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Exercise performance is dependent on many factors, such as muscular strength
and endurance, cardiovascular capacity, liver health, and metabolic flexibility.
Recent studies show that plasma levels of bilirubin, which has classically been
viewed as a liver dysfunction biomarker, are elevated by exercise training and
that elite athletes may have significantly higher levels. Other studies have
shown higher plasma bilirubin levels in athletes and active individuals
compared to general, sedentary populations. The reason for these adaptions
is unclear, but it could be related to bilirubin’s antioxidant properties in
response to a large number of reactive oxygen species (ROS) that originates
from mitochondria during exercise. However, the mechanisms of these are
unknown. Current research has re-defined bilirubin as a metabolic hormone
that interacts with nuclear receptors to drive gene transcription, which
reduces body weight. Bilirubin has been shown to reduce adiposity and
improve the cardiovascular system, which might be related to the adaption of
bilirubin increasing during exercise. No studies have directly tested if elevating
bilirubin levels can influence athletic performance. However, based on the
mechanisms proposed in the present review, this seems plausible and an area
to consider for future studies. Here, we discuss the importance of bilirubin
and exercise and how the combination might improve metabolic health
outcomes and possibly athletic performance.
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Introduction

Exercise training can promote the physiological health of every organ system in the

body, carrying a myriad of benefits, including improving blood glucose control,

cardiovascular capacity, arterial compliance, skeletal muscle function, and energy

metabolism (1–4). In fact, 35 chronic diseases or conditions have been independently
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linked to physical inactivity (5). Most health outcomes of

regular exercise, such as improving aspects of the metabolic

syndrome, depend on skeletal muscle adaptations (6).

However, recent data has pointed to exercise-induced benefits

in liver metabolism and function playing a vital role (7–9).

Exercise increases hepatic glycogen mobilization when exercise

bouts are sustained beyond short bursts of high-intensity

activity that rely on intramuscular stores of glucose and fat

(9, 10). As hepatic glycogen is reduced with extended exercise,

the liver is also responsible for the uptake of gluconeogenic

precursors such as lactate, pyruvate, ketones, and glycerol

(10–13). This is accomplished, in part, by exercise-induced

reductions in lipogenic processes and a simultaneous increase

in the lipid oxidation (14, 15), a potential mechanism for how

exercise can prevent liver diseases such as non-alcoholic fatty

liver disease (NAFLD) (16, 17). Interestingly, a classical liver

disease biomarker, bilirubin (11), has been shown to increase

with exercise (18). Studies also show that increasing bilirubin

levels decreases liver fat content and reduces oxidative stress

in obese mice, improving adiposity and blood glucose

(19–22). Other work has shown that aerobic exercise protects

the liver and cardiometabolic health and adipose tissue

remodeling under metabolic stress (23). These adaptations

might be linked to glucose and fatty acid metabolism during

exercise, which points to well-controlled crosstalk between the

liver and skeletal muscle, exchanging substrates and

maintaining metabolic homeostasis. Thus, exercise-induced

adaptations centered on improving substrate utilization, also

termed metabolic flexibility, are not solely dependent on the

skeletal muscle metabolism (9, 10).

Exercise can also play an important role in weight control

by aiding in attaining an energy deficit and the metabolic

adaptations in the glucose and fatty-acid metabolism (24, 25).

Although other aspects of metabolic syndrome can be

improved with exercise alone (without weight loss), these

benefits are substantially greater when significant weight loss

occurs (26). While we later discuss that plasma bilirubin levels

are elevated with exercise, another facet is that it also

increases during weight loss (27). With the continually

prevalent obesity epidemic, exercising for weight loss will

continue to be a prevailing theme in research trials. It will be

interesting to see whether bilirubin will be a measurable

component of future works, especially since it has many

protective properties that reduce oxidative stress.

An additional adaptation to exercise that may influence

substrate utilization is the upregulation of antioxidant defense

systems (18, 28, 29); this is partially due to increased ROS,

and reactive nitrogen species (RNS) observed with exercise

(30, 31). Such free radical production during exercise can

have key regulatory roles in mediating various signaling

processes. However, when increases in free radicals are not

met with increases in antioxidant defense, pathophysiological

states such as inflammatory, cardiovascular, and
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neurodegenerative diseases may manifest (32). Recent research

has focused on oxidative stress and exercise mechanisms, with

many exploring the utility of additional antioxidant

supplementation when engaging in consistent exercise (18, 33,

34). New findings have revealed that the antioxidant bilirubin

may be significantly elevated in athletes (18, 35). Other recent

works have shown that bilirubin has a hormonal function that

reduces body weight and may be related to exercise capacity

(19, 36–44). These findings point to bilirubin as an underlying

mediator of exercise-induced alterations in substrate

oxidation, weight loss, antioxidant status, and a surrogate to

the aforementioned health outcomes (37, 38, 42, 44).

