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Hydrolyzed whey protein
enriched with glutamine
dipeptide attenuates skeletal
muscle damage and improves
physical exhaustion test
performance in triathletes
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Purpose: To investigate the effects of hydrolyzed whey protein enriched with
glutamine dipeptide on the percentage of oxygen consumption, second
ventilatory threshold, duration and total distance covered, and skeletal
muscle damage during an exhaustion test in elite triathletes.
Methods: The study was a randomized, double-blinded, placebo-controlled,
crossover trial. Nine male triathletes performed a progressive incremental
test on a treadmill ergometer (1.4 km h−1·3 min−1) 30 min after ingesting
either 50 g of maltodextrin plus four tablets of 700 mg hydrolyzed whey
protein enriched with 175 mg of glutamine dipeptide diluted in 250 ml of
water (MGln) or four tablets of 700 mg maltodextrin plus 50 g maltodextrin
diluted in 250 ml of water (M). Each athlete was submitted to the two dietary
treatments and two corresponding exhaustive physical tests with an interval
of one week between the interventions. The effects of the two treatments
were then compared within the same athlete. Maximal oxygen consumption,
percentage of maximal oxygen consumption, second ventilatory threshold,
and duration and total distance covered were measured during the
exhaustion test. Blood was collected before and immediately after the test
for the determination of plasma lactate dehydrogenase (LDH) and creatine
kinase (CK) activities and lactate concentration (also measured 6, 10, and
15 min after the test). Plasma cytokines (IL-6, IL-1β, TNF-α, IL-8, IL-10, and
IL-1ra) and C-reactive protein levels were also measured.
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Results: A single dose of MGln increased the percentage of maximal oxygen
consumption, second ventilatory threshold duration, and total distance covered
during the exhaustion test and augmented plasma lactate levels 6 and 15 min after
the test. MGln also decreased plasma LDH and CK activities indicating muscle
damage protection. Plasma cytokine and C-reactive protein levels did not change
across the study periods.
Conclusion: Conditions including overnight fasting and a single dose of MGln
supplementation resulted in exercising at a higher percentage of maximal oxygen
consumption, a higher second ventilatory threshold, blood lactate levels, and
reductions in plasma markers of muscle damage during an exhaustion test in elite
triathletes. These findings support oral glutamine supplementation’s efficacy in
triathletes, but further studies require.

KEYWORDS

skeletal muscle damage, physical exercise performance, second ventilatory threshold, maximal

oxygen consumption, creatine kinase
1. Introduction

Blood glutamine levels range from 0.5 to 0.8 mM in healthy

men and women. In skeletal muscle, glutamine represents about

60% of the total non-essential amino acid pool (1). However,

glutamine deficiency can occur under extreme catabolic

situations, such as cancer, overtraining, and severe illness,

making it a conditionally essential amino acid (2, 3).

Stehle et al. (2017) reported through a meta-analysis study

that critically ill patients supplemented with parenteral

glutamine, following clinical guidelines (0.3–0.5 g/kg b.w./day;

max. 30% of the prescribed nitrogen supply) as part of a

balanced nutrition regimen, exhibit reduced hospital

mortality, infectious complication rates, and hospitalization

length (4). Moreover, Wiens et al. (2014) reported that 98%

of athletes take at least one dietary supplement routinely, with

glutamine being a notable one (5). Athletes consume protein

powders, recovery drinks, branched-chain amino acids, and

carbohydrates (CHO), like maltodextrin, to increase health,

immune system function, and physical performance (6). It has

also been shown that administering hydrolyzed protein

enriched with glutamine increased soccer players’

performance during intermittent exercise (7). This dietary

supplementation also protected leukocytes from apoptosis

associated with one bout of exhaustive exercise in elite

triathletes (8). Indeed, adding protein to a CHO supplement

enhances physical performance beyond CHO alone (9–11).

Khorshidi-Hosseini and Nakhostin-Roohi (2013) described

that the combination of maltodextrin and glutamine is more

effective at preventing anaerobic power reductions during

repeated bouts of a Running-based Anaerobic Sprint Test

protocol than CHO or glutamine supplementation separately (12).

