 1.81 22.30 ± 1.71

CG 21.12 ± 1.59 21.20 ± 1.82 21.20 ± 1.80

Creep ER 1.34 ± 0.09 1.35 ± 0.10 1.36 ± 0.10

CG 1.30 ± 0.10 1.30 ± 0.10 1.30 ± 0.10

that strength and conditioning exercises were used additionally
without being reported.

Since lean body mass in MFBIA depicts the fat-free
compartments of the whole body with muscle mass only

representing ∼50% (Serra-Prat et al., 2019), solely interpreting
the lean body mass change may bias the results. Therefore, body
cell mass, representing the protein-rich and metabolically-active
compartments of the body (Kyle et al., 2004), i.e., the muscle and
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TABLE 5 | Overview of the sleep and mood analysis [energy-restricted group (ER), control group (CG), PSQI-G (Pittsburgh sleep quality index–German)].

Week 0 Week 1 Week 2 Week 3 Week 4 Week 5 Week 6

Sleep per night (hours) ER 7.42 ± 0.87 7.70 ± 1.02§ 7.71 ± 0.74 7.56 ± 0.63 7.63 ± 0.63 7.74 ± 0.80 7.67 ± 1.15

CG 7.00 ± 0.96 7.25 ± 0.77 7.37 ± 0.65 7.45 ± 1.01 7.51 ± 0.94 7.38 ± 0.73 7.22 ± 1.30

Time to fall asleep (minutes) ER 12.54 ± 7.19 13.58 ± 10.92 12.72 ± 9.77 14.46 ± 8.34 14.45 ± 14.89 18.01 ± 21.80 10.65 ± 6.74

CG 18.89 ± 17.23 12.16 ± 8.36 12.18 ± 8.28 16.66 ± 19.89 11.40 ± 8.32 10.84 ± 6.40 7.05 ± 4.20

PSQI-G-score ER 5.14 ± 1.75 3.93 ± 0.92 3.71 ± 1.27*

CG 5.07 ± 2.23 5.14 ± 1.51 4.43 ± 2.03*

POMS-G

Depression/anxiety ER 24.86 ± 9.54 24.86 ± 9.45 22.50 ± 7.52

CG 23.86 ± 9.78 27.43 ± 12.43 26.36 ± 13.70

Fatigue ER 21.00 ± 6.19 21.21 ± 7.56 17.57 ± 8.67

CG 21.14 ± 6.70 20.14 ± 6.89 22.36 ± 8.02

Vigor ER 33.00 ± 6.26 31.50 ± 5.49 30.21 ± 8.05*

CG 32.21 ± 4.89 31.57 ± 7.94 27.50 ± 8.90*

Hostility ER 14.50 ± 6.98 13.93 ± 8.22 10.86 ± 5.48

CG 14.43 ± 6.05 16.79 ± 8.26 16.07 ± 9.47

§ Indicates a significant difference between week 0 and week 1 (p < 0.05); *significantly differed to week 1 (p < 0.05).

organ tissue, is probably themost sensitivemarker formuscle loss
in MFBIA. In accordance with what has been concluded for the
lean body mass change, body cell mass linearly decreased over
time in the ER group at the beginning of week 4. In this context,
the herein depicted time course of muscle mass loss is in contrast
to Heymsfield et al. (2011) who reported an almost linear muscle
mass loss at the beginning of the hypocaloric phase in overweight
individuals mainly based on the CALERIE study (Heilbronn
et al., 2006; Redman et al., 2007; Rickman et al., 2011) and the
study by Wood et al. (2007). Contrarily, Schoenfeld et al. (2020a)
reported that lean mass loss predominantly occurred during the
final weeks of the contest preparation. Since we cannot identify
whether these differences might be attributed to the insensitivity
of our MFBIA model, other moderator variables, or the potential
protective properties of a high-protein dieting approach, this
should be studied in future.

Muscle Contractile Properties
In this study, we tested the effect of a high-protein moderate
energy restriction on muscle contractile properties which is, to
our knowledge, the first study directly examining the impact of
controlled dietary manipulations on TMG and MMG outcomes.
In this context, we hypothesized that contractile properties are
not negatively altered throughout the study.