Herein, we will delve into the recent literature investigating

the link between bilirubin, exercise, and physiological health.
Bilirubin and exercise

Traditionally viewed as a marker for liver damage, bilirubin

is becoming recognized as an important endocrine hormone

and a potent antioxidant that activates nuclear receptors to

control gene transcription that promotes many aspects of

physiological health (cardiovascular health, blood glucose

control, oxidative stress, and improves liver function) (37, 39,

43, 45). The medical community has defined “normal” total

plasma bilirubin levels as 1.7–20 µmol/L, while the Child-

Pugh index indicates a value of >51 µmol/L is indicative of

decompensated liver cirrhosis. Large variations in plasma

bilirubin are exhibited among the general population due to

age, sex, ethnicity, and other biological factors. Thus, it is

difficult to define a particular range for other non-clinical

conditions such as long-term exercise, acute exercise, obesity,

and lean individuals (46). The concept of hypobilirubinemia

has been recently proposed at levels of plasma/serum bilirubin

<10 µmol/L [discussed further in (37)].

Bilirubin originates from hemoglobin released from

myoglobin and other hemoproteins during the destruction of

senescent red blood cells. When a blood cell dies and is lysed,

which occurs mostly in the spleen, heme is released and

converted to biliverdin by heme oxygenase (HO), which is

further metabolized to bilirubin by biliverdin reductase A

(BVRA) (Figure 1) (47). Blood bilirubin levels have

previously been thought only to be derived from

reticuloendothelial cells in the spleen (37). However, studies

in mice lacking BVRA (21, 48–50) have shown that bilirubin

generation also occurs in many other tissues. Lastly, bilirubin

is conjugated by the UDP-glucuronosyltransferase enzyme,

UGT1A1 (51), which then deposits the conjugated bilirubin

in the bile (43). Thus, it is possible to regulate plasma

bilirubin levels by regulating HO, BVRA, or UGT1A1.

Recently published work showed that high-capacity running

rats (HCR), compared to low-capacity running rats (LCR),

had significantly higher plasma bilirubin, which was likely due
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FIGURE 1

The heme oxygenase-bilirubin pathway.
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to hepatic BVRA being raised and UGT1A1 lowered (52). These

ultimately cause higher bilirubin production by BVRA and less

bilirubin clearance via UGT1A1 conjugation.

Although research connecting bilirubin and exercise is in its

infancy, a limited number of studies have demonstrated that

bilirubin may be increased with both acute and regular (long-

term) endurance exercise in animal models and humans
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(52–55). This was observed in the Dose-Response to Exercise

in Women Trial (DREW Trial), where participants were

placed in three groups of varying exercise volumes (4, 8, or

12 kcal.kg.week) for 12 weeks, demonstrating bilirubin only

increased in the 12 kcal.kg.week group, equivalent to an

average of 169 min per week (54). This dose-response

relationship is supported by a separate trial where 12 weeks of
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exercise training that progressed to 120 min per week did not

influence bilirubin levels (56). Thus, exercise meeting or

slightly exceeding the recommended 150 min of moderate to

vigorous physical activity per week appears necessary to

observe physiological (beneficial) increases in the plasma

bilirubin (57). This is also supported in less controlled trials,

where bilirubin increases after 3 months of soccer or rugby

training in competitive athletes (58, 59) and is elevated in

competitive athletes compared to the general population

(35, 60). Associations have also been drawn between usual

exercise behavior, where aerobic and strength training

participation was positively related to plasma bilirubin levels

among women. In contrast, only aerobic training participation

was positively correlated in the men (61). There is also

evidence that an acute bout of exercise (often exhaustive) can

upregulate plasma bilirubin. This was demonstrated in trained

and untrained adults and adolescents after a running time

trial test to exhaustion (62). A maximal exercise test also

increased plasma bilirubin among football players (63) and

was increased 4 days after an ultra-marathon among trained

runners (64).

An important question yet to be fully elucidated is the

mechanisms induced by exercise that cause the reciprocal

increase in plasma bilirubin (Figure 2). One theory is that

heme catabolism could result from exercise (especially aerobic

exercise) induced damage such as repeated foot strikes,

elevated core temps, and skeletal muscle breakdown

(myoglobin release) (65, 66). In this scenario, red blood cells

may become lysed and release heme (hemolysis). This

released heme can be broken down to biliverdin by heme

oxygenase-1 (HO-1) and further catabolized by BVRA to

eventually form a stable, unconjugated bilirubin (43). This

view is supported by several of the findings above, where only

the highest dose of exercise, which had the greatest exposure

to factors associated with exercise-induced hemolysis,

observed increases in the plasma bilirubin (54). This logic

could also be applied to trained athletes exposed to very high

levels of factors that may induce hemolysis to promote the

observed elevations in bilirubin levels (35, 58–60). However,

Swift et al. did not detect changes in hemoglobin or

hematocrit following exercise training (54). This has been

supported by Witek et al.’s work on athletes, who concluded

that the hematological parameters did not indicate the

occurrence of increased hemolysis, with no significant

relationship between the total bilirubin concentration and the

number of red blood cells, hemoglobin, or iron levels in the

blood of trained athletes (60). These results are similar to

those of Andelkovic et al., where 3 months of soccer training

did not increase serum iron (likely to reflect hemolysis) nor

transferrin (likely to reflect erythropoiesis due to increased

hemolysis) (58). Although this study also demonstrated

increased serum ferritin after training and positive

correlations between bilirubin and ferritin post-training (58).
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Since ferritin is known to sequester iron in the blood,

increased ferritin levels may mask the elevations in iron

resulting from exercise-induced hemolysis; an antioxidant

adaptation of ferritin has been previously demonstrated (67,

68). However, this has not been consistent across studies, with

many showing no changes or decreases in ferritin after long-

term exercise training in athletes’ (69–71). Other arguments

against exercise-induced hemolysis driving greater bilirubin

levels seen in athletes or after a long-term intervention are the

notion that markers of hemolysis are typically present only

immediately after intense exercise (63, 66), which would

support why plasma bilirubin can increase after a bout of

acute exercise (62–64).

Another hypothesis is that exercise-induced increases in

bilirubin are the result of a feedback mechanism to regulate

the increased oxidative stress that accompanies physical

training (35). As noted, bilirubin is a powerful antioxidant,

and if following other antioxidant defense systems, it should

increase with long-term exercise training to better control

exercise-induced free radical damage (18, 28, 29). Indeed, the

long-term exercise effect on bilirubin is associated with an

increase in other antioxidant reserves as well, including total

antioxidant status (35). Such increases in bilirubin would

likely result from greater HO activity, which is increased with

exercise training (72). Since HO is the rate-limiting enzyme

necessary for converting heme to biliverdin (73), greater HO

levels could force the observed increase in plasma bilirubin

after long-term exercise or in physical activity individuals/

athletes. Other mechanisms promoting an exercise-induced

increase in plasma bilirubin could involve the enzyme that

converts biliverdin to bilirubin (BVRA) (74) or the enzyme

that is responsible for the removal of bilirubin from the blood

into bile (UGT1A1). As noted, HCR mice demonstrated

higher plasma bilirubin and increased BVRA expression while

UGT1A1 was decreased compared to control animals (52).

Interestingly, hepatic HO-1 was not different between the

HCR mice and control, despite large differences in distance

and time run to exhaustion. This indicates that exercise-

induced increases in bilirubin can stem from changes in

several different enzymes, including HO-1, BVRA, and

UGT1A1 (Figure 1). It seems likely that long-term

adaptations to exercise training promote antioxidant defenses,

including bilirubin, while short-term adaptations include

those related to exercise-induced damage and increased heme

availability.
Gilbert’s syndrome and exercise

Although it seems that regular physical training leads to an

elevation in serum bilirubin concentrations, additional

considerations need to be given to Gilbert’s Syndrome (GS), a

genetic polymorphism that reduces UGT1A1 expression,
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FIGURE 2

Exercise and bilirubin production. This figure was created by Matthew Hazzard at the University of Kentucky College of Medicine.
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increasing plasma bilirubin levels to potentially influence athletic

performance (53). This has been demonstrated in elite Czech

athletes, where elite sportsmen and sportswomen had

significantly greater serum bilirubin concentrations (8.5–16 µmol/

L) compared to the general population (53). At the same time,

the prevalence rate of phenotypic GS syndrome was also much

higher in elite athletes, suggesting that a mild elevation of serum

bilirubin might predispose to better sports performance. In other

words, mildly hyperbilirubinemic elite athletes could have been

selected based on this biochemical trait to reach the sport’s elite.

