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Exercise has long been known to e�ectively improve and enhance skeletal

muscle function and performance. The favorable e�ects of exercise on

remote organs other than skeletal muscle are well known, but the underlying

mechanism has remained elusive. Recent studies have indicated that skeletal

muscle not only enables body movement, but also contributes to body

homeostasis and the systemic stress response via the expression and/or

secretion of cytokines (so-called myokines). Not only the induction of muscle

contraction itself, but also changes in intracellular calcium concentration

([Ca2+]i) have been suggested to be involved in myokine production and

secretion. Ca�eine is widely known as a Ca2+ ionophore, which improves

skeletal muscle function and exercise performance (i.e., an “ergogenic aid”).

Interestingly, some studies reported that ca�eine or an increase in [Ca2+]i

enhances the expression and/or secretion of myokines. In this review,

we discuss the association between ca�eine as an ergogenic aid and

myokine regulation.
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Introduction

Exercise training has been demonstrated to have positive effects on skeletal muscle

function and systemic exercise performance (1, 2). The favorable effects of exercise on

remote organs other than skeletal muscle are well known (3, 4), but the underlying

mechanism remains unclear. Recent studies have indicated that skeletal muscle not only

enables body movement, but also contributes to body homeostasis and the systemic

stress response via the secretion of soluble proteins (3, 4). It has been suggested that

these proteins, which are cytokines and other peptides that are produced, expressed, and

secreted by muscle fibers, and exert paracrine, autocrine, or endocrine effects, should

be classified as “myokines” (5). Not only the induction of muscle contraction itself, but

also changes in intracellular calcium concentration ([Ca2+]i) have been suggested to be

involved in myokine production and secretion (6–10) (Figure 1). It is also known that

myokine secretion is promoted by the activation of 5′-AMP-activated protein kinase

(AMPK) signaling (11, 12) (Figure 1).
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FIGURE 1

Ergogenic e�ects of ca�eine are mediated by myokines.

Caffeine is widely known as a Ca2+ ionophore and/or

AMPK activator that improves skeletal muscle function

and exercise performance (i.e., an “ergogenic aid”) (13–16)

(Figure 1). Some studies reported that caffeine, an increase in

[Ca2+]i, andAMPK agonists enhance the secretion ofmyokines,

leading to positive effects on skeletal muscle (e.g., increased

fatty acid or glucose oxidation and mitochondrial biosynthesis)

and exercise performance. (7–9, 11, 12, 17). In this review, we

discuss the association between caffeine as an ergogenic aid and

myokine regulation.

Evidence of the ergogenic e�ects of
ca�eine

Short-term or long-term administration of caffeine has

ergogenic effects, including enhancing fatty acid or glucose

oxidation, mitochondrial biogenesis, and muscle hypertrophy

signaling in cultured skeletal muscle cells and increasing

skeletal muscle mass in rodents (18–20). Similarly, caffeine

was identified as an ergogenic aid for exercise performance,

including aerobic endurance, muscle strength, and muscle

endurance in humans by meta-analyses (14). Thus, evidence

of the ergogenic effects of caffeine on exercise performance is

well-established (14, 15, 18–22).

Ergogenic e�ects of ca�eine are
mediated by myokine secretion due
to increased [Ca2+]i and/or AMPK
activation

One mechanism of the above-mentioned ergogenic effects

of caffeine involves calcium-induced calcium release from

the sarcoplasmic reticulum, which increases [Ca2+]i (23–25).

Increased [Ca2+]i is involved not only in protein expression

and/or modification by enhancing the calcium signaling,

including the AMPK pathway, but also in the extracellular

secretion of proteins (6, 7, 11, 26, 27).

Myokine production is thought to occur in response

to muscle contraction (5, 28), but the detailed mechanism

remains unclear. Interestingly, it has been shown that myokine

secretion during acute electrical stimulation depends more on

intracellular calcium flux than on skeletal muscle contraction

itself (9). Moreover, increased [Ca2+]i has the potential to

promote myokine expression in skeletal muscle (7, 8, 29). On

the other hand, caffeine is a well-known activator of AMPK

(30, 31), and AMPK activation is involved inmyokine regulation

(11, 12). Next, we will focus on representative myokines

that can be regulated by increasing [Ca2+]i and/or AMPK

activation, which have recently been shown to be involved in
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the function of skeletal muscle and other organs, as well as

exercise performance.

Ca�eine regulates the secretion of
interleukin-6 as a myokine

Exercise was found to increase the levels of circulating

and muscle interleukin (IL)-6, which is the most well-known

myokine, in humans (5). Similarly, caffeine was found to

increase circulating and skeletal muscle IL-6 protein levels in

mice (17). A23187, another Ca2+ ionophore, also increased IL-

6 mRNA expression in the skeletal muscle of mice and C2C12

myotubes (32). Moreover, it is well known that IL-6 promotes

fatty acid and glucose oxidation in humans and in tissue culture

(5, 33–35). Although the results are controversial, IL-6 also is

involved in muscle hypertrophy and myogenesis (28, 36).