Despite depicting high alterations in contractile properties
(e.g., muscle force after electrical stimulation of the ulnar nerve)
during severe caloric restriction (Lopes et al., 1982; Lennmarken
et al., 1986), no group × time interaction was found for any
tested variable. With that being said, we conclude that the high-
protein moderately energy-restricted diet used in this study did
not negatively alter muscle contractile properties. Consequently,
our hypothesis is accepted. However, whether this advantage is
due to the high-protein diet itself cannot be clarified with the
present study and must be examined in future work. Notably,
Tc, which is the contraction time in ms from 10 to 90% of

Dm on the ascending curve (García-García et al., 2019), tended
to increase over time and may reflect a muscle fiber type shift
(Valencic and Knez, 1997; Dahmane et al., 2005; Šimunić et al.,
2011; Zubac and Šimunić, 2017) in the context of region-specific
muscle mass loss (Zubac et al., 2017; Paravlic et al., 2020).
However, since different fiber type distributions highly influence
the direction of the Tc shift (García-García et al., 2013), no
exact conclusion can be drawn. Furthermore, a non-significant
upwards trend of Dm in the ER group (9.8%) was spotted.
In this context, Dm is seen as an indicator of muscle stiffness
whereas a strong negative correlation between Dm and stiffness
(Macgregor et al., 2018), as well as Dm and atrophy (Pišot et al.,
2008, 2016) appears to exist. This was expanded by Šimunić
et al. (2019) declaring Dm as a potential marker of early atrophy.
However, since the same non-significant trend, i.e., stiffness
loss, was also found in the CG (6.8%), no exact conclusion can
be drawn.

Furthermore, the high-protein energy restriction did not
show any significant effects on the MMG parameters. However,
while the ER group remained at a constant frequency, we
noted an upwards trend in the CG. This might reflect
higher external loading (e.g., physical activity) since muscle
tone amplitude decreases during bed rest (Pišot et al., 2008;
Demangel et al., 2017; Schoenrock et al., 2018). Although we
cannot rule out that the potential between-group difference
is attributed to mechanical tension (Rusu et al., 2013;
Schoenrock et al., 2018) or day-to-day variability, physical
activity (minutes of sport per week) did not differ between
groups. Therefore, we cautiously argue that the greater
carbohydrate intake and hence, higher glycogen and intracellular
water levels led to a comparably higher muscle tone. As
already hypothesized by the following authors (Shiose et al.,
2016; Cholewa et al., 2019), carbohydrate loading may increase
subcutaneous tension and, thereby, stretches the skin over the
evaluated muscle.
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Sleep
Sleep is critical for recovery, performance and lean mass
retention (Knufinke et al., 2018; Wang et al., 2018). In our
intervention, sleeping hours per night and sleep onset did
not change throughout the study as measured by sleep diary.
Although diaries might be more accurate than questionnaires,
they are prone to recall bias (Halson, 2019) and hence, must be
cautiously interpreted. The PSQI-G score, indicative of subjective
sleeping quality, decreased significantly in both groups; however,
this trend was higher, though not significant, in the ER group
compared to the CG. These findings are in contrast to data
reported by Driver et al. (1999) who concluded that caloric
restriction does not elicit a significant effect on sleep quality
in healthy, non-obese men. However, the participants of Driver
et al. (1999) only consumed 87 g of protein per day on average
and hence, consumed more than 50% less protein compared
to our study. The sleep-improving properties of higher protein
consumption is described by other authors (Lindseth et al.,
2013) and is probably explained by the improved tryptophan to
large-chain neural amino acids (Trp-to-LCNAA) ratio. Mediated
by a higher insulin secretion, tryptophan is transported across
the blood chain barrier and hence, stimulates the synthesis
and function of neurotransmitters (e.g., serotonin) as a dietary
precursor (Wurtman et al., 2003). However, there seems to be a
ceiling effect as seen in athletes who are used to a steady protein
supplementation (Antonio et al., 2019b). With that being said,
we conclude that a high-protein moderate energy restriction (ER
group) may have beneficial effects on sleeping quality which
might be greater by trend than a high-protein intake alone (CG).
However, due to the lack of low-protein controls, this cannot be
clarified and warrants further study.