Athletes and their physicians consistently report muscle

injury, inflammation, and changes in leukocyte functions after

the activities mentioned above (13, 14). Oral supplementation
02
with dipeptide L-alanyl-L-glutamine (DIP) reduces muscle

damage and inflammation in animal models (15–17). Cruzat

et al. (2010) reported that rats submitted to swimming

training for six weeks and then two hours of prolonged

swimming exhibited decreased plasma CK and LDH activity

when receiving DIP supplementation (1.5 g·kg−1, for 21 days

before euthanasia) (15). Rats submitted to progressive

resistance exercise for eight weeks and supplemented with

DIP for 21 days before euthanasia also showed lower plasma

levels of CK and LDH activities compared to non-

supplemented rats. Others also described the beneficial effects

of glutamine, after 21 days of supplementation, in an exercise-

induced injury animal model (16, 17). In athletes, studies

showing a protective effect of glutamine on muscle damage

are scarce. Córdova-Martínez (2021) reported a reduction in

CK and LDH activities after 20 days of glutamine

supplementation in basketball players (18). In the studies

mentioned above, the effect of glutamine was observed after

its administration for 20–21 days; however, the protective

impact of a single dose of this amino acid on triathletes’

muscle damage remains to be investigated.

There are diverse types of triathlon competition energy

expenditure tests, and the average test time depends on

competition characteristics. For example, athletes frequently

participate in short (0.75 km swimming, 20 km cycling, and

5 km running), Olympic (1.5 km swimming, 40 km cycling,

and 10 km running), Half Ironman (2 km swimming, 90 km

cycling, and 21 km running), or Ironman (3.8 km swimming,

180 km cycling, and 42.2 km running) triathlon races. The

duration of the event is vital to metabolic and nutritional

concerns for working muscles and energy expenditure, but

few studies investigated this competition in field conditions.

Barrero et al. (2014) studied energy expenditure and fluid

balance in eleven triathletes through the ultra-endurance

triathlon (mean competition time was 755 ± 69 min). They
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estimated energy expenditure at 11,009 ± 664 kcal and mean

energy intake at 3,643 ± 1,219 kcal. These authors concluded

that the high energy demands of this race type result in a

large energy deficit after the race if not compensated by

nutrient and fluid intake (19). In this sense, strategies to

minimize this deficiency can improve athlete performance. In

a case study, Gillum et al. (2006) reported that one male

triathlete (38 years old) completed the Half Ironman

competition and had an estimated CHO energy expenditure

of 10,003 kJ for the bike segment and 5,759 kJ for the run

segment of the race (20). During the race, the athlete

consumed 308 g of exogenous CHO (liquid and gel; 1.21 g

CHO/min), and muscle glycogen decreased from 227.1 pre-

race to 38.6 mmol. kg wet weight−1 one-hour post-race.

Additionally, Kimber et al. (2002) reported a mean energy

intake of 16,500 kJ and an estimated energy expenditure of

42,050 kJ for male triathletes during a full Ironman triathlon (21).

Coqueiro et al. (2018) demonstrated that glutamine

dipeptide supplementation increases ammonia and glycogen

concentrations in skeletal muscle, and glutamine plus alanine

in their free form prevents the muscle ammonia increase

during resistive exercise training (22). A meta-analysis study

described that glutamine supplementation has no marked

effect on athletics’ immune system, aerobic performance, or

body composition. However, the authors suggested that the

efficacy of glutamine supplementation on blood neutrophil

number depends on the supplement type and dose (23).

Herein, we investigated the effects of hydrolyzed whey

protein enriched with glutamine dipeptide and maltodextrin

on exhaustive physical test performance in triathletes. We

compared the effects of a single dose of a combination of

hydrolyzed protein supplemented with glutamine and

maltodextrin or maltodextrin only, administered once, on elite

triathletes’ performance and muscle injury during an

exhaustive physical test. We hypothesized that a single dose of

whey protein-enriched glutamine dipeptide supplementation

could improve functional performance and reduce muscle

damage in triathletes. We investigated the effects of

hydrolyzed protein enriched with glutamine on the percentage

of oxygen consumption, second ventilatory threshold,

duration, and total distance covered during a physical

exhaustion test in triathletes. We also assessed indicators of

skeletal muscle (lactate dehydrogenase and skeletal muscle

creatine kinase activities) and heart tissue (myocardial creatine

kinase activity) damage and plasma cytokine levels.
2. Methods

2.1. Subjects

Nine healthy elite Caucasian male triathlon athletes signed

an informed consent form agreeing with the procedures
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described for this study. The Ethical Committee of the