In general, mM levels of caffeine have been shown to

promote Ca2+ release from the sarcoplasmic reticulum (SR) by

acting directly on the ryanodine receptor (RyR) (6, 37). Ducreux

et al. showed that upon activation of the RyR by the RyR agonist

4-chloro-m-cresol, myotubes released IL-6; this was dependent

on de novo protein synthesis and was blocked by dantrolene

(a substance that specifically closes calcium channels, thereby

blocking calcium release from the SR) and cyclosporine (a

substance that blocks calcium-dependent calcineurin activation

by nuclear factor of activated T-cells) (6). Moreover, in an

experiment in which caffeine was added to C2C12 skeletal

muscle cultured cells, Fang et al. observed that mM-level caffeine

secreted IL-6 in the culture supernatant (17). However, this

report did not confirm whether caffeine administration affects

[Ca2+]i. In addition, it has not been confirmed whether the

caffeine-induced IL-6 secretion is suppressed by decreasing

[Ca2+]i. On the other hand, in an experiment in which IL-6 was

secreted by the contraction of C2C12 cultured skeletal muscle

cells induced by electrical stimulation, it was reported that the

increase in [Ca2+]i was more important than the contraction

of the cells themselves (9). Therefore, an increase in [Ca2+]i

is considered to be important for the secretion of IL-6. These

results suggest that caffeine can regulate the secretion of IL-6

through an increase in [Ca2+]i. In addition, both physiological

concentrations and µM levels of caffeine also act directly on

skeletal muscle to bring about an ergogenic effect, and it is

thought that the mobilization of intracellular calcium is also

involved in this effect (38). Conversely, caffeine did not affect

(i.e., did not induce) IL-6 vesicle secretion even after 70min

of intravenous administration to mice at the highest possible

dose (85 mg/kg) (11). In this study, confocal imaging was

used to visualize the endogenous IL-6 protein in glycolytic fast

fibers of the tibialis anterior muscle of mice. Moreover, 2 h of

incubation of either the extensor digitorum longus (EDL) or

soleus muscle from mice with the Ca2+ ionophore ionomycin

in the medium did not significantly increase IL-6 levels (39).

However, ionomycin stimulation showed a tendency of an

increase in IL-6 release from skeletal muscle, particularly from

soleus muscle. On the other hand, caffeine induced the release

of IL-6 from human myotubular cells, and its maximum release

occurred 4 to 6 h after the addition of caffeine (6). Similarly,

incubation of isolated rat soleus muscle with ionomycin for

60min in the incubation media increased protein levels of IL-6

of (40). A possible explanation of the discrepancy among these

previous studies regarding the secretion of IL-6 from skeletal

muscle could be owing to differences in fiber type (glycolytic vs.

oxidative) or animal species (rats vs. mice) used in each study.

Indeed, it has been known that rat soleus muscle contains more

oxidative fibers thanmouse soleus muscle (41). As IL-6 secretion

from the soleusmuscle of rats is greater than that from the soleus

muscle of mice, differences in skeletal muscle fiber types in each

animal species may explain the differences in responsiveness of

IL-6 secretion to an increase in intracellular calcium by caffeine

and other Ca2+ ionophores.

On the other hand, it has been reported that intravenous

acute AICAR stimulation (within 100min) decreases the

number of IL-6-vesicles in mouse skeletal myocytes, suggesting

that AMPK activation can be involved in myokine secretion

(11). In addition, incubation of cultured human myotubes

with AICAR within 4 to 24 h increases levels of IL-6 mRNA

(42). These results suggest that AMPK signaling, one of the

mechanisms of the ergogenic effects of caffeine reported to date,

may regulate myokine expression and release.

Ca�eine could regulate the secretion of
brain-derived neurotrophic factor as a
myokine

Exercise increases circulating and muscle brain-derived

neurotrophic factor (BDNF), which is a myokine, in humans

and mice (43). BDNF promotes fatty acid oxidation and

mitochondrial biogenesis in cultured skeletal muscle cells and

the skeletal muscle of mice (43–45). We also found that

blood BDNF levels in healthy subjects and patients with heart

failure (HF) are closely positively correlated with whole-body

exercise capacity (peak oxygen uptake) by univariate analysis

and was identified as independent determinants of peak oxygen

uptake by multivariate analysis (46). The administration of

recombinant human BDNF (rhBDNF), as well as exercise

training, improved whole-body exercise performance in normal

mice (45).

BDNF has been shown to be secreted by the electrical

stimulation of skeletal muscle (43). However, whether BDNF

secretion from skeletal muscle is regulated by caffeine or

ionomycin remains unknown. The central effects of caffeine are

thought to depend on the release of various neurotransmitters
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by the inhibition of the adenosine receptors A1 and A2a (37).

Caffeine also has the effect of reducing skeletal muscle pain

during exercise, which is thought to be associated with its

inhibition of adenosine receptor A1 (37). Thus, the central

effects of caffeine and its effects on skeletal muscle are considered

to be similar. It is known that the addition of caffeine increases

BDNF secretion in cultured hippocampal neurons, which is due

to the increase in [Ca2+]i via the ryanodine receptor (47). It has

not yet been clarified whether caffeine induces BDNF secretion

in skeletal muscle cells. However, given the similarities between

the central and peripheral effects of caffeine, BDNF could secrete

as a myokine via the caffeine-induced increase in [Ca2+]i.

Ca�eine could regulate the secretion of
musclin as a myokine

Musclin is expressed specifically in skeletal muscle (29), and

is considered to be a myokine because exercise increases skeletal

muscle levels of musclin protein and mRNA, and circulating

levels of musclin (8). The genetic disruption of musclin causes

a decrease in physical endurance and mitochondrial content,

including the signaling of mitochondrial biogenesis (8). In

contrast, skeletal muscle-specific musclin overexpression using

adeno-associated virus 6 also increases circulating musclin (29).

This suggests that skeletal muscle musclin can be secreted

into the circulation. On the other hand, mRNA expression

levels of musclin have also been reported to increase in

a [Ca2+]i (addition of an ionophore and calcium itself)-

dependent manner in cultured murine and human primary

myoblasts (8). Although it has not yet been confirmed, caffeine

administration could have the potential to induce musclin

secretion by increasing the expression level of musclin.

Activation of AMPK regulates IL-15 as a
myokine

IL-15 is predominantly expressed in skeletal muscle (12),

and is considered to be a myokine because exercise increases

skeletal muscle levels of both IL-15 protein and mRNA, and

circulating levels of the IL-15 protein (12, 48). Similarly, AICAR,

an activator of AMPK, was found to increase skeletal muscle

IL-15 mRNA levels in mice (12). Moreover, it is well known

that IL-15 promotes fatty acid and glucose oxidation, and

mitochondrial oxidative function with supercomplex formation

of the electron transport chain in muscle tissue (49–53).

IL-15 also inhibit skeletal muscle degradation and muscle

nuclear apoptosis (54–56), and increase muscle grip strength

(12). Moreover, circulating IL-15 and skeletal muscle IL-15Ra

expression correlated with protein synthesis after resistance

exercise (57). Furthermore, mice overexpressing IL-15 in skeletal

muscle on a low-fat/low-energy diet and a high-fat/high-energy

diet had increased lean body mass, including skeletal muscle

(58). As described above, IL-15 is considered to be a myokine

that has a generally positive effect on skeletal muscle, but

whether its expression and secretion can be regulated by caffeine

is a subject for future research.

Association of myokines with acute
and chronic e�ects of ca�eine
stimulation in vitro

The effects of exercise can be acute or chronic (1, 59).

Similarly, the effects of acute and chronic muscle contraction

are different (10), but whether there is a difference in myokine

secretion is unclear. In this paper, we hypothesized and

discussed that the ergogenic effects of caffeine are mediated

by myokine secretion. Long-term (i.e., chronic) as well

as single, short-term (i.e., acute) administration of caffeine

produces ergogenic effects via intracellular calcium increases

and AMPK signaling (Figure 1) (10). This is thought to

mimic the effects of acute and chronic exercise (1, 59). From

the viewpoint of intracellular calcium increase and AMPK

signaling, myokine secretion is thought to play an important

role in the effects of caffeine. However, at present, IL-6 is

the only myokine that has been shown to be directly secreted

from skeletal muscle upon short-term caffeine stimulation

(6). Therefore, comprehensive investigation of the types of

myokines that are secreted by caffeine stimulation is an

important research topic. In addition, research on myokine

secretion by chronic caffeine stimulation is also an unresolved

issue. It is well known that chronic caffeine administration

to skeletal muscle enhances glucose and lipid oxidation, and

mitochondrial biogenesis, which can be explained by the effects

of BDNF (44, 45).

Indirect e�ects of myokines on other
organs

Caffeine intake markedly increases IL-6 levels in the skeletal

muscle and blood, but not in the liver of mice. Furthermore,

caffeine-stimulated skeletal muscle IL-6 production alleviated

nonalcoholic fatty liver disease (NAFLD) in a rodent model

(17). On the other hand, the overexpression of musclin

in skeletal muscle was found to attenuate left ventricular

dysfunction and myocardial fibrosis in mice with HF induced

by long-term pressure overload (29). These results suggest

that caffeine ameliorates myocardial remodeling via inducing

crosstalk between the muscle and liver or heart. On the

other hand, mice overexpressing IL-15 in skeletal muscle

have reduced fat mass and show anti-obesity effects (52, 58).
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FIGURE 2

Increased myokines in skeletal muscle may improve heart failure, NAFLD, and obesity.

Therefore, increased myokine levels in the skeletal muscle

and circulation owing to exercise and/or the intake of

caffeine as an ergogenic aid may prevent or improve specific

pathologies, such as myocardial remodