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Running mechanics are modifiable with training and adopting an economical

running technique can improve running economy and hence performance.

While field measurement of running economy is cumbersome, running

mechanics can be assessed accurately and conveniently usingwearable inertial

measurement units (IMUs). In this work, we extended this wearables-based

approach to the Cooper test, by assessing the relative contribution of running

biomechanics to the endurance performance. Furthermore, we explored

di�erent methods of estimating the distance covered in the Cooper test using

a wearable global navigation satellite system (GNSS) receiver. Thirty-three

runners (18 highly trained and 15 recreational) performed an incremental

laboratory treadmill test to measure their maximum aerobic speed (MAS) and

speed at the second ventilatory threshold (sVT2). They completed a 12-minute

Cooper running test with foot-worm IMUs and a chest-worn GNSS-IMU

on a running track 1–2 weeks later. Using the GNSS receiver, an accurate

estimation of the 12-minute distance was obtained (accuracy of 16.5m and

precision of 1.1%). Using this distance, we showed a reliable estimation [R2 >

0.9, RMSE ǫ (0.07, 0.25) km/h] of the MAS and sVT2. Biomechanical metrics

were extracted using validated algorithm and their association with endurance

performance was estimated. Additionally, the high-/low-performance runners

were compared using pairwise statistical testing. All performance variables,

MAS, sVT2, and average speed during Cooper test, were predicted with an

acceptable error (R2 ≥ 0.65, RMSE≤ 1.80 kmh−1) using only the biomechanical

metrics. The most relevant metrics were used to develop a biomechanical

profile representing the running technique and its temporal evolution with

acute fatigue, identifying di�erent profiles for runners with highest and lowest

endurance performance. This profile could potentially be used in standardized

functional capacity measurements to improve personalization of training and

rehabilitation programs.
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Introduction

Training prescription for runners is typically based on

personal physiological capacity (Reilly et al., 2009), with training

intensity determined by a certain fraction of variables such as

maximal oxygen uptake (VO2max), maximal heart rate (HRmax),

or others, usually assessed during exercise with increasing

intensity (Nes et al., 2013). Both physiological variables are

indicators of cardiorespiratory capacity (Seiler, 2011). However,

given the difficulty in measuring these variables in field training

sessions, other metrics may be more convenient to use. For

example, the maximal aerobic speed (MAS), i.e., running speed

when VO2max is reached, is commonly used to prescribe

training intensity (Berthoin et al., 1994). Another approach

for prescription of training intensity is to use zones near the

ventilatory threshold (VT) and/or lactate threshold (LT) because

they represent the submaximal response of the individual

athletes and indicate their ability to sustain a high fraction

of VO2max for an extended period of time (Bassett, 2000).

Athletes exhibit different levels of lactate accumulation for

the same fraction of VO2max, so using thresholds instead

of VO2max may produce less interindividual variation in the

metabolic response and create a more homogeneous training

stimulus (Mann et al., 2013). An important reason for using

VT is polarized endurance training (PET), which is based on

a training that is mostly below the first VT (VT1) and10–

20% being at/and above the second VT (VT2) (Muñoz et al.,

2014). PET may increase positive adaptation to training stimuli

and reduce the risk of overtraining, chronic fatigue, and injury

(Muñoz et al., 2014; Wolpern et al., 2015). Evidence shows that

elite endurance athletes perform their training mainly below
VT1/LT1 and/or clearly above the VT2/LT2, thus highlighting
the importance of these thresholds in training (Haugen et al.,
2022).

The gold standard for measuring VO2max and VT2, and

consequently the MAS and speed at VT2 (sVT2) is a treadmill

test in the laboratory with gas exchange analysis (Bellenger et al.,

2015). However, such a test requires highly trained personnel,

is expensive, and only one person can be tested at a time.

To overcome these constraints, it seems attractive to develop

and conduct simple field tests that do not require extensive

equipment, are inexpensive and can be integrated into athletes’

routines. In these tests, measurement accuracy is partially

sacrificed in favor of ease of use and potential for repeatability

throughout the season for multiple athletes simultaneously.

An example is the Cooper field test (Cooper, 1968), which is

used to estimate VO2max based on the total distance run. It

is a simple test that involves 12 mins of track running with

self-paced maximal effort and provides a good assessment of

VO2max, MAS, and a reasonable prediction of half marathon

time (Alvero-Cruz et al., 2019). Although incremental treadmill

testing has been used to predict VT using portable near-infrared

spectroscopy (NIRS) (Rodrigo-Carranza et al., 2021) or portable

heart rate monitor (Gronwald et al., 2020), to our knowledge

there is currently no simple field test for predicting sVT2.

The performance of long-distance runners depends not only

on the VO2max and the ability to maintain a high fraction

of VO2max during running but also on running economy

(RE) (Moore, 2016; Folland et al., 2017; Preece et al., 2019).

RE is the metabolic energy expenditure for a given speed

during submaximal running and can vary by up to 30%

among runners with a similar VO2max (Daniels, 1985; Morgan

et al., 1989). Running mechanics determine the mechanical

power and propulsion produced for a given energy expenditure,

thus influencing RE. Running biomechanics during ground

contact, particularly during the propulsive phase, show a strong

correlation with RE during treadmill running (Saunders et al.,

2004; Beattie et al., 2014; Moore, 2016). Measuring RE during

field running requires the use of a portable gas analyzer,

which is expensive and impractical, whereas field running

biomechanics can be accurately and conveniently assessed using

wearable inertial measurement units (IMUs) (Strohrmann et al.,

2012; Buckley et al., 2017; Benson et al., 2018). The use of

an economical running technique can improve RE and thus

performance (Saunders et al., 2004; Moore, 2016). Therefore,

evaluating running biomechanics during a field capacity test

could greatly improve endurance performance information

and help identify the biomechanical factors that contribute to

endurance performance.

Research in this direction has mainly focused on

differentiating between highly experienced and inexperienced

runners based on their running technique. Clermont et al.

and Carter et al. used data from IMU and collected using

fixed-speed treadmill protocols (Clermont et al., 2019b; Carter

et al., 2022). Preece et al. extended this approach to run

overground over a distance of 32m at four different fixed speeds

and analyzed the running kinetics and kinematics at three

different steps during the run (Preece et al., 2019). While these

studies showed promising results and highlighted important

biomechanical characteristics of high-performance runners,

they did not account for the natural variability (Meardon et al.,

2011; Mo and Chow, 2018) and asymmetry (Radzak et al.,

2017; Beck et al., 2018) that occur at self-selected speeds, nor

did they consider the effects of fatigue when running longer

distances (Prigent et al., 2022), which are common in field

tests of endurance capacity. The use of wearable IMU and

global navigation satellite systems (GNSS) has shown promise

in the improvement and augmentation of field testing for

countermovement jump (Picerno et al., 2011), single-leg hop

(Ahmadian et al., 2020), sprint (Apte et al., 2020), balance

(Johnston et al., 2016), and so on. In this study, we aim to

extend this wearables-based approach to the Cooper test by

evaluating the relative contribution of running biomechanics to

the endurance performance. In addition, we investigate whether

the use of biomechanical parameters improves the prediction

of MAS and sVT2 during the field test and explore different
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methods for estimating the distance covered in the Cooper test

using a wearable GNSS receiver.

Materials and equipment

Participants and study design

We conducted measurements with 18 highly trained (18

males, age 27.7 ± 5.4 years; height 178.8 ± 4.8 cm; weight 69.6

± 10.1 kg; personal best below 90 mins for a half-marathon)

and 15 recreational runners (5 females, 10 males, age 31.5 ± 5.9

years; height 173.7 ± 9.9 cm; weight 67.8 ± 14.7 kg), all runners

aged between 18 and 50 years. To recruit highly trained runners,

if there was no time reference in this distance, we classified

the participants based on their personal best on 10 km or 5 km

with the Riegel Formula’s half marathon time estimation (23).

The university human research ethics committee (HREC 053-

2020) approved the study and all participants provided written

consent before the data collection. Participants performed an

incremental laboratory treadmill test tomeasureMAS and sVT2.

After 1–2 weeks, they completed a Cooper running test with

wearable sensors on a running track.

Laboratory test

Prior to the lab test, participants were instructed to have

no meals 2 h before the test, and not have performed intense

training 48 h prior to the test. Height and weight of the

participants were measured before they performed a maximal

incremental running test on a treadmill (Pulsar, HP Cosmos,

Nussdorf-Traunstein, Germany), while wearing a mask for

Cortex Metalyzer 3B gas exchange analyzer (Cortex Biophysik

GmbH, Leipzig, Germany) and a heart rate belt (H10, Polar

Electro OY, Kempele, Finland) on the chest. For the highly

trained group (Figure 1A), the testing protocol involved 3 mins

of rest, a 5-min warm-up at 9 kmh−1, followed by an increase

in the speed of 1 kmh−1 every minute until 14 kmh−1,

and finally an increment of 0.5 kmh−1 every minute until

volitional exhaustion. For the second group (Figure 1B), the

protocol involved a 7 kmh−1 start, followed by increments

of 0.5 kmh−1. Oxygen consumption (VO2), carbon dioxide

production (VCO2), ventilation (VE), and heart rate (HR)

were measured continuously throughout the test. Participants

were provided encouragement throughout the test to ensure

attainment of maximal effort.

Maximal effort was controlled according to the following

criteria: plateauing of the VO2-speed relationship with VO2

increasing by <2 ml·kg−1 · min−1 despite speed increase,

a peak respiratory exchange ratio (RER) >1.10, or peak HR

within 10 beats min−1 of the age-predicted maximum. Gas

exchange variables were averaged on 20 s. The speed value at

which the VO2 plateau began was considered as MAS. Second

VT (VT2) was determined according to 3 criteria (Beaver

et al., 1986; Cerezuela-Espejo et al., 2018) by an experienced

exercise physiologist: (1) increase in both respiratory equivalent

(VE/VO2 and VE/VCO2), (2) a decrease in PETCO2, and (3) a

loss of linearity fromVE/VCO2 plots. The speed attained at VT2

was considered as sVT2.

Field test

After 10 mins of warm-up, participants were equipped with

an IMU (Physilog 5, Gaitup SA, Switzerland) on each foot and

a GNSS-IMU sensor (Fieldwiz, ASI, Switzerland) on the chest

using a belt with electrodes (Polar Pro Strap, Polar Electro

Oy, Finland). Apart from the sensor setup (Figure 2C), the

participants dressed as they would for an endurance running

race. The Fieldwiz and Physilog 5 wearable sensors were chosen

because they have already been used successfully for continuous

analysis of running in the field and do not hinder the running

FIGURE 1

Protocol and sensor setup. (A) Incremental speed protocol till volitional exhaustion for highly experienced runners. (B) Incremental speed
protocol till volitional exhaustion for amateur runners. (C) Sensor configuration for field measurement. IMU, inertial measurement unit; GNSS,
global navigation satellite system; acc, accelerometer; gyr, gyroscope.
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movement (Prigent et al., 2022). Fieldwiz was used with a

sampling frequency of 200Hz for the IMU, 250Hz for the ECG,

and 10Hz for the GNSS receiver. The ECG was not utilized

as the focus of this study was on biomechanical contributions

to endurance performance. The Physilog 5 IMU was sampled

at 512Hz, with a range of ±16 g for the accelerometer and

±2,000 deg/s for the gyroscope. The participants ran on a

400m tartan track for 12 minutes and were instructed to cover

highest distance possible. They were asked to rate their perceived

fatigue from 1 to 10 before/after the run using the rating of

fatigue (ROF) scale (Micklewright et al., 2017), which considers

1 as no fatigue and 10 as maximal. The participants performed

the test in groups of 2–4 to increase their motivation. Two

instructors provided verbal encouragement, supervised the test,

and calculated the total distance covered in 12 mins by counting

the number of 400m laps and the meters covered in the final

lap. The distance (Dref) was measured by considering the closest

scale on the track, which provides a resolution of 10m and are

usually used to measure distance during training.

Methods

The flowchart of the overall procedure for the pre-

processing, parameter estimation, and extraction and selection

of metrics is presented in Figure 2, and detailed explanations are

provided in the sections below. In addition, Figure 3 provides

detailed information about the selection of metrics and Figure 4

about the distance estimation.

Preprocessing and parameter estimation

The pre-processing steps include synchronization of the

sensors and segmentation of the Cooper test run (Figure 2)

for each participant. To synchronize the Fieldwiz and Physilog

5 sensors, we performed a shock movement, before and after

the 12-min run. This movement consists of a quick up and

down movement on the vertical axis while holding all sensors

together (Caruso et al., 2019). Since the same acceleration

data were recorded on both sensors, we computed the lag

between their acceleration signals with cross-correlation and

used this lag to adjust their timestamps. Segmentation of data

for each participant was done on the basis of the magnitude of

acceleration norm from the IMU on the right foot, the ground

speed data from GNSS and the known duration of 12 mins.