Institute of Biomedical Sciences, University of São Paulo,

approved the experimental protocol (number 694/CEP). The

athletes in our study were top of their age in the Brazilian

ranking in triathlon competitions and won races from their

age category. All procedures were performed following the

Declaration of Helsinki. The characteristics (mean ± SD) of

the athletes were as follows: age: 24.9 ± 4.0 years old; body

mass: 69.3 ± 4.7 kg; height: 1.78 ± 0.06 m; body fat percentage:

8.6% ± 1.2%; and VO2max 63.52 ± 3.85 ml·kg−1·min−1. The

volume of training hours of the triathletes in the present

study was three hours per day, six times per week, making a

total of 18 h per week, which can be considered high

performance. According to interview exclusion criteria,

athletes must have competed in this modality for at least five

years. The triathletes were non-smokers, and none of them

was taking any medication at the time of testing. We

previously used the same athletes under the same conditions

to examine the exhaustive physical test’s effect on neutrophil

and lymphocyte death (8).
2.2. Experimental design, dietary
supplement interventions, and
anthropometric measurements

Athletes did not use supplements during the training and

the weeks before the study. Subjects were instructed to

maintain similar training and diet regimens during the days

before participation in the study. One can find details of the

design and supplementation in our previous study (8). The

authors documented all information concerning individual

exercise training programs, maintained dietary habits, dietary

supplementation, and endurance test. The study was a

randomized, double-blinded, placebo-controlled, crossover

trial. After an overnight fast, to avoid large discrepancies in

the feeding state, the athletes took four tablets of 700 mg of

hydrolyzed whey protein enriched with 175 mg glutamine

dipeptide (total glutamine = 700 mg, manufactured by DMV

International Veghel, Netherlands) plus 50 g maltodextrin

(Carb Up@, manufactured by Probiótica, Brazil), diluted in

250 ml water (MGln). This dose led to a significant increase

in glutamine plasma levels after 30 min. The same dosage and

supplementation protocol were previously used (8). Testing

started around 9 a.m. The glutamine dosage used is within

the range of the dietary supplementation the athletes usually

use. The M supplementation consisted of four tablets of

700 mg maltodextrin and 50 g of maltodextrin diluted in

250 ml water (total maltodextrin = 52.8 g). The supplements,

identical in appearance and taste, were prepared immediately

before administration and given 30 min before the exhaustive

exercise test started. We submitted each athlete to the two

treatments (MGln and M) and two corresponding physical
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exhaustion tests with an interval of one week between the

interventions.

The authors followed the recommendations of the

International Society for the Advancement of

Kinanthropometry (ISA) to perform the measurements of

total body mass (Kg), stature (m), subcutaneous fat, and body

circumference (24, 25).
2.3. Endurance test

Aerobic power and aerobic capacity tests were performed on

a motorized treadmill. The athletes ran on a 1% grade, and

oxygen consumption (VO2) was continuously measured using

a Vmax 29 (SensorMedics, United States). Before each test,

the flow sensor (using a syringe of a 3 L volume) and O2 and

CO2 sensors (using a known gas mixture, 16% O2, 4.01%

CO2, and balanced with nitrogen) were calibrated (26). The

triathletes rested for 2 min, and their heart rate was

determined. Subsequently, the athletes exercised for 3 min at

6, 7, and 8 km/h, one minute at each velocity. The test was

initiated at 9.4 km/h (called stage one), and the speed was

increased in each stage by 1.4 km/h every 3 min until they

reached volitional fatigue. After the test, the athletes recovered

for 4 min at 6, 5, and 4 km/h before resting. Blood pressure

was measured manually before the test, every 2 min during

the test, immediately after exercise cessation, during the first

minute of recovery and every 2 min after that. The test was

undertaken in normothermic laboratory conditions (20–22 °C,

40%–60% RH). The subjective perception of their effort was

determined for each test minute using Borg’s 15-point linear

scale rating of perceived exertion (27). Verbal encouragement

for them to perform up to their maximum limits was

provided throughout the test. The test was terminated when

the athletes could not keep pace with further increments in

exercise intensity. A similar description can be found in our

previous study (8).
2.4. Cardiopulmonary exercise testing

Ventilatory equivalents (VE), oxygen consumption (VO2),

carbon dioxide production (VCO2), and respiratory exchange

ratio (RER) were continuously monitored through a breath-

by-breath system as described by Favano et al. (2008) (7). The

signs of exhaustion adopted included: extremely forced

ventilation, fatigue, facial flushing, dyspnea, and unsteady gait.

The second ventilatory threshold (VT2) was determined using

the following criteria: (a) loss of linearity between VE and

VCO2, according to the lowest value of the VE of carbon

dioxide (VE/VCO2); (b) the highest value of the expired

fraction of carbon dioxide (FECO2), with subsequent abrupt

rises (c) in VE, (d) respiratory rate and (e) tidal volume
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plateau (28). During the test, the athletes had a rubber

mouthpiece and nose clip and overcame the loss of verbal

communication with a subject during the test with

prearranged hand signals. Heart rate with a continuous 12-

lead electrocardiogram (ECG) was monitored and measured

each minute utilizing a computerized ECG (HeartWare, 6.4,

BH, Brazil). A maximal effort level was considered when met

two of the following five criteria: (i) plateau when the

difference in the VO2 in the last two stages of the incremental

test was ≤2.1 ml·kg−1·min−1 (29); (ii) maximal HR within 5 b/

min (95%) of the age-predicted maximum [208 – (0.7* age)]

(30); (iii) volitional fatigue; (iv) more than 18 on subjective

Borg’s scale (31); and (v) subjective indications such as

sweating, hyperpnea, and facial flushing (32). Data from the

VO2max tests were time-averaged using 30-s intervals.
2.5. Blood sample collection

Blood samples were collected from eight healthy male

triathlon athletes at the top of their age category. One

participant did not feel well during blood collection. Blood

was collected from the antecubital vein into vacuum tubes

containing an anticoagulant (0.004% ethylenediaminetetraacetic

acid (EDTA) before supplementation and immediately after the

exhaustion test. Afterward, whole blood was centrifuged at

500 × g for 10 min at 4 °C to obtain the plasma. Samples were

separated and frozen (−70 °C) to assess cytokines, C-reactive

protein, creatine kinase (total CK and myocardial CK isoenzyme

- CK-MB), and lactate dehydrogenase activities. Plasma CK and

LDH activities are indirect markers of muscle damage.
2.6. Blood measurements

Blood samples were centrifuged at 800 × g for 10 min, and

the plasma was separated and maintained at −80 °C until

measuring the cytokine concentrations. Lactate was

determined in the blood collected from the fingers with a YSI

1,500 analyzer (Yellow Springs Instruments, Yellow Springs,

OH, United States).

CK and LDH activities were measured according to the

methods established by Oliver and colleagues (1955) (33) and

Zammit and Newsholme (1976) (34), respectively.

Skeletal muscle CK (CK-MM) activity values were

calculated by subtracting the plasma CK-MB values from the

total CK activities. Plasma CK and LDH activities were

expressed as U/L.

Plasma concentrations of IL-6, IL-1β, TNF-α, IL-8, IL-10,

and IL-1ra were determined using Duoset enzyme-linked

immunosorbent assay (ELISA), Duoset Kit of R&D System

(Quantikine, R&D System, Minneapolis, MN, United States)

according to the manufacturer’s instructions. The intra-assay
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coefficient of variation (CV) was 4.1%–10%, the inter-assay CV

was 6.6%–8.0%, and the sensitivity (pg/mL) was: 4.68 for IL-6,

1.95 for IL-1β, 7.81 for TNF-α, 15.62 for IL-8 and IL-10, and

19.53 for IL-1ra. C-reactive protein was measured using a latex-

enhanced immunoturbidimetric assay capable of measuring

protein levels within and outside the normal range (Bioclin

Diagnostics, Belo Horizonte, MG, Brazil). The C-reactive

protein concentration was determined by measuring the optical

density variation at 505 nm in duplicate. The intra-assay CV

was 1.6%–4.0%, the inter-assay CV was 0.6%–1.5%, and the

sensitivity was 0.0312 mg/mL for C-reactive protein.
2.7. Statistical analysis

2.7.1. Sample size estimations
To test the hypothesis of a difference in CK between groups,

we considered an activity greater than 50 U/L significant. Galan

2017 (35) reported a standard deviation of around 70 U/L in CK

activity. The present study was performed in high-level

competitive triathletes; therefore, a lower standard deviation

(35 U/L of CK activity) was considered for this specific group.

For this reason, alpha was set at 0.05, and power was set at

0.8. Thus, at least seven triathletes were required for this study.
2.8. Data analysis approaches

Quantitative variables are presented as the mean and

standard deviation or median and quartile intervals. Qualitative

variables are presented as absolute and relative frequencies. We

compared interventions (M and MGln) using the paired

Student t-test. However, when the normality assumption was

not met, the paired Wilcoxon test was used. The means on

Borg’s scale and heart rate for the M and MGln groups were

compared in each stage of the endurance test. The lactate

dehydrogenase, total creatine kinase, muscle creatine kinase,

and cytokine production were analyzed by ANOVA for

repeated measures when the assumption of normality was met;

otherwise, the KS (Kolmogorov–Smirnov) and Friedman tests

were used when multiple comparisons detected significance

between moments. The level of significance was 0.05. The data

analysis was performed using SPSS, version 19 (Statistical

Package for the Social Sciences) for Windows and R core 3.4.
3. Results

As reported in our previous study, the experimental

protocol used for dietary supplementation ensured a

significant increase in plasma glutamine concentration but did

not change plasma glucose (8). Maximum oxygen

consumption did not differ between M and MGln treatments
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(M 62.0 ± 6.3 ml·kg−1·min−1 vs. MGln 62.7 ±

3.7 ml·kg−1·min−1) (Figure 1B). Nonetheless, as indicated by

the maximum oxygen consumption percentage, the relative

exercise intensity was 10% higher with the MGln than the M

supplementation (M 79.3% ± 4.3% vs. MGln 87.2% ± 4.5%)

(Figure 1A). The second ventilatory threshold (VT2) was

8.3% higher in the MGln than the M treatment (M 14.4 ±

1.0 Km/h vs. MGln 15.6 ± 1.19 Km/h) (Figure 1C).

Blood lactate levels were 25% higher in the MGln than the

M supplementation 6 (M 7.5 ± 2.1 mmol/L vs. MGln 9.4 ±

1.8 mmol/L) and 15 (M 5.2 ± 1.7 mmol/L vs. MGln 6.5 ±

1.7 mmol/L) minutes after the test (Figure 2). However, no

significant difference in plasma lactate concentrations was

detected 10 min after the test (Figure 2).

Heart rate was elevated proportionally relative to intensity

during the exercise, and the supplement interventions did not

alter this relationship (Figure 3A). The heart rate response at

peak exertion for both tests in the two conditions, M and

MGln, were maximal for absolute (M 192 ± 8 vs. MGln 190 ±

6 bpm; K-S = 0.148 and 0.163) and relative values (M 100 ± 4

vs. MGln 98% ± 3%; K-S = 0.238 and 0.259). In both

conditions, the triathletes exceeded 95% of the HRmax

predicted for age. Parasympathetic activation indicated by a

reduction in the difference between maximum heart rate and

heart rate attained in the first minute of recovery between the

two conditions (M 38 ± 11 vs. MGln 39 ± 10 bpm) was not

different (p = 0.793). The subjective perception of the effort

(Borg scale) also did not differ between the two-

supplementation treatments (Figure 3B).

The duration of the exhaustion test increased by 3.3% (M

21.4 ± 2.2 vs. MGln 22.1 ± 2.5 min) (Figure 4A), and the total

distance covered increased by 2.8% (M 5,201.9 ± 744.6 vs.

MGln 5,601.5 ± 995.7 m) (Figure 4B) were significantly higher

in the MGln compared to the M treatment. The MGln

supplementation reduced physical effort-induced muscle

damage, as indicated by reduced plasma activities of LDH (at

rest 437.9 ± 74.2 U/L, M 715.8 ± 125.8 U/L and MGln 497.9 ±

146.4 U/L, a 30.4% decrease) (Figure 5A), total CK (at rest

66.1 ± 34.2 U/L, M 123.4 ± 35.1 U/L and MGln 91.0 ± 36.2 U/

L, reduced by 26.2%) (Figure 5B), and skeletal muscle CK (at

rest- 62.4 ± 34.1 U/L, M- 119.5 ± 35.1 U/L and MGln 87.3 ±

35.9 U/L, a 26.9% decrease) compared with the M treatment.

The CK-MB activity did not differ between the two

treatments (at rest 3.8 ± 0.4 U/L, M 3.9 ± 0.6 U/L and MGln

3.82 ± 0.4 U/L) (Figure 5C). Furthermore, no changes in pro-

or anti-inflammatory cytokines or C-reactive protein plasma

concentrations were observed (data not shown).
4. Discussion

Glutamine is an essential amino acid during periods of

catabolic stress (36, 37), and its administration has been
frontiersin.org
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FIGURE 1

Cardiopulmonary testing in athletes supplemented with maltodextrin (M) or maltodextrin plus hydrolyzed protein enriched with glutamine (MGln).
Percentage of maximal oxygen consumption (A), maximal oxygen consumption (B), and second ventilatory threshold (C) from athletes
supplemented with M or MGln. For both tests, a significance level of 0.05 was set.
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reported to reduce muscle injury in rats (15–17). Compared to

M only, MGln supplementation resulted in the physical effort at

a higher percentage of maximal oxygen consumption, improved

second ventilatory threshold, increased duration and distance

covered during the exhaustion test, and reduced circulating

markers of muscle injury. Sinisgalli et al. (2021) reported that

athletes training more than 20 h per week (high volumes)

forty days before the race do not exhibit increased

performance (overall race time) compared to those who train

up to 14 h per week (lower volumes) (38). Parasympathetic

reactivation, characterized by a reduction in heart rate in the

first minute after intense exertion, has been used to address

athletic performance. Indeed, rapid cardiorespiratory and

metabolic recovery is closely associated with better athletic
Frontiers in Sports and Active Living 06
performance. In the present study, when comparing the two

supplementations (M and MGln), there was no significant

difference in the HR decrease. A drop in HR of 38 and 39

beats, respectively, in the first minute of recovery (HHR1),

was verified in all triathletes, which is consistent with well-

trained endurance athletes (39). HRR1 min could be indirectly

used as an index of aerobic capacity, irrespective of age (39).

A predominance of sympathetic tone may be associated with

an increased risk of arrhythmias (40). Therefore, triathletes

exhibited a low cardiovascular risk. These results indicate that

MGln has favorable performance-related properties and

confirm the study hypothesis.

Herein, MGln supplementation increased blood lactate

levels at 6 and 15 min following the completion of the
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FIGURE 2

Plasma lactate concentrations in athletes supplemented with maltodextrin (M) or maltodextrin plus hydrolyzed protein enriched with glutamine
(MGln). Plasma lactate concentration (mmol/L) at 6, 10, and 15 min after exercise in athletes supplemented with M or MGln. For both tests, a
significance level of 0.05 was set.
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exhaustion test, possibly due to glutamine-stimulated anaerobic

glycolysis (41). The utilization of glutamine by the muscle

generates glutamate and α-ketoglutarate, which enter the

Krebs cycle to produce oxaloacetate. This latter metabolite

combines with acetyl-CoA to produce citrate through citrate

synthase activity. Pyruvate is formed through glycolysis from

glucose or glycogen and is the precursor for oxaloacetate and

acetyl-CoA. The provision of oxaloacetate by glutamine then

reduces this metabolite requirement from pyruvate.

Consequently, pyruvate is spared and redirected to lactate

formation. Alternatively, malate generated through

glutaminolysis can be transported from the mitochondria to

the cytosol and converted to pyruvate via the malic enzyme

(42–44).

On the other hand, glutamine contributes to hepatic

gluconeogenesis by competing with the lactate remaining in

the circulation. The final result would be increased blood

lactate concentrations (45). This latter effect would become

less pronounced over time due to lowering blood glutamine
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levels. Some muscle fiber types also interfere with lactate

clearance during rest (46). For example, athletes with a higher

percentage of type I muscle fibers (aerobic) have an increased

capacity for lactate clearance through oxidation than athletes

whose muscle fibers are mostly type II (anaerobic) (47). The

attenuating effect of the pretreatment with L-glutamine on

skeletal muscle atrophy induced by 24-h fasting varies with

the skeletal muscle fiber type. Soleus muscle, composed

mostly of type I fibers with an intense oxidative metabolism,

showed a more pronounced intracellular L-glutamine turnover

than EDL muscle (composed mainly of type II fibers) after L-

glutamine supplementation (36). Our study agrees with

previous findings where adding protein to a CHO dietary

supplement enhanced endurance performance compared to a

6%–10% CHO supplement (9–11). Favano et al. (2008) also

administered glutamine and maltodextrin combined and

reported a positive effect in increasing the distance covered

and the time of tolerance in the feeling of fatigue to

intermittent exercise in soccer players (7). Levenhagen and
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FIGURE 3

