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Evaluating footwear “in the wild”:
Examining wrap and lace trail
shoe closures during trail
running
Eric C. Honert*, Kathryn Harrison and Daniel Feeney

Performance Fit Laboratory, BOA Technology Inc., Denver, CO, United States

Trail running participation has grown over the last two decades. As a result,
there have been an increasing number of studies examining the sport.
Despite these increases, there is a lack of understanding regarding the
effects of footwear on trail running biomechanics in ecologically valid
conditions. The purpose of our study was to evaluate how a Wrap vs. Lace
closure (on the same shoe) impacts running biomechanics on a trail. Thirty
subjects ran a trail loop in each shoe while wearing a global positioning
system (GPS) watch, heart rate monitor, inertial measurement units (IMUs),
and plantar pressure insoles. The Wrap closure reduced peak foot eversion
velocity (measured via IMU), which has been associated with fit. The Wrap
closure also increased heel contact area, which is also associated with fit.
This increase may be associated with the subjective preference for the Wrap.
Lastly, runners had a small but significant increase in running speed in the
Wrap shoe with no differences in heart rate nor subjective exertion. In total,
the Wrap closure fit better than the Lace closure on a variety of terrain. This
study demonstrates the feasibility of detecting meaningful biomechanical
differences between footwear features in the wild using statistical tools and
study design. Evaluating footwear in ecologically valid environments often
creates additional variance in the data. This variance should not be treated as
noise; instead, it is critical to capture this additional variance and challenges
of ecologically valid terrain if we hope to use biomechanics to impact the
development of new products.
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Introduction

Trail running participation, particularly in ultra-distances, has grown over the last

two decades (1, 2). As a result, recent studies have examined the physiological

predictors of trail running performance (3, 4), in-lab biomechanical changes resulting

from prolonged downhill runs (5) and trail races (6), and biomechanics and

physiology during outdoor trail running (7, 8). Despite this emerging research field,

there is a lack of understanding regarding the effects of footwear on trail running.

Unfortunately, most of this research is still done in the laboratory, where the unique

challenges of trail running are not placed on the participants.
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Footwear is a key piece of equipment that that impacts

running performance in road running (9, 10). While road

running is dominated by sagittal plane motion (11), trail

running increases motion in the frontal and transverse planes

(7, 11). As such, trail running exacts different demands on

footwear than road running. Recent studies have

demonstrated that shoe upper material (12) and footwear

closure systems (13, 14) can impact biomechanical

performance, specifically in non-sagittal plane motions. The

upper and fit of footwear is considered a critical design

feature by running footwear experts (15), however little

research exists on the impact of uppers on trail running

performance. While the benefits of alternative shoe upper

designs were elucidated in-the-lab during agility-based

movements, they have not been evaluated for running “in-the-

wild.”

Despite the growing evidence of the validity of wearable

technology (16), there is relatively little known about the

effects of fit of footwear on the trail in ecologically relevant

terrain. Inside of the lab, better fitting shoes have been related

to reduced vertical loading rates (via force plates) and reduced

pronation (eversion) velocities (17). Surrogates of such

biomechanical metrics could be captured with wearable

technologies such as inertial measurement units (IMUs) that

contain accelerometers and gyroscopes. For instance, an IMU

attached to the foot can measure foot eversion velocity near

foot contact and peak acceleration – a surrogate for vertical

loading rate (18). Additionally, IMUs have been used to

characterize the terrain of uphill trail running vs. in-lab

running through medial-lateral accelerations (7) – with

runners exhibiting larger medial-lateral accelerations outdoors.

As footwear uppers have been shown to influence agility

movement transition times (12, 14) and frontal plane

kinematics (13), medial-lateral accelerations may be sensitive

to changes in the footwear upper.

Plantar pressure insoles are an additional wearable

technology that may be used to evaluate footwear outside-of-

the-lab. Plantar pressures have been used to study foot strike

patterns on trail [with road shoes (19)], peak and mean

pressures during marathons (20), and to quantify differences

in pressure distribution during longitudinal training studies

(21). Moreover, plantar pressure has revealed differences

between lace-up boots and lace-free boots in the field; lace up

boots reduce peak pressures under the heel and toes while

increasing heel contact area (22). Inside the lab, both

increased contact area and reduced peak heel and toe

pressures have been shown to differentiate between

comfortable orthotics (23) and different footwear features

(17, 24). In total, both the heel and the toe region of plantar

pressure have been shown to be sensitive to footwear fit and/

or subjective comfort.

While evaluating the impact of footwear outside the lab

often results in additional variation in the data, this variation
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is indicative of real-world usage and experiences. In fields

such as cognition (25) and neuroscience (26), the effects of

interventions can be missed if only tested in the laboratory

due to a lack of context or ecological validity. While testing

running biomechanics on a treadmill provides many

observations in a tightly controlled setting, assessments of

footwear on a treadmill may not generalize to overground

running (27, 28) and will certainly not represent the

challenges of the terrain where subjects will use trail footwear.

As a result, using a treadmill to test trail running footwear

limits the generalizability of findings and may be entirely

inappropriate to assess this type of footwear. This limitation

extends to other commonly tested biomechanical

interventions such as prostheses, exoskeletons, and road

running footwear. If we hope to bridge the gap between

biomechanics and product design, researchers must expand

their testing toolbox to include wearable sensors, explore the

critical variation that will be present in the data, and design

experiments in such a way to rigorously test product in

ecologically relevant terrain.

The purpose of our study was twofold: (1) to evaluate how

changing a trail shoe closure system impacts trail running

biomechanics and performance, and (2) to highlight an

experimental paradigm for testing biomechanical interventions

on a trail. Specifically, we evaluated trail running in the La

Sportiva Cyklon with a Wrap closure and a Lace closure with

respect to preference and performance. We hypothesized that

the Wrap closure would provide a better fit than the Lace

closure. We anticipated a shoe with a better closure would:

(1) reduce foot eversion velocity, (2) reduce loading rate as

measured by peak acceleration or peak jerk, (3) reduce the

medial/lateral acceleration, (4) reduce peak pressure in the toe

and/or the heel, and (5) increase the contact area in the toe

and/or the heel. We evaluated the peak jerk in addition to the

peak acceleration as jerk provides a similar time-derivative as

loading rate. We also evaluated subjective and objective (heart

rate) measures of exertion to ensure that there was no

difference in effort between the two shoes.
Materials and methods

Participants

Thirty subjects (15 male, 15 female means ± standard

deviations: height: 172 ± 6 cm, mass: 65 ± 8 kg, age: 34 ± 8 yrs)

provided written informed consent prior to participation in

trail running. The protocol was approved by the Institutional

Review Board (protocol: 22-BOAT-101). Participants with US

men’s shoe size 10 and 11 and US women’s shoe size 7.5 and

9 were recruited for this study. To be eligible to participate,

subjects were required to run at least 24 km per week and

participate in trail running once per week (weather
frontiersin.org
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permitting) with no injuries that resulted in missing more than

a week of running in the past six months. All participants ran in

the La Sportiva Cyklon (Wrap) and a retrofitted La Sportiva

Cyklon with Laces (Lace) (Figure 1).
Protocol

The trail run was performed on a 1.6 km loop near

Morrison, Colorado, USA (Figure 2) and had three sections.

The uphill portion of the trail was approximately 580 m and

had an average incline of four degrees (varied between 13

degrees uphill and one degree downhill). The top portion of

the trail was more technical than the other two sections. This

portion of the trail was approximately 520 m with an average
FIGURE 1

The La sportiva cyklon with the wrap upper (left) and the retro-fitted lace ve

FIGURE 2

Topographic map with route subjects ran (shown in red). Subjects ran the rou
different trail sections: uphill (right), top (top), and downhill (left). The average
downhill slope was −6°. Topographic map was used with permissions from S
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incline of two degrees (varied between nine degrees uphill and

two degrees downhill). The downhill portion of the trail was

approximately 470 m with an average decline of six degrees

(varied between three and 11 degrees downhill). The

technicity of the different portions of the trail, according to

the international mountain bicycling association, were

intermediate (blue) for the uphill and downhill and advanced

(black) for the top. The participants first ran a warm-up loop

with a trained experimenter to become familiar with the

terrain and the loop. The subjects then ran the loop another

four times to test the shoes in a randomized counterbalanced

order (A-B-B-A) to account for familiarization and fatigue.

Subjects were encouraged to run at similar speeds between

each lap. Data were collected from IMUs (±16 g and ±2,000°/

sec at 1125 Hz with 16-bit sensitivity, ±200 g at 1,600 Hz with
rsion of the shoe (right).

te in a counter-clockwise fashion. Pictures show example terrain of the
uphill slope was +4°, the average top slope was +2°, and the average
trava (http://www.strava.com).
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13-bit sensitivity, IMeasureU, Denver, USA) attached to the heel

counter, plantar pressure sensors (100 Hz, XSENSOR, Calgary,

CAN), a global positioning system (GPS) watch (1 Hz,

Suunto, Vantaa, Finland), and an optical heart rate sensor

(1 Hz, Polar Verity Sense, Polar Electro Inc., Kempele,

Finland) attached to the upper arm. Previous versions of this

heart rate sensor have been validated against

electrocardiograms during level and uphill running (29). GPS

coordinates and heart rate data were synchronously recorded

on the GPS watch. If subjects had a greater than one minute

difference between their laps, their data were excluded from

further analyses. Prior to each lap, subjects performed three

synchronizing jumps to indicate when the subjects began

running. After these jumps, the subject started the GPS watch

and began running.
Subjective outcomes

After running the warm-up lap, the subjects reviewed the

questionnaire. After each lap in a study condition, subjects

rated their exertion on an ordinal scale of 0 (not tired) to

10 (exhausted). After the second run in each shoe, they

responded to questions regarded the performance of the

shoe for uphill, level, and downhill running. Subjects also

rated their confidence while running in the shoe. Finally,

subjects rated the overall fit, the forefoot fit, midfoot fit, and

the heel fit. All questions besides the fit for the specific foot

regions were rated on an ordinal scale from zero to 10,

where zero was “poor” and 10 was “great”. For the specific

foot regions (e.g., forefoot), zero corresponded with too

loose, five was perfect and 10 was too tight. Similar ordinal

scales have been shown to be a reliable assessment of

footwear comfort during running (30). For the full

questionnaire see Supplementary material.
Biomechanical outcomes

The IMUs (three-axis accelerometer, three-axis gyroscope)

were used to determine running speed, peak acceleration

(sometimes referred to as shock), jerk, medial-lateral

acceleration ranges, and peak eversion angular velocity. We

first combined the low-g and high-g accelerometer data to

avoid saturation that can occur during running (31). This was

accomplished by interpolating the high-g accelerometer

(1,600 Hz) to the low-g accelerometer frequency (1,125 Hz)

with the UNIX timestamps that accompanied each sample.

The high-g accelerometer datapoints were then substituted for

the low-g datapoints whenever the low-g accelerometer was

saturated (at ±16 g). Running strides were then segmented

based on the magnitude of the jerk squared (32). Next, both

the accelerometer and gyroscope signals were bypass-filtered
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with a second-order, low-pass 50 Hz Butterworth filter. Using

these filtered signals, the IMU-based running speed was

determined based on previously published algorithms (32)