Mood
Mood changes are constantly reported in athletic populations
(Helms et al., 2019; Reardon et al., 2019). However, there
appears to be a plethora of factors influencing mood changes
ranging from predisposition, acute biological effects of semi-
starvation, to stress due to body monitoring (Helms et al.,
2019). Our data predominantly demonstrate no changes in
the POMS-G scores. This indicates that neither the moderate
energy restriction nor the constant diet, training and body
mass tracking had a negative impact on the POMS-G-derived
parameters of depression/anxiety, fatigue and hostility. In this
context, mood stability might be attributed to the flexible and
individual macronutrient profile in our study (Westenhoefer
et al., 1999, 2013) and the short duration under energy restriction.
Surprisingly, vigor decreased in both groups. In this context, both
the ER group and the CG exhibited a significant drop by 10%
and 9%, respectively. This is in accordance with most (Degoutte
et al., 2006; Koral and Dosseville, 2009; Hulmi et al., 2016), but
not all (Wilson et al., 2012) research. For example, in a study by
Koral and Dosseville (2009) examining the contest preparation
of judokas (−600 kcal/day), the authors reported decreased vigor
for the energy restriction but not for the isocaloric controls.
Although Koral and Dosseville (2009) attributed the decrease in
vigor to body mass loss—supporting the drop revealed in the ER
group—this explanation does not fit to the vigor drop shown

in the CG in this study. A possible explanation for this might
be the high dietary intake that our participants had to consume
(45 kcal/kg) of which most of them were not accustomed (Burke
et al., 2018).

Limitations
Nevertheless, our findings need cautious interpretation due to
inherent limitations. Overall, the study relied on self-reported
dietary intake. Although we controlled total protein intake, meal
frequency (Iwao et al., 1996), protein dosage per meal (Loenneke
et al., 2016), protein timing (Schoenfeld et al., 2013), and protein
source (Gilbert et al., 2011) might also influence lean mass
preservation during energy restriction.

In perspective of MFBIA, we found subsequent points worth
mentioning. Firstly, hydration status was only assessed using
extracellular/intracellular water ratio. Although examination was
carried out after an overnight fast, studies intending to replicate
our design may use exact measurements of hydration status
(e.g., urine-specific gravity) and may also implement a refeeding
period after the weight loss intervention to account for possible
water fluctuations (Martin-Rincon et al., 2019), as well as their
effect on the body cell mass calculation (Walter-Kroker et al.,
2011). Secondly, adipose tissue consists of a large extracellular
and a small fat-free cell mass per unit weight (Wang and
Pierson, 1976; Abe et al., 2019) and, therefore, large amounts of
adipose tissue loss may be automatically reported as lean tissue
loss. Nevertheless, body cell mass quantification does not take
adipocyte changes into account and is likely to be a better marker
to decide whether real muscle loss has occurred. Since body cell
mass is not only made up of skeletal muscle but also comprises
organ tissue, this may also bias interpretation (Nose et al., 1983;
Gallagher et al., 2017). Hence, future studies should use DXA
or implement a combination of methods (DXA and MFBIA or
sonography and BIA/DXA; Haun et al., 2018). Thirdly, regarding
the BIA technique, 95% of the impedance is measured in the
lower limbs. Thus, the depicted values are mainly derived as a
snapshot of lower body changes (Ward, 2019); however, they do
seem to be supported by the TMG data.

CONCLUSION

In conclusion, the present data show that a high-protein intake
alone was not able to prevent lean mass loss associated with
a 6-week moderate energy restriction in college students in
the absence of resistance training. However, the data revealed
that this form of energy restriction did not negatively affect
muscle contractility. Sleep quality improved in both groups. This
is probably explained by the improved tryptophan to Trp-to-
LCNAA ratio; however, there seems to be a ceiling effect as seen
in athletes who are used to a steady protein supplementation.
Whether these advantages are due to the high-protein intake
cannot be clarified due to the lack of low-protein controls and
warrants further study. Although vigor was negatively affected
in both groups, other mood parameters did not change. In
summary, decreasing energy intake moderately while increasing
protein consumption does not maintain lean body mass but does
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maintain contractility in the absence of resistance training in
male college students.
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