This provides further evidence that bilirubin may promote

athletic performance, likely related to bilirubin’s role as an

endocrine hormone, inducing gene transcription that modulates

metabolic functions. Increased systemic concentrations of

bilirubin may represent a feedback mechanism to:

a) cope with the increased oxidative stress that accompanies

the training process (30),

b) provide signaling stimuli to the muscle (75) and

cardiovascular system (76), improve adaptation to physical

training stress, and simultaneously,

c) provide substantial metabolic advantages regarding fatty

acid oxidation associated with regular exercise (77).

These conclusions are based on recent observations. Regular

exercise has been associated with increased antioxidant

capacity, similar to a previous report documenting an

exercise-induced increase in other body antioxidant reserves

(62). In addition, bilirubin is an important signaling molecule

(78, 79), fulfilling parameters of the endocrine substance (45).

Therefore, these activities are highly likely to contribute to the

beneficiary metabolic adaptations associated with regular

training.
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Bilirubin and cardiovascular system
as a benefit for exercise

Increased plasma bilirubin levels can have several beneficial

effects on the cardiovascular system in the context of exercise

(Figure 3). First, bilirubin is a potent antioxidant compound

that can scavenge ROS both directly and through the

inhibition of the NAD(P)H oxidase (80, 81). One of the main

targets of the ROS product superoxide anion (O2
•) is nitric

oxide (NO). Superoxide interacts with NO to form

peroxynitrite radical, damaging DNA and nitrosylate tyrosine

residues, which disrupts protein function. By limiting the

production and actions of superoxide, bilirubin can increase

the bioavailability of NO to preserve the blood flow (82–84).

The preservation of blood flow through enhanced NO

bioavailability may mediate the improvement in athletic

performance observed with increased levels of plasma

bilirubin (35). Bilirubin mimics the protective actions of HO-

1 induction and restores attenuated eNOS expression after

exposure to oxLDL and TNF-α (85). The hyperbilirubinemic

Gunn rat is resistant to the pressor actions of angiotensin II,

and bilirubin can attenuate the release of endothelin-1

(86, 87). These findings demonstrate that bilirubin has

vasoprotective actions, which could be beneficial to

maintaining blood flow during exercise.

Recent studies have indicated that bilirubin functions as a

hormone to activate the nuclear receptor peroxisome

proliferator-activated receptor alpha (PPARα). It has been

proposed that low plasma bilirubin levels should be

considered a pathological state (37, 44). PPARα activation in

the liver is a contributory factor to the exercise-related

improvements in the whole-body metabolism (88). In fact,
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FIGURE 3

Cardiovascular benefits of exercise and bilirubin. This image was made using Biorender.com.
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induction of PPARα in the vasculature by exercise has recently

been proposed as a therapy to fight COVID-19 infection (89).

Gene polymorphisms in PPARα increase physical and aerobic

performance and are associated with muscle fiber type

composition in athletes’ (90, 91). Twice a day, close proximity

exercise is associated with enhanced mitochondrial biogenesis,

fat oxidation, and upregulation of skeletal muscle PPARα

(92). Likewise, treatment with the PPARα agonist, fenofibrate,

increases soleus muscle weight and enhances musculoskeletal

training response during estrogen deficiency in ovariectomized

(OVX) Sprague Dawley rats (93). Exercise training also

decreases the age-related decline in cardiac PPARα levels in

rats (94). PPARα knockout mice exhibited reduced lipolysis

and anti-inflammatory responses in adipose tissue following

exercise (95). The adipose-specific PPARα KO (96) and liver-

specific PPARα KO (97) animals exhibited adiposity in the

null tissues, which further indicates the importance of the

bilirubin-PPARα circuit.
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PPARα affects changes in metabolism central to exercise

adaptation and muscle stem cell dynamics. Satellite cells, the

bonafide muscle stem cell, support skeletal muscle exercise

adaptation through activation and fusion into muscle fibers

(98–100). Exercise-induced satellite cell activation is reliant on

dynamic metabolic reprogramming culminating in robust

activation of oxidative metabolism during the terminal

differentiation (101). PPARα is a critical regulator of muscle

lipid homeostasis to facilitate differentiation of human satellite

cells in vitro to support subsequent fusion into muscle fibers

to facilitate exercise-induced adaptation (102, 103).