that have been evaluated for different speeds and slopes of

running (33). In short, we computed stride length and divided

it by stride time, as defined by subsequent foot contact

detections. Stride length was determined through double

integrating the acceleration once it had been corrected for

gravity. We utilized linear de-drifting to correct for

integration error based on zero velocity updates at mid-stance

(32, 34). Based on the filtered accelerometer signals, peak

acceleration magnitude, peak jerk magnitude, and the medial/

lateral accelerometer range [similar to (7)] over the stride

were determined. For the peak eversion angular velocity, we

filtered the original gyroscope signal with a second-order, bi-

pass, low-pass 30 Hz Butterworth filter to better capture

running kinematic frequencies and to limit the effects of

transient peaks in the gyroscope signal near foot contact. The

peak eversion angular velocity was then computed for the first

20% of the stride to capture the foot contact portion of the

stride. All IMU metrics were extracted after the detected three

hops for the entire running loop.

Average heel and toe contact area along with peak toe and

peak heel pressures during the stance phase of running were

extracted from the plantar pressure. Running stance phase for

the plantar pressure was detected with implementing a

gradient decent algorithm on the total insole force to provide

foot-contact and toe-off events. The heel region was defined

as the rear 20% of the plantar pressure sensor. The toe region

was defined as the front 20% of the sensor. These two regions

are defined though the XSENSOR software and approximately

correspond to the respective regions of the anatomical foot.

All pressure metrics were extracted after the detected three

hops for the entire running loop.

The GPS coordinates from the watch were used to segment

the trail into three portions: uphill, top technical, and downhill

(see Figure 2 above) based on the latitude and longitude. As the

GPS watch was started immediately after the three

synchronizing hops, the biomechanical metrics were examined

for each section separately. Average heart rate for each section

was computed for each section to evaluate physiological

exertion. All biomechanical data processing was performed in

Python version 3.9.7.
Statistics

Linear mixed effects models were used to evaluate the

statistical difference between the Wrap and Lace shoes for the

subjective outcomes along with biomechanical outcomes. All

statistical analyses were performed in R Statistical Software

(version 4.1.2) with the LMER (35) and emmeans (36)

packages. We first created a linear mixed effects model to
frontiersin.org
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evaluate the difference in subjective responses between the

configurations (Config: Lace or Wrap) and average heart rate

from each trail section that utilized an independent (random)

intercept for each subject (Equation 1). Differences in average

heart rate were based on estimated marginal means.

Outcome � Config þ ð1jSubjectÞ (1)

All other biomechanical outcomes (“Outcome”) were then

evaluated with a mixed effects model with an independent

(random) intercept for each subject and independent slope

encoding the subject-specific effect of switching from one

shoe condition to the other (Equation 2). In this model, the

biomechanical outcomes (e.g., peak eversion velocity) from

each detected stride (IMU) or step (plantar pressure) from

each subject were utilized. Statistical differences for the

biomechanical outcomes were evaluated separately for each of

the different trail sections (i.e., uphill, top, downhill) as the

biomechanical outcomes are speed dependent. For all

statistical tests, α was set to 0.05. Presented percent

differences were with respect to estimated marginal means.

These models use a similar structure to recent work from our

lab (13, 14) and represent a natural way to model the subject-

specific responses to footwear (37).

Outcome � Config þ ðConfigjSubjectÞ (2)
Results

One subject was excluded from analyses because their trail

running laps had a range greater than one minute (2 min. 23 s).
Subjective outcomes

The Wrap shoe was subjectively rated better for uphill, level,

and downhill running (p≤ 0.002, Table 1). The Wrap shoe

provided subjectively more confidence than the Lace shoe

(p < 0.001). Though the Wrap shoe was rated with a better

overall fit (p < 0.001), the Wrap shoe was rated as tighter than

the Lace shoe in the forefoot (p = 0.04) with no differences in

rating for the midfoot or heel fit (p > 0.1).
TABLE 1 Subjective feedback regarding the performance of the shoes on d
standard deviations (N = 29).

Configuration Uphill Level Downhill Confidence

Wrap 8.3 ± 1.1 8.4 ± 1.2 8.4 ± 1.5 8.8 ± 1

Lace 7.3 ± 1.1 7.5 ± 1.3 6.3 ± 1.5 6.8 ± 1.5

p-value <0.001 0.002 <0.001 <0.001
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Exertion outcomes

There were no statistical differences in either subjective

(p = 0.46) or objective exertion outcomes (p > 0.17, Table 2).

The average heart rate difference between Wrap and Lace

shoes was less than one beat per minute on all sections of the

trail (Table 2).
IMU outcomes

Subjects ran slightly faster in the Wrap than in the Lace

shoe on all three sections of the trail (average difference: 0.03

to 0.05 m/s, p < 0.022, Figure 3, Table 2). Peak jerk, peak

acceleration, and the medial/lateral acceleration range were

not significantly different between the two shoes for any of

the trail sections (p > 0.35, p > 0.08, and p > 0.20, respectively).

The peak eversion velocity was on average 5% lower in the

Wrap than the Lace for the uphill (p = 0.025), technical top

(p = 0.008), and downhill (p = 0.043) portions of the trail.
Pressure outcomes

The average percent heel contact area during the stance

phase of running increased by an average magnitude of 2% in

the Wrap over the Lace for all sections of the trail (p < 0.001,

Figure 4, Table 2). The average toe contact area during the

stance phase of running was not different between the two

shoes for any section of the trail (p > 0.21). Both the peak

heel and toe pressures did not differ between the two shoes

for any section of the trail (p > 0.087).
Discussion

This was the first study to evaluate trail-specific footwear on

ecologically valid terrain. We observed a statistically significant

decrease in peak eversion velocity, slightly faster running speed,

and increase in heel contact area in the Wrap shoe with no

differences in qualitative or quantitative measures of exertion.

These biomechanical changes were accompanied by greater

qualitative scores in overall fit and confidence while running

on each part of the trail. Similarly, various BOA wrap
ifferent terrain and the fit of the shoes. Presented are study means ±

Overall Fit Forefoot Fit Midfoot Fit Heel Fit

8 ± 1.5 6.2 ± 1.5 5.3 ± 0.6 5.1 ± 0.7

6.5 ± 1.4 5.5 ± 2.1 5.1 ± 1.5 4.5 ± 1.4

<0.001 0.04 0.7 0.1
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TABLE 2 Biomechanical metrics examined during the trail running loop. The bolded metrics indicate that there were significant differences between
the Wrap and the Lace for each of the different trail sections. Presented are study means ± standard deviations (N = 29).

Metric Uphill Top Downhill

Wrap Lace Wrap Lace Wrap Lace

Heart Rate [BPM] 160 ± 11 159 ± 11 171 ± 11 171 ± 11 162 ± 11 161 ± 11

Running Speed [m/s] 2.71 ± 0.38 2.68 ± 0.38 2.54 ± 0.38 2.51 ± 0.38 3.32 ± 0.54 3.32 ± 0.54

Peak Jerk [m/s3] 24,660 ± 5202 24657 ± 5891 27,836 ± 5310 27,912 ± 614 40,343 ± 10,490 39,819 ± 11,207

Peak Acc. [m/s2] 124.7 ± 21.0 124.1 ± 21.5 135.9 ± 20.5 135.4 ± 22.1 185.9 ± 36.6 182 ± 35

Peak Ev. Vel. [°/s] 328.1 ± 77.0 343.8 ± 81.9 324.6 ± 71.6 341.2 ± 75.9 466.7 ± 121.2 490.2 ± 118.5

M/L Acc. Range [m/s2] 93.0 ± 22.6 95.2 ± 25.8 105.0 ± 19.4 107.2 ± 22.6 165 ± 40.4 167.4 ± 43.6

Heel Contact [%] 61.7 ± 10.8 59.3 ± 11.3 62.8 ± 8.6 60.5 ± 9.7 67.4 ± 5.9 65.4 ± 6.5

Peak Heel Press. [kPa] 180.1 ± 69.5 175.5 ± 65.7 207.1 ± 65.7 205.4 ± 68.4 382.3 ± 87.2 372.9 ± 91.5

Toe Contact [%] 70 ± 5.4 69.8 ± 4.8 70.9 ± 5.9 70.7 ± 5.4 69.2 ± 5.4 69 ± 5.4

Peak Toe Press. [kPa] 513.1 ± 102.9 509.7 ± 105 527.3 ± 100.2 523.9 ± 96.4 511 ± 86.7 516.8 ± 88.9

Abbreviations: Acc., Acceleration; Ev. Vel., Eversion Velocity; M/L, medial-lateral; Press., pressure.
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configurations have reduced frontal plane kinematics and times

to change direction during agility movements and were

accompanied by increased qualitative fit (13). In contrast to

two of our hypotheses, there were no differences in peak

accelerations or medial-lateral accelerations in the Wrap Shoe.

We also did not observe any differences in the toe contact

area, peak toe pressure, nor the peak heel pressure. Given the

observed differences in footwear conditions, we propose the

counterbalanced testing of product on a trail with wearable

sensors is a valid design that should be used for trail product

and may be extended to evaluate other biomechanical

interventions.
Biomechanical features of fit

The Wrap shoe exhibited biomechanical features of a better

fitting shoe along with subjects preferring the overall fit over the

lace. We observed a significant decrease in peak eversion

velocity in the Wrap shoe relative to Lace on each segment of

the trail. Similar effects have been observed in better fitting

footwear (17). Such a reduction may indicate that there is a

better coupling between the footwear and the shoe. In fact,

several subjects anecdotally mentioned that there was more

relative motion (or slop) in the Lace condition. Future studies

may want to examine the connection between this frontal

plane velocity and the risk of ankle sprains. Medial and lateral

ankle sprains result from excessive eversion/inversion angular

velocities and angles (39, 40) and ankle sprains are the most

common injury amongst trail runners (38).

We did not observe a difference between the Wrap and Lace

in surrogate measures for vertical loading rate, which has been

associated with footwear fit (17). Peak acceleration is proposed
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as a wearable-based surrogate for vertical loading rate (18), we

also investigated peak jerk as it provides the same time-

derivative as vertical loading rate. The acceleration and jerk

magnitudes were dominated by the vertical and anterior-

posterior directions, which could indicate these measurements

are more sensitive to sagittal plane fit. As we did not observe

a difference in the peak jerk nor the peak acceleration

magnitudes, but we did observe a difference in the peak

eversion velocity: the Wrap shoe has greater implications for

footwear fit in the frontal plane rotation rather than the

sagittal plane.

In addition to examining biomechanical metrics related to

fit, we explored the relations between subjective feedback and

metrics from wearables. Such connections between the

perception of fit and biomechanics have been previously

established using plantar pressure (23). We observed a

significant increase in the heel contact area in the Wrap shoe

which may contribute to the improvement in the “Downhill

Performance” score (Table 1). Over a third of the subjects

reported (in the free form response, see Supplementary

Material) that they were sliding forward within the Lace shoe

during downhill running which could result in less heel

contact area. However, the heel contact area may have

multiple implications as the Wrap had improved heel contact

area on each of the different sections of the trail. We

speculate that while the foot may slide forward within the

shoe during downhill running, it may slip in the vertical

direction during uphill running as runners tend to transition

towards a midfoot strike pattern (19), challenging the ability

of the upper to hold the heel in contact with the midsole.