Heart rate (A) and borg scale (B) in athletes supplemented with maltodextrin (M) or maltodextrin plus hydrolyzed protein enriched with glutamine
(MGln). Aerobic power and aerobic capacity tests were performed on a motorized treadmill. The athletes rested for 2 min, and their heart rate
was determined. Then the athletes exercised for 3 min at 6, 7, and 8 km/h, one minute for each velocity. The test was initiated at 9.4 km/h (stage
one), and the speed was increased by 1.4 km/h every 3 min until volitional fatigue was reached. The athletes ran on a 1% grade, and oxygen
consumption (VO2) was continuously measured. The subjective perception of the effort was determined for each stage using Borg’s 15-point
linear scale rating of perceived exertion. For both tests, a significance level of 0.05% was set.
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colleagues (2002) reported that protein added to a CHO

supplement (3% CHO plus 0.75% protein or CHO 4.5% plus

1.2% protein) maintains endurance performance relative to
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the usual 6%–10% CHO supplement (48). McCleave et al.

(2011) described that a 4.5% CHO plus 1.2% protein

supplementation and a 3% CHO plus 0.75% protein mixture
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FIGURE 4

Duration time (A) and total distance covered (B) of the exhaustion test in athletes supplemented with maltodextrin or maltodextrin and hydrolyzed
whey protein enriched with glutamine (MGln). Aerobic power and aerobic capacity tests were performed on a motorized treadmill. The athletes
rested for 2 min, and their heart rate was determined. Then the athletes exercised for 3 min at 6, 7, and 8 km/h, one minute for each velocity.
The test was initiated at 9.4 km/h (stage one), and the speed was increased by 1.4 km/h every 3 min until volitional fatigue was reached. The
athletes ran on a 1% grade, and oxygen consumption (VO2) was continuously measured. For both tests, a significance level of 0.05 was set.
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improve endurance performance compared to a 6% CHO sports

drink in trained female athletes (9). Khorshidi-Hosseini and

Nakhostin-Roohi (2013) reported that combining glutamine

and maltodextrin two hours before exercise improves athletes’

physical performance during repeated competitions (12).
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Additionally, in rats, our group demonstrated that glutamine

supplementation mimics some effects of overload on extensor

digitorum longus (EDL) hypertrophy and that the association

of glutamine and overload-induced EDL muscle hypertrophy

led to a further increase in the resistance to fatigue (49).
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FIGURE 5

Muscle damage in athletes supplemented with maltodextrin (M) or maltodextrin plus hydrolyzed protein enriched with glutamine (MGln). Plasma
activities of lactate dehydrogenase (A), total creatine kinase (B), and myocardial creatine kinase isoenzyme (MB-CK) (U/L) (C) in the periods before
the tests and after maltodextrin (M) or maltodextrin and hydrolyzed whey protein enriched with glutamine (MGln) supplementation immediately
after the end of the endurance test. For both tests, a significance level of 0.05 was set.
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The skeletal muscle glutamine pool is significantly reduced

under certain metabolic stress conditions such as injury and

burn (50) and during/after strenuous exercise (51, 52). The

supplementation with alanyl-glutamine dipeptide increases

plasma glutamine concentrations 45 min after ingestion and

remains elevated for up to 60 min afterward (53, 54). In our

previous study, plasma glutamine levels were increased after

MGln athletes finished the exhaustion test (7). Therefore,

MGln supplementation may minimize the consequences of

reducing plasma glutamine levels.

Fatigue during sprint and endurance exercise is associated

with glycogen depletion (53). Supplementation with CHOs

and whey protein activates key skeletal muscle enzymes that

regulate glucose metabolism and glycogen synthesis, which
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could attenuate exercise-induced glycogen depletion (55). It

was also demonstrated that Gln was associated with efficient

mitochondrial activity in muscle cells (56). It is plausible that

MGln supplementation reduces skeletal muscle glycogen

depletion by generating skeletal carbon molecules, which

would then be available for anaerobic and aerobic metabolic

pathways. Glutamine dipeptide supplementation increased

glycogen concentrations in muscle and ammonia in the liver

and muscle. Also, elevated free tryptophan/total tryptophan

ratio, hypothalamic serotonin, and the serotonin/dopamine

ratio in rats supplemented for 21 days and submitted to

resistance training (22).