We removed outliers that were more than two standard

deviations away from the mean value over a 1-min sliding

window from the GNSS ground speed signal and replaced them

with linearly interpolated values. The 12-min runwas segmented

into individual gait cycles using the angular velocity values of

the right foot at mid-swings, following a validated algorithm

(Falbriard et al., 2018). For each gait cycle, we estimated the

gait temporal parameters like contact time (CT), flight time

(FT), swing time (ST), and gait cycle time (GT), and kinematics

parameters such as peak swing velocity of the foot (PSV), foot

strike angle in sagittal plane (FSA), and foot eversion angle

(FEA) at initial contact (Falbriard et al., 2018, 2020). Duty factor

(DF) is one of the main descriptors of running style, which

we estimated as the percentage ratio of CT to GT (Alexander,

1991) for every gait cycle. Using the spring-mass model gait

model (Morin et al., 2005), we computed the vertical stiffness

(VS) due its importance for efficient storage and return of

elastic energy (da Rosa et al., 2019). Meyer et al. have presented

the computation of the above-mentioned parameters in detail

(Meyer et al., 2021). Fatigue has an effect on asymmetry of gait

spatiotemporal parameters, and thus to understand its influence

on endurance performance, we quantified the asymmetry using

the symmetry index (SI):

SI = 2 x
|XL − XR|

(XL + XR)
x 100% (1)

FIGURE 2

Flowchart of the overall procedure for extraction and selection of metrics. LASSO, least absolute shrinkage and selection operator; CAS, average
speed during the 12-minute Cooper test.
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TABLE 1 List of biomechanical parameters (units) extracted using the data from foot IMU sensors, the features computed on these parameters, and

the time segments over which they are computed.

Biomechanical parameters 1. Contact time (CT) (ms), 2. Flight time (FT) (ms), 3. Swing time (ST) (ms), 4. Gait cycle time (GT) (ms), 5. Vertical stiffness (VS)

(kNm-1), 6. Foot strike angle (FSA) (◦), 7. Foot eversion angle (FEA) (◦), 8. Peak swing velocity (PSV) (◦s-1), 9. Duty factor (DF)

(%) 10. CT asymmetry (CTSI) (%) 11. FT asymmetry (FTSI) (%) 12. ST asymmetry (STSI) (%) 13. PSV asymmetry (PSVSI) (%)

Features 1. Mean (µ), 2. Variability (σ)—not for asymmetry parameters, 3. Slope (m)

Time segments 1. Total (t): Minute 2nd to 11th, 2. Steady (sy): Minute 5th to 8th, 3. Start (s): 2nd minute, 4. End (e): 11th minute, 5. Delta (d): 11th

minute-−2nd minute

Metric example Mean feature of vertical stiffness for total time segment: µVSt

An example notation for one metric is provided in the last row.

where XR and XL are parameters for the right and left limbs.

We first computed SI for the gait cycle time to check the validity

of the SI, as the cycle time should present an SI close to zero.

Following that, we used SI (Figure 1) with four gait parameters,

CT (CTSI), flight time (FTSI), swing time (STSI), and PSV

(PSVSI), based on their evolution with acute fatigue during

endurance running (Apte et al., 2021; Prigent et al., 2022). All

the computations were done using MATLAB R2020b, and the

plots showing the evolution of biomechanical parameters and

running speed during the Cooper test were created using the

Gramm package (Morel, 2018) and smoothing (Eilers, 2003) for

averaging the trajectories.

Extraction of metrics

To address the influence of accelerating at the beginning

of the test and strategy of exerting higher near the end of

the test, we removed the first and last minute of the data

from subsequent analysis. Within those 10 mins, for each

biomechanical parameter, we considered five different time

segments (Table 1) for extraction of metrics:

- Total (t): all 10 mins.

- Steady (sy): running at the middle (Minute 5th to 8th) of

the test.

- Start (s): first minute of the remaining 10 mins.

- End (e): last minute for the same.

- Delta (d): difference between the parameter values for the

start and end segments.

For all the time segments, three features were

extracted—mean (µ): arithmetic mean of parameter values

over one time segment; variability (σ): standard deviation

of parameter values over a window of 10 gait cycles and the

arithmetic mean of these windows over a time segment; and

slope (m): ratio of the difference between the last and the first

parameter values of a time segment and the length of the time

segment. Mean (µ) and slope (m) features were computed

for all biomechanical parameters, whereas variability (σ) only

for the first nine parameters and not asymmetry parameters.

Following this method, we obtained a total of 175 metrics

using 13 biomechanical parameters, five segments of time, and

three features. For example, µVSt denotes “Mean feature (µ)

of vertical stiffness (VS) for Total time segment (t).” For each

parameter (except asymmetry), we computed one value per gait

cycle for the left and right foots but used only the information

from the right foot for the extraction of metrics.

Categorization

In addition to physiological aspects, performance during

endurance running depends on the RE, the ability of runners

to efficiently translate metabolic energy into mechanical work,

and the capacity to sustain an efficient running technique over

a relatively long duration (Folland et al., 2017; Moore et al.,

2019; Preece et al., 2019). Based on these findings, we divided

the above-mentioned 175 metrics into five different categories,

with the goal of understanding the relative contribution of each

category to the endurance performance:

1. Technique: It is a set of metrics that describe the running

technique. Higher VS (lower vertical oscillation) has been

associated with better RE (Moore, 2016; Zhang et al.,

2021), durations of CT and FT have been used to classify

running styles (Gindre et al., 2015), FSA and FEA directly

influence the direction and magnitude of impact force

at first contact (Lieberman et al., 2010; Muniz-Pardos

et al., 2018; Hoenig et al., 2020), and DF is considered an

independent descriptor of running style (vanOeveren et al.,

2021). Thus, we considered only the mean feature (µ) for

CT, FT, VS, FSA, FEA, and DF for all time segments except

Delta in this category.

2. Regularity: It is the category of metrics that quantify the

variability of gait and include only the variability feature

(σ) for all parameters except asymmetry, across all time

segments except Delta. Variability of stride has a functional

purpose, considered to offer flexibility of adaption to task

and environmental constraints (Hausdorff, 2007). Stride

time variability has been previously studied to investigate
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differences in trained and non-trained runners (Nakayama

et al., 2010), and also to investigate the influence of acute

fatigue (Gindre et al., 2015; Mo and Chow, 2018).

3. Asymmetry: As the name implies, this set of metrics

quantify the asymmetry of gait cycles, using only the mean

feature (µ) for CTSI, FTSI, StSI, and PSVSI, across all time

segments except Delta. A 10% increase in CTSI can lead to a

7.8% increase in the metabolic cost of running (Beck et al.,

2018) and increasing asymmetry has been linked to overuse

injuries due to increase in kinetic demands (Radzak et al.,

2017).

4. Fatigue: Acute fatigue has an adverse effect on technique

during prolonged running, by increasing the CT, DF,

reducing FSA, VS, and so on (Apte et al., 2021; Meyer

et al., 2021; Prigent et al., 2022). The ability to maintain

an efficient running technique for a longer duration can

thus improve the endurance performance. To quantify this

ability, for all parameters, we used the µ, σ, and m features

for Delta time segment and only the slope feature (m) for

other segments.

5. Pace: We added another category for metrics that

quantify the rate of movement and did not fit into

the previous four categories. Although the gait cycle

time (cadence) is not necessarily linked to efficiency

of technique or fatigue resistance, it is often used for

the performance evaluation and manipulation of running

speed via different pacing strategies (Hausswirth and

Brisswalter, 2008; Musgjerd et al., 2021). In addition

to µ feature for GT, we also included the µ feature

for ST and PSV for all time segments except Delta, in

this group.

Selection of metrics

To select the metrics that contribute to endurance

performance, we considered three performance variables, the

MAS and sVT2 obtained in the lab measurements, and the

average speed during the Cooper test (CAS). Unlike the VO2max,

it is convenient to prescribe and measure training intensity in

terms of MAS and sVT2 due to the ease of measuring speed

in the field. Use of CAS instead of total distance allows us

to maintain the same units (kmh−1) and similar magnitude

across the performance variables, thus enabling a reasonable

comparison for the errors in their prediction. To streamline

the number of metrics, we first normalized each metrics using

z-score normalization across 33 participants and tested the

normalized metrics for their Pearson correlation with each

other. Within metric pairs showing a correlation coefficient

above 0.95, the metric computed over a larger time segment

was retained. Using this multicollinearity property (Mansfield

and Helms, 1982), we reduced the number of metrics. To

further reduce the metrics, their Pearson correlation coefficient

(r) was computed in relation to MAS, sVT2, and CAS, and

only the metrics with r ≥ 0.3 were retained for the final

modeling step.

In the next step, to investigate the combined predictive

power of the biomechanical metrics and Dref, we estimated the

MAS and sVT2 using linear regression, once using Dref and

once with the Dref and the biomechanical metrics selected in

the previous steps. To understand the relative contribution of

biomechanical metrics to endurance performance, we repeated

the same process for MAS, sVT2, and Dref with only the

biomechanical metrics, using the least absolute shrinkage and

selection operator (LASSO) method for metric selection (Hastie

et al., 2001). This is a forward-looking selection for linear

regression, which enables interpretability of the model, and

can also enhance the prediction accuracy. Using leave-one-

out-cross-validation with the LASSO method (Shao, 1993), we

estimated the coefficients for each metric for predicting the

three performance variables. Within the results of the LASSO

method, we picked the coefficient vector with the least number

of non-zero coefficients that led to an error of one standard

deviation higher than that of the minimum mean-square

FIGURE 3

Procedure for selection of performance metrics for the biomechanical profile.
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error (Hastie et al., 2001). This led to a minimal model with

a reasonable level of accuracy in prediction and reduced the

chance of overfitting (Loh, 2011). Among the metrics with non-

zero coefficients, we removed those with a relative weight of less

than 5% of the total weights, due to their minimal importance.

Furthermore, we summed the absolute weights of variables

within the same category to quantify the relative contribution of

each category to the regression model. The prediction results of

all the regression processes are presented in terms of the cross-

validated determination coefficient (R2) and the root-mean-

square error (RMSE) in kmh−1. R2 determines the degree of

association between predicted and actual performance variables,

and the RMSE quantifies the difference between them. The

overall process is illustrated in Figure 3.

Research has shown that non-linear shifts in gait parameters

with the increase in speed possibly are related to a transition

to a sprinting-like technique (Burns et al., 2021) at high speeds.

To consider these non-linear transitions and to complement the

selection of metrics through linear methods, we also conducted

statistical analysis to investigate the differences between the

10 highest (HP) and 10 lowest (LP) performing participants

according to MAS, sVT2, and Dref. The reason for considering

all three factors separately is that the participants comprising HP

and LPmay differ depending on the performance variable under

consideration. The metrics selected using multicollinearity were

compared using a pairwise Welch’s t-test with the statistical

significance set at p < 0.05. This test was preferred over the

Student’s t-test due to unequal variances for the fast and slow

groups (Ruxton, 2006). The effect size was calculated using

the same formulation as Cohen’s d (Gignac and Szodorai,

2016). For every performance variables, the metrics that were

selected through LASSO and those with statistically significant

differences were combined (union of sets). Following this, an

intersection of these three (MAS, sVT2, and Dref) sets was

used to select metrics that contribute mainly to the endurance

performance and a visual profile representing these metrics and

their respective categories was developed. As an illustration

of its utility, we represented the five highest and five lowest

performing participants according to their MAS and sVT2 on

this profile.

Distance estimation

Cooper test uses the total distance Dref (in km) covered in

12 mins to estimate the VO2max (ml kg−1 min−1) and MAS as

follows (Léger and Mercier, 1984; Bandyopadhyay, 2015):

V̇O2max = 22.351× Dref − 11.288

MAS =
V̇O2max

3.5
(2)

Since the MAS estimation is directly dependent on the

distance, it is important to estimate the distance accurately.

The reference value for this distance (Dref) corresponds to the

distance measured at the 10m markers on the track. We used

five different methods for estimating the distance (Figure 4)

and compared them to the reference (Dref) using Bland-Altman

analysis, mean absolute error (MAE), and percentage (Median

± IQR) error. We computed the percentage error for every

method across all participants. Below is a brief description of

each method:

FIGURE 4

Di�erent methods for the estimation of distance covered over the 12-min run.
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1. The distance at the end of 12 minutes obtained from the

strapdown integration of GNSS ground speed (without

outliers) was considered the total distance (DS).

2. Using the Haversine formula (Robusto, 1957) with the

latitude and longitude coordinates from the GNSS sensor,

distance at the end of test was considered as total distance

(DC).

3. The average distance (da) between the peaks on the latitude

signal was considered to be the time required to complete

one lap. This was followed by estimating the number of laps

by counting the number of peaks (np) and length of signal

(ls) outside the peaks was computed. Since the length of one

lap is 400m, the total distance was computed as:

DL = (np − 1)× 400+
ls

da
× 400 (3)

4. Combination of the first and third methods, by counting

the number of laps using peak detection and using

strapdown integration of ground speed on the signal

outside the peaks. The total distance (DLS) is the sum of

number of laps multiplied by 400 and the total distance on

the strapdown integration before and after the first and last

peaks, respectively.

5. Combination of the second and third methods, by

counting the number of laps using peak detection and

using Haversine formula with the coordinates on the signal

outside the peaks. The total distance (DLC) is the sum of

number of laps multiplied by 400 and the distance obtained

with the coordinates before and after the first and last

peaks, respectively.

Results

All 33 participants completed the 12 mins of Cooper

test with a maximal effort, reporting an ROF ≥ 8 at the

end. Representative trajectories are shown in Figure 5A for

participants grouped according to Dref, with the latitude and

longitudinal values aligning well with those of the track at

the stadium. Participant’s running speed (Figure 5B) generally

decreased over 12 mins of Cooper test, except for the first and

last minute, which showed an increase. As expected, the HP

group showed higher mean speed and a lower reduction in speed

with time. Figure 5C shows the performance of participants for

the MAS, sVT2, and CAS, with the range of speeds being 9

kmh−1 to 21.5 kmh−1 and an average difference of around

7 kmh−1 between the top and bottom 10 participants for all

three performance variables. However, the top 10 participants

according to each variable were not the same. The details on

their performance can be found in Supplementary Table S1.

Distance and speed estimation

The distance estimated using all five methods showed a

median error of −0.6 to −8.4%, with the strapdown integration

of speed presenting the highest MAE (250m) and the lap

FIGURE 5

Performance of participants grouped according to Dref and GNSS tracking. The smoothed mean of original profiles and the 95% confidence
interval is shown for easier comprehension of their overall group trend and and plotted using the Gramm toolbox (Morel, 2018). (A)
Representative trajectory of the run during the Cooper test. (B) Representative speed profile of the participants during the Cooper test. (C)
Xoxplot showing the median and interquartile range of performance across three speed variables. (D) Median and IQR of error in the estimation
of distance using five di�erent methods, with C, L, and S corresponding to methods based on Haversine formula with the GNSS coordinates, lap
counting, and strapdown integration of ground speed. LC and LS refer to a combination of lap counting with methods based on ground speed
and coordinates respectively.
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TABLE 2 Error rates for the five distance estimation methods.

Method MAE (m) MAE (%) Bias (m) CV (%) LOA 1 (m) LOA 2 (m)

DS 250 8.9 −250 4.1 −30 −470

DC 102.7 3.4 −83 3.7 120 −290

DL 30.4 1.07 −17 1.2 49 −84

DLS 43.5 1.6 −36 1.3 38 −110

DLC 26.5 0.9 −16 1.1 44 −76

Themean absolute error (MAE) is by subtracting each estimated distance from the reference value. The bias, coefficient of variation (CV), and the limits of agreement (LOA) were obtained

through Bland-Altman plots.

counting plus Haversine formula presenting the lowest (26.5m)

error (Table 2). All three methods based on lap counting show

a considerably lower IQR and CV for error, relative to the

other two methods (Figure 5D). All the methods led to an

underestimation of the distance compared to the measurement

(Dref) with markings on the track. Results of the Bland-Altman

analysis are provided in the Supplementary Figures S1–S5.

Estimation of the MAS and sVT2 using the Dref as predictor

metric in linear regression led to R2 values of 0.93 and 0.93,

respectively, and RMSE of 0.91 and 0.88 kmh−1, respectively.

We obtained following linear equations:

MAS = 5.0629 × Dref + 1.5427 (4)

sVT2 = 4.6486 × Dref + 0.7878 (5)

where MAS and sVT2 are in kmh−1 and Dref in km.

Bland-Altman analysis for the prediction of sVT2 using this

equation is presented in the Supplementary Figure S6. Adding

the biomechanical metrics to the Dref as additional predictor

metrics marginally improved the prediction, with R2 values of

0.93 and 0.93, and RMSE of 0.88 and 0.81 kmh−1, respectively,

for MAS and sVT2.

Selection of metrics

Using the method explained in Section Extraction of metrics

and Table 1, we obtained a total of 175 biomechanical metrics

for the 13 biomechanical parameters. Apart from SI parameters,

the evolution of other parameters during the run is presented

in Supplementary Figure S7. The number of metrics are reduced

from 175 to 110 using multicollinearity, which were then

used for statistical analysis and tested for correlation with the

MAS, sVT2, and CAS. The final number of metrics for each

performance variables were 33, 35, and 28, respectively. The

cross-validated values for the fit of LASSO regression model

for each performance variable are presented in Table 3. The

model fits all variables with a R2 ≥ 0.65 and a RMSE of

≤1.80 kmh−1. The highest R2 and lowest RMSE is for the

prediction of MAS. The biomechanical metrics selected through

LASSO method for each performance variable are reported in

Table 3, with a positive coefficient value indicating a positive

contribution to the performance and vice-verse for negative

values. The sum of coefficients for metrics belonging to the same

category and their relative contribution is shown in Figure 6A.

All performance metrics present a different relative contribution

for each category. MAS shows a similar contribution for fatigue

(29.2%) and technique (31%) categories, but sVT2 (40.4%) and

CAS (46.5%) show a dominant contribution of the technique

category. Exact value of the LASSO coefficients can be found in

the Supplementary Table S2.

Metrics showing a statistically significant (p < 0.05)

difference between highest and lowest performing participants

are also reported (Table 3). The effect sizes can be found in

the Supplementary Table S3. MAS, sVT2, and CAS led to the

selection of different biomechanical metrics, with the highest

number of metrics selected for MAS through LASSO regression

and for sVT2 through statistical testing. The metrics common

to each performance variable across both methods were selected

and used to create a biomechanical profile for the participants.

The metrics included on the profile are (i) Technique: µCTt,

µVSt, µDFt, µFEAt; (ii) Regularity: σCT, σFT, σGT; (iii)

Asymmetry: none; (iv) Fatigue: µCTd, mFSAt, mFTsy; and

(v) Pace: µGTt, µPSVt. Figures 6B,C show the profiles for

the top and bottom 5 participants ranked according to their

MAS, respectively.

Discussion

In this work, we investigated the association between

endurance performances quantified by three variables: MAS,

sVT2, and CAS, and the biomechanical metrics measured

during the performance of a Cooper test protocol. The

selected metrics and the rationale behind their selection

are discussed in this section. This is preceded by a short

deliberation on the estimation accuracy of the distance ran

during the test and the subsequent prediction of the three

performance variables.
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TABLE 3 Biomechanical metrics selected through LASSO regression and statistical testing.

Performance variables Fit quality LASSOmetrics

RMSE R2 Positive contribution Negative contribution

MAS 1.62 kmh−1 0.75 µVSt, µPSVt, mSTt, mFSAt σCTd, µCTt, σCTt, σGTt, σGTs, µCTd, mFTe, mFEAe,

σDFt,

µGTs, µFEAt

sVT2 1.78 kmh−1 0.65 µVSt, µPSVt, σFEAt, mVSe, mFSAt, mFTsy σGTs, σGTt, µDFt, µGTs, σCTt, µFEAt

CAS 1.80 kmh−1 0.66 µVSt, µPSVt µGTs, σCTt, µCTt

Pairwise statistical testing metrics

MAS µCTt***, µGTt**, µVSt***, µFEAt***, µPSVt**, µDFt**, σCTt**, σFTt**, σFEAt*, mFSAt*, mFTsy**, µGTs**, µFSAs*, σCTs**, σFTs*,

σGTs**, σFEAs*, mPSVs*, σCTe*, σFTe***, mFEAe*, µCTd*

sVT2 µCTt***, µGTt**, µVSt***, µFSAt**, µFEAt**, µPSVt**, µDFt**, σCTt**, σFTt**, σFEAt*, mFSAt**, µGTs**, µFSAs***, σCTs**, σFTs*,

σGTs**, σFSAs*, σFEAs*, mFSAs*, µFSAe*, σCTe*, σFTe**, mVSe*, µFSAd*, µCTd*

CAS µCTt***, µGTt***, µVSt***, µFEAt*, µPSVt***, µDFt**, σCTt**, σFTt**, mFSAt**, mFTsy**, µGTs***, σCTs**, σGTt*, mFSAs*, σCTe*,

σFTe*, µCTd*

Positive contribution denotes a positive coefficient obtained through the LASSO regression and vice-versa for negative contribution. Significant differences for pairwise statistical testing

are indicated with *p ǫ (0.01, 0.05), **p ǫ (0.001, 0.01), and ***p ≤ 0.001.

FIGURE 6

Selected metrics and their categories. (A) Relative contribution of metric categories to each endurance performance variable. (B) Biomechanical
profile for top 5 (high performance) participants according to their MAS. (C) Biomechanical profile for bottom 5 (low performance) participants
according to their MAS.

Distance and speed estimation

Estimating the distance using all three lap counting methods

led to better precision than the methods using strapdown

integration of speed and Haversine formula alone. The lack of

precision or the higher IQR of the error is likely due to the bias

and the noise in the GNSS ground speed and latitude/longitude

signal. The integration of the data from these signals leads to

signal drift, which can vary considerably across participants,

leading to a higher IQR of error. The GNSS ground speed

is typically estimated using the phenomenon of Doppler shift

while the Haversine formula relies on the actual co-ordinates

recorded by the GNSS (Hofmann-Wellenhof et al., 2012), which

could explain the differences between the errors for the two

methods. The lap counting methods reduced the impact of drift

by restricting the strapdown integration to signals recorded in

partial laps.

Compared to the MAE for state-of-the-art GNSS sport

watches (Gilgen-Ammann et al., 2020), the MAE for lap

counting methods was similar or lower. However, the sport
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watches were tested for one participant, over a maximum

distance of 4,296.9m. While the GNSS sport watches

underestimated the distance in urban and forest areas,

they overestimated it on a running track. The authors (Gilgen-

Ammann et al., 2020) attribute this overestimation under

unobstructed conditions (Ranacher et al., 2016) to a possible

correction algorithm used by manufacturers to compensate for

the general underestimation in difficult areas. In our situation,

we observed a general underestimation of distance by all

five algorithms. One reason could be the lack of correction

in the sensors, since they were used in the “airborne <4g”

configuration of the uBlox GNSS chip. Another reason could be

the assumption that all laps have a length of 400m (Equation

3), which is lower than the actual distance for lane 2 (∼407m)

and lane 3 (∼415m), which were used to compute the reference

length during the Cooper test. The formula used in the lap

counting algorithm can be easily updated to consider the lap

length for a given lane (Aftalion and Martinon, 2019), thereby

reducing the underestimation of distance.

MAS was estimated accurately (R2 0.91, RMSE 0.98 kmh−1)

with the Cooper test distance (Dref) as a sole predictor. This

value of R2 is comparable to those in the literature for the

prediction of VO2max−0.897 for the original study (Cooper,

1968), 0.87 to 0.93 for young males (Grant et al., 1995;

McNaughton et al., 1998; Bandyopadhyay, 2015) and 0.72 to

0.83 in a systematic review (Mayorga-Vega et al., 2016) that

determined the criterion validity of 12-minute Cooper test to

be moderate for predicting VO2max. Although the addition of

biomechanical metrics only improved the prediction slightly (R2

0.93, RMSE 0.88 kmh−1), it could prove to bemore influential in

case of studies with a larger and diverse set of participants. Dref

proved to be an accurate predictor of sVT2 (R2 0.92, RMSE 0. 84

kmh−1) and addition of biomechanical metrics did not improve

the prediction substantially (R2 0.93, RMSE 0.81 kmh−1). To

our knowledge, this is the first study to estimate sVT2 using

the 12-min Cooper test. However, we recommend testing of this

equation for a broader and larger set of participants. Estimation

of sVT2 using a simple field test can enable its wider adoption for

the design of threshold-based training programs and as a metric

to measure the endurance capacity of athletes. Furthermore,

estimation of sVT2 and MAS using field tests can facilitate

studies which compare their predictive power for performance

in endurance races and contrast their use in improving positive

adaptation to training.

Selection of metrics

The biomechanical metrics selected through LASSO for

MAS, sVT2, and CAS differ from each other (Table 3). Similarly,

participants in the high-/low-performance groups selected

according to the highest and lowest MAS, sVT2, and CAS values

differed, and consequently, the metrics showed statistically

significant differences. These results highlight the dissimilarity

of the nature of information obtained from these variables,

although they all quantify the endurance performance. For

the same fraction of VO2max arising out of training at a

certain fraction of MAS, athletes may have different levels of

lactate accumulation, and therefore training based on fraction

sVT2 can lead to a more homogenous training stimulus

(Mann et al., 2013). Both, MAS and sVT2 can be reliably and

accurately estimated using Dref (or CAS), as shown previously.

However, Dref (or CAS) also contains information about the

efficient conversion of endurance capacity on the track, which

is determined by the running biomechanics and the running

economy (RE). One study has shown that the high aerobic

capacity of Kenyan runners is not reflected in treadmill running,

due to their lack of familiarity and the resulting negative

influence on RE (Saltin et al., 1995). Our results highlight the

importance of running technique, with the ‘technique’ category

making the highest relative contribution to the estimation of

CAS (Figure 6A).

The metrics selected within ‘technique’ category are: µFEAt,

µCTt, µVSt, and µDFt. Mean foot eversion angle (µFEAt) had

a negative contribution to MAS and sVT2, as indicated by the

LASSO coefficients (β) ranging from −0.26 to −0.02, with the

faster runners having a higher inversion angle at initial contact.

This result is consistent with previous studies that reported that

an increase in running speed resulted in an increase in the ankle

roll angle and thus the amount of external rotation (Muñoz-

Jimenez et al., 2015; Orendurff et al., 2018). Foot roll before

contact is lower in athletes with heel-strike and increases with

midfoot and frontfoot strikes (Lieberman et al., 2010), leading to

a higher inversion angle at contact. Midfoot strike loads the calf

and shinmuscles similarly, thereby stabilizing the ankle; forefoot

strike causes the outer part of the foot to strike the ground at

contact, preloading the calf muscles and allowing for a quick

push-offwith aminimal contact phase (Almeida et al., 2015).We

observed a higher CT and FSA in slower runners, thus indicating

a tendency toward heel-strike. This tendency, in combination

with the lower speed, may explain the lower inversion angles

observed in slower runners.

All three performance variables were negatively related [β

ǫ (−0.39, −0.08)] (Table 3) to mean CT over 12 mins (µCTt).

The five fastest runners had a lower µCTt than the five slowest

(Figure 6). µCTt and gait cycle time are negatively affected

by the gait speed and thus we might expect a lower µCTt

for faster runners, regardless of their technique. However, a

lower mean DF over 12 mins (µDFt) was also observed in the

faster runners (Figure 6), and µDFt had a negative [β ǫ (−0.37,

−0.24)] contribution (Table 3) to the performance variables.

These findings highlight the fact that lower µCTt was due to

running technique and not just the speed. Similar findings of

lower µDFt and µCTt have been reported in treadmill running

for the comparison between elite and highly trained runners

(Burns et al., 2021) for a speed range (10–24 kmh−1) and a
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larger cohort of elite and well-trained runners at lower speeds

of 10–12 kmh−1 (Folland et al., 2017). It has been reported

that 10 km performance while running on an indoor track

equipped with a force plate is moderately negatively correlated

with CT (Williams and Cavanagh, 1987). Previous research has

also linked a lower CT and DF to better performance in terms

of RE (Nummela et al., 2007; Folland et al., 2017; Moore et al.,

2019; Mooses et al., 2021).

In contrast to CT and DF, mean vertical stiffness (µVSt)

contributed positively to all three performance variables [β

ǫ (0.90, 1.2)], and the fastest runners had a considerably

higher µVSt than the slowest runners (Figure 6). Similar results

have been reported for comparisons between elite runners,

well-trained runners, and other (non-runner) athletes during

treadmill running (da Rosa et al., 2019; Moore et al., 2019;

Burns et al., 2021). For a comparable propulsive force, a higher

VS results in a lower vertical excursion of the center of mass

(COM) and a lower mechanical energy loss due to vertical

oscillations. The relatively lower CT and higher VS indicate

the ability of faster runners to better utilize the spring mass

dynamics for efficient storage and release of elastic energy

during the stance phase (Zhang et al., 2021). With a rise in

speed, the contribution of the elastic energy to the running

energy cost has been shown to increase (Alexander, 1991),

increasing the importance of efficient recycling of elastic energy.

Ground reaction forces (GRF) have a strong positive influence

on running speed (Weyand et al., 2000), but likely increase the

vertical oscillation of COM, which is negatively correlated with

RE (Saunders et al., 2004; Moore, 2016; Folland et al., 2017).

Higher vertical and leg stiffness may reduce vertical oscillation

while allowing for higher GRF, allowing higher speeds and better

RE (Butler et al., 2003).

Within the ‘pace’ category, two metrics were selected: µGTt

and µPSVt. Mean gait cycle time (µGTt) had a negative [β ǫ

(−0.45,−0.14)] contribution to the three performance variables,

whereas mean PSV (µPSVt) had a positive [β ǫ (0.35, 0.72)]

contribution. Faster runners had much lower µGTt and higher

µPSVt compared with slower runners (Figure 6). For a given

stride length, a lower µGTt results in higher running speed and

is associated with higher vertical stiffness, which is consistent

with our results (Butler et al., 2003). Even a 10% increase in

step rate results in a considerable reduction in loading in the

knee and hip joints, improvement in RE, and a reduction in

vertical excursion of COM (Heiderscheit et al., 2011; Musgjerd

et al., 2021; Quinn et al., 2021). An increase step rate results

in more upright posture during stance, reducing the muscle

forces needed during the loading-response phase of the gait

cycle (Lenhart et al., 2014). Combining an increased step rate

with a forefoot strike resulted in a greater reduction in joint

impact loading than a midfoot or heel-strike (Huang et al.,

2019). The transition to a forefoot strike at a higher step rate

was also reported to be easier than midfoot and heel-strike

in that order, which is consistent with our observation that

faster runners report a lower µGTt and a tendency toward a

midfoot and forefoot strike pattern. The lower µGTt increases

the loading in the hip flexors muscles during the early swing

because the trailing leg must be brought forward more quickly

(Lenhart et al., 2014), possibly leading to an increased µPSVt.

However, to decelerate the leg and position it for ground contact,

the hamstrings and hip extensor muscles apply higher forces

during the late swing phase. This indicates a higher capacity for

positive and negative mechanical work in the thigh muscles for

the faster runners.

The pace and technique categories primarily consider

the mean values of the various biomechanical metrics. The

acute fatigue developed during the Cooper test can affect the

magnitude of the biomechanical parameters; so the fatigue

category mainly considers the change in the mean values of the

parameters. Within this category, three metrics were selected:

µCTd, mFSAt, and mFTsy. Slower runners showed a higher

increase in mean CT (µCTd) between the 2nd and 11th minute,

indicating a limited ability to resist biomechanical changes due

to fatigue. This is consistent with previous studies in which

runners of different performance levels showed similar trends

for the increase in CT with perceived acute fatigue (Prigent et al.,

2022), but the magnitude of change in CT was higher in less-

trained runners. In the fatigue category, the FSA and flight time

(FT) are reduced less in the faster runners than the slow runners

(Figure 6), leading to a higher slope for the FSA (mFSAt) and FT

(mFTsy) in faster runners. This is reflected in the positive [β ǫ

(0.07, 0.25)] contribution of mFSAt and mFTsy (β = 0.13) to the

estimation of sVT2 and MAS. Acute fatigue may decrease calf

muscle preactivation, resulting in a decreased ability to absorb

and return energy generated during impact and produce a lower

push-off force (Apte et al., 2021). Increased CT, to spread the

impact impulse over a longer duration, a tendency of foot strike

to move away from the forefoot (reduced FSA), and reduced FT

indicate calf muscle fatigue, with less trained runners unable to

adapt to these changes and recover their running technique.

The regularity category of metrics quantifies the variability

of running and therefore the following metrics were selected

within this category: σCT, σFT, and σGT. The variability of CT

(σCT), FT (σFT), and GT (σGT) had a negative contribution

[β ǫ (−0.47, −0.14)] to the estimation of all three performance

variables. The fast runners showed a lower variability (Figure 6)

of temporal gait parameters over 10-step windows, although

they had lower mean values for these parameters. Gait variability

has been previously studied with novice, well-trained, and

elite runners on a treadmill (Nakayama et al., 2010; Mo

and Chow, 2018; Burns et al., 2021), on a track (Meardon

et al., 2011), and during a half-marathon (Apte et al., 2022a).

With the exception of Meardon et al. who compared recently

injured and healthy runners, all other studies found an inverse

relationship between gait variability and training level. An

increase in temporal gait variability was associated with an

increase in energy cost of running (Candau et al., 1998). In a
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longitudinal endurance training program, a reduction in stride

rate variability and an improvement in RE were reported as

outcomes, although participants’ oxygen capacity changed only

slightly (Slawinski et al., 2001). Thus, the lower values of σCT,

σFT, and σGT during the Cooper test indicate a better RE for the

faster runners.

Limitations and recommendations

The estimation of sVT2 in this study is based on a relatively

small sample predominantly consisting of male subjects. The

evaluation of the proposed equation (4) can be performed for

a larger sample, with a better sex ratio, and possibly with

nonlinear methods. Similarly, the well-trained runners were

composed exclusively of male subjects, while the less-trained

group was a mixture of male and female participants. The

results of the comparison between the five fastest and the

five slowest runners (Figure 6) are therefore biased by the

low sex ratio. Some differences in the regularity of running

mechanics occurred when competitive and recreational runners

were compared within male and female subjects (Clermont

et al., 2019a). However, males and females with similar training

levels have been reported to have similar values for RE (mlO2

km−1 kg−1) (Daniels and Daniels, 1992) and the energy cost of

running when running at a similar intensity (Bunc and Heller,

1989). In this study, the spring-mass model was used to estimate

VS (Morin et al., 2005), based on the estimated values of FT

and CT. Since VS showed the highest positive contribution for

all performance variables, a direct estimation of VS using force

plate measurements and motion tracking from COM may be a

valuable follow-up study.

Reduction in the stability and smoothness of running

movement, resulting from acute fatigue, has been linked to

a surge in the energy cost of running (Schütte et al., 2018;

Kiely et al., 2019). Using the IMU on the chest, it is possible

to estimate the stability and smoothness of the trunk motion

in real-world conditions (Apte et al., 2022b) and extend the

proposed biomechanical profile. Together with the variability of

gait temporal parameters, the long-range correlations (LRC) for

stride time can be investigated, indicating the adaptability of gait.

Highly trained runners and elite runners have shown a higher

adaptability, and the LRCs have been associated with injury

history (Meardon et al., 2011; Mo and Chow, 2018). However,

the interpretation of the LRC, stability, and smoothness is not

obvious for the coaches and the athletes; so we chose not

to include these parameters. Finally, we relied on the pre-

/post-measurement of the subjective fatigue (ROF) to ensure

the maximal intensity for the Cooper test. Although the ROF

scale correlates well with the biomechanical and physiological

influences of acute fatigue (Prigent et al., 2022), it can be

supplemented with a pre-/post-assessment of blood lactate.

Finally, selected temporal metrics and µVSt can be investigated

using a wrist-based IMU (Kammoun et al., 2022), enabling

the use of smart watches for biomechanical assessment of the

Cooper test.

Conclusion

In this study, we presented an accurate (MAE 16.5m) and

precise (error CV 1.1%) estimate of the 12-min distance with

a chest-worn GNSS receiver, despite interindividual variations

in track running trajectories. Using this distance, we showed a

reliable estimate [R2 > 0.9, RMSE ǫ (0.07, 0.25) kmh−1] of the

MAS and sVT2, with reference values from the laboratory. Using

the foot-worn IMU, we estimated a number of biomechanical

metrics and assessed their contribution to the endurance

performance. All performance variables were predicted with an

acceptable error (R2 ≥ 0.65, RMSE ≤ 1.80 kmh−1) when only

the biomechanical metrics were used with the LASSO method.

Themetrics selected using LASSO and the statistical comparison

were used to create a biomechanical profile representing the

running technique and its temporal evolution. Within this

profile, the selected categories can be used to characterize

runners and identify their key strengths and weaknesses. Based

on this, a training program can be developed to target specific

aspects of running technique and provide the resulting profile to

runners as post-training feedback. This profile can be tracked

over a season to understand the development of running

technique and the adaptation of runners to training. Profiles

at the beginning and the end of a long-distance training

session reflect the impact of fatigue, providing complementary

information to internal training load metrics. This profile can

provide coaches and athletes a deeper insight into the running

mechanics and allow evaluation of intraindividual changes

following training programs and rehabilitation after injury.

Interindividual differences in the profile can be used to develop

a tailored training program and monitor the improvement

in the resulting running mechanics. Use of such a wearable

system in standardized capacity measurements may open a new

perspective for personalization of training and rehabilitation.
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