Furthermore, skeletal muscle is a mosaic of different fiber

“types” uniquely defined by their metabolic requirement. The

targeting by PPARα of genes involved in cellular fatty acid

import and binding help define a unique cellular identity for

PPARα in oxidative type I fibers versus the predominantly

glycolytic type II muscle fibers (104). Greater demand for

mitochondrial biogenesis and oxidative metabolism that occur
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in response to chronic exercise supports a fiber type-specific role

for PPARα-mediated transcription. Variance in human type I

fiber distribution is closely associated with PPARα expression,

offering further support for PPARα in the distinct metabolic

requirements of oxidative, slow twitch type I fibers (105).

Further studies in PPARα deficient animals are needed in

order to fully elucidate the role of PPARα activation in

response to increases in bilirubin production in exercise.

Bilirubin is also cardio-protective, and increased bilirubin

levels during exercise may benefit the heart. For example,

studies in hyperbilirubinemic Gunn rats demonstrate that

bilirubin protects the heart from reperfusion injury and

beneficially influences aortic ejection velocities and pressures,

improving cardiac performance during exercise (106, 107).

Recent studies have demonstrated that bilirubin can increase

the production of hepatic ketone beta-hydroxybutyrate

(BOHB) (19), which likely occurred via PPARα mechanisms.

A diet supplemented with BOHB precursors improved

exercise performance in rats (108). Ketones may play an

important role in the metabolic adaptation of the heart to

exercise, especially in type II diabetic patients who are unable

to effectively utilize glucose as a cardiac energy source. While

the protective actions of bilirubin on the heart have largely

been explained through its potent antioxidant activity, the

effects of bilirubin on cardiac metabolism remain to be

thoroughly studied. It is possible that bilirubin plays an

important role in the metabolic adaptation of the heart to

exercise both directly and indirectly through its action on

PPARα and hepatic production of BOHB.

There is mounting evidence pointing to bilirubin as an

important hormonal molecule and antioxidant, a departure

from the traditional view that the role of bilirubin was limited

to a marker for liver dysfunction. Bilirubin’s role in mediating

metabolic adaptations and protecting from oxidative stress is

now evident, most notably in the context of cardiovascular

disease and obesity. The present review has further explored

the role exercise training appears to have on bilirubin levels,

outlining two primary metabolic pathways activated by

exercise that promote slight elevations in plasma bilirubin.

The first of these pathways are related to heme catabolism,

where exercise-induced damage such as muscle strain causing

myoglobin release, elevated core temperature, and repetitive

foot strike causes red blood cell lysis and heme release. Using

heme as a precursor, through actions of the HO and BVRA

enzymes, bilirubin synthesis is increased. This pathway seems

to be impacted primarily by acute exercise, as reductions in

hemolysis can be a long-term training adaptation observed

among athletes (69–71). An additional pathway that can

increase exercise-induced elevations in plasma bilirubin is

related to an upregulation of antioxidant defense mechanisms.

Just as other antioxidant enzymes are increased in response to

elevations in ROS and RNS that accompany exercise (62),

including total antioxidant status (35), BVRA can be
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increased while the enzyme UGT1A1 is decreased, thus

promoting the synthesis and increased plasma levels of

bilirubin (52). The combination of both pathways explains

how both long-term and acute exercise can promote bilirubin

levels and why athletes have consistently demonstrated greater

plasma bilirubin levels compared to the general population.
Conclusion

Although no studies have directly tested if increasing plasma

bilirubin levels promote improved exercise performance, this

hypothesis seems probable with the evidence presented and an

area for future research exploration. Preliminary evidence that

supports this hypothesis is related to studies on GS and elite

athlete performance. These individuals have a specific genetic

polymorphism that causes elevated plasma bilirubin, where a

far greater prevalence of GS is observed in elite athletes. This

suggests that individuals with greater bilirubin levels might be

predisposed to greater athletic performance. This could be

related to bilirubin’s role as a hormonal signaling molecule,

where bilirubin interacts with PPARα to stimulate gene

transcription related to fatty acid oxidative and mitochondrial

capacities, important mediators in muscle function and

exercise performance (102, 103). Improving antioxidant

defenses through elevations in bilirubin is also desirable for

athletic performance, likely related to enhanced bioavailability

of NO and increased blood flow (35, 82–84). Controlled trials

in humans testing the potential utility of bilirubin playing an

ergogenic role in exercise performance are lacking and, thus,

an additional avenue for future investigation. The optimal level

of plasma bilirubin has also not been defined for health or

athletic performance, another important question that research

may address. Altogether, future work to determine whether

increasing plasma bilirubin levels are useful for enhancing

athletic performance is needed before research can focus on

ergogenic aids to increase plasma bilirubin. In the least,

bilirubin is an important molecule and new hormone that

improves metabolic function and could be an essential

metabolite of exercise performance and weight loss.
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