Seven subjects stated that the Lace had more heel slipping,

which could implicate this metric as a quantitative estimate

for heel hold. In the future, new technologies may be needed
frontiersin.org
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FIGURE 3

IMU-based outcomes. The individual dots represent subject-average results. The black dots and adjoining error bars represent study averages and
standard deviations (N= 29). Asterisks (*) indicate significant differences between the Lace and the Wrap shoes for each of the different sections of
the trail. Above the peak jerk, peak eversion velocity (Ev. Vel.), and medial/lateral acceleration range (M/L Range) are example curves from one subject
and one stride to demonstrate how the metric was computed.
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to better connect subjective feedback regarding footwear sliding

with biomechanical outcomes such as plantar pressure that can

measure shear [which has thus far only been prototyped (41)].
The debate: Highly controlled vs.
ecologically valid

There are trade-offs between performing tightly controlled

experiments within the lab compared with more variable data

obtained in ecologically valid environments. Mainly, there is

greater variability on the trail vs. in the lab. This variability

can manifest from changes in temperature, trail conditions,

subject foot placement, wind, and more. While laboratory

settings tightly control these variables, trail running shoes

need to perform in such conditions and therefore need to be

tested as such. The variation in data collection conditions
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increases the variability in biomechanical outcomes, resulting

in the need to recruit enough subjects and collect enough

observations per subject (e.g., steps) to maintain statistical

power. A mixed effects model that includes each individual

step from each subject allows for the inter-individual

variability in biomechanical measures to be accounted for in

the analysis. Critically, footwear features such as fit and

outsole features are often designed to mitigate the exact

challenges that contribute to this variability such as sloppy

rocks and steep gradients. Therefore, to test these design

features it is essential to test these products on a trail. To the

second aim of our study, we performed a repeatable

experimental design to test trail products in an ecologically

valid setting while limiting confounding variables. We

segmented the trail into three unique sections via GPS (uphill,

flat, and downhill) to be included as a covariate, instructed all

participants to run at similar speeds for each section of a trail,
frontiersin.org
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FIGURE 4

Plantar pressure outcomes. The top row are heel outcomes with a depiction of the heel region in the XSENSOR insoles. The bottom rows are toe
outcomes with a depiction of the toe region in the XSENSOR insoles. The individual dots represent subject-average results. The black dots and
adjoining error bars represent study averages and standard deviations (N= 29). Asterisks (*) indicate significant differences between the lace and
the wrap shoes for each of the different sections of the trail.
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and used a trail loop that could be completed four times within

a single session without substantial changes in RPE so subjects

could be tested in a counterbalanced order. We also measured

their running speed, heart rate, and rating of perceived

exertion, which could be included as covariates in our

statistical model. For instance, including running speed

(measured via IMU, Figure 3) within a statistical model

(Equation 3) did not change the outcomes of the study;

however, it did reduce the p-values for each of the IMU

outcome significant findings.

Outcome � Config þ Speed þ ðConfigjSubjectÞ (3)

Trail terrain is a critical benefit to evaluating the effects of

footwear features. In the laboratory, it is common to evaluate

shoe features [e.g., (42, 43)] and biomechanical adaptations

(44) on an instrumented treadmill. Treadmill running

instigates unique biomechanics [as compared to overground

(27),], which can be altered with changing the treadmill belt

surface (45) or technicity (11). Such unique adaptations can
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influence footwear feature biomechanical effects (28).

Furthermore, transitioning from the treadmill to the trail

induces unique biomechanical adaptations (7). As the

footwear we studied here are intended to be used on trail, we

propose that these shoes must be tested with the specific

biomechanical adaptations that are instigated by trail running.

Though we observed difference between the lace and wrap

upper configurations on trail, it is an open question as to if

footwear interventions instigate similar biomechanical effects

indoors vs. outdoors.
Limitations

There are several limitations to acknowledge. Both the

experimenters and the subjects were unable to be blinded to

the footwear conditions. Additionally, the insole and IMU

data were not able to be aligned post-hoc. As such, statistical

analyses that account for running speed (Equation 3) could

not be performed with the plantar pressure outcomes.
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Conclusion

The wrap shoe provided improved qualitative and

quantitative fit as compared to the lace version of the same

shoe. Moving forward, shoe manufacturers and trail runner

alike may want to choose shoes with wraps over laces for

enhanced fit.
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