Athletes often complain about skeletal muscle pain during

and after a triathlon competition. Pain during physical
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exercise occurs due to muscle injury (57) and can decrease

performance. Runners supplemented for seven days with

glutamine (1.5 g/kg glutamine + 250 ml water + 15 g sweetener)

after running 14 km exhibited a decrease in muscle damage

and oxidative stress indicators (58). The study by Córdova-

Martinez et al. (2021) on basketball players indicates that

glutamine administration (6 g per day for 20 days) attenuates

exercise-induced muscle damage in a sport modality with a

predominance of eccentric exertions (18). Street et al. (2011)

investigated ingestion of 0.3 g kg−1 body mass of maltodextrin

dissolved in 750 ml lemon flavored water (0.3 g kg−1 L-

glutamine) at 0, 24, 48, and 72 h post an eccentric exercise and

found that glutamine supplementation attenuated muscle

strength loss, soreness and muscle damage (59).

As expected, plasma activities of total creatine kinase (CK-

MM) and LDH were increased immediately after the

exhaustion test (60). MGln supplementation attenuated the

increase in total creatine kinase, CK-MM, and LDH activities

in plasma from triathletes even after a single dose of MGln,

indicating that this supplement attenuated muscle damage

during the endurance test. This result is consistent with

Saunders et al., who reported that CHO plus protein

supplementation decreases muscle injury post-cycling exercise

compared to CHO only and noted that CHO plus protein

supplementation enhances the time to exhaustion (10, 11).

Supplementation with alanyl-glutamine dipeptide also

attenuated muscle damage in rats subjected to prolonged
FIGURE 6

Graphical abstract – A single dose of MGln supplementation resulted in exerc
second ventilatory threshold, blood lactate levels, and reductions in plasma
Created with BioRender.com.
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exercise (15). The protective effect of glutamine

supplementation on muscle damage may be partially explained

by the fact that exhaustive aerobic exercise causes oxidative

stress (61). The antioxidant systems, such as glutathione (GSH),

are important for limiting muscle damage, and antioxidant

capacity may be enhanced by glutamine supplementation (62,

63). Glutamine is a precursor for glutathione synthesis (41) and

serves as a precursor in various biosynthetic pathways rather

than serving as fuel (42). Corroborating with these findings, our

group previously demonstrated that oral supplementation of L-

glutamine for 30 days improves the strength and power of knee

muscles in association with improved glycemia control and

concomitant boost of plasma antioxidant capacity of older

exercising women (64).

We did not detect cytokine plasma level changes

immediately after the endurance test, as one would predict for

the period studied (65). However, we did observe a glutamine

cytoprotective effect. The cytoprotective effect of chronic

glutamine supplementation on damaged tissue is associated

with an increase in HSP 70 levels in skeletal muscle and

PBMC (human peripheral blood mononuclear cells). HSP 70

reduces the DNA-binding activity of NF-κB, inhibiting

inflammatory cytokine production and muscle damage

induced by heavy resistive exercise (17). There is evidence

that HSP 70 has an essential role as a regulator of the early

inflammatory response to muscle injury, participating in

myofiber regeneration and recovery (66).
ising at a higher percentage of maximal oxygen consumption, a higher
markers of muscle damage (LDH, total CK and skeletal muscle CK).
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The readers must consider some particularities of this study.

We evaluated nine healthy elite male triathlon athletes at the top

of their age category in the Brazilian rankings, making this a

very homogenous sample. We compared the effects of the

same athlete’s two treatments to reduce large result variations.

This protocol facilitated the detection of significant MGln

effects and may account for why others, using a different

protocol, did not observe these glutamine supplementation

impacts (23, 67). The study conditions included overnight

fasting to avoid significant discrepancies in the feeding state.

The conditions did not change the plasma glucose

concentration at the pre-test, which was within the normal

range, i.e., 100–110 mg/dl. Supplementation with MGln did

not change plasma glucose levels as compared to M only, as

reported in our previous study (8). This finding indicates that

hepatic glycogenolysis was not different among participants.

The athletes had a similar glycemic homeostasis condition at

the beginning of the test.

We concluded that conditions including overnight fasting

and a single dose of MGln supplementation resulted in

exercising at a higher percentage of maximal oxygen

consumption, a higher second ventilatory threshold, blood

lactate levels, and reductions in plasma markers of muscle

damage (Figure 6). Glutamine administration preserved the

triathletes’ physical capacity, partially mitigated muscle

damage, and contributed to a small but significant increase in

the physical exhaustion test duration. These findings support

oral glutamine supplementation’s efficacy in triathletes, but

further studies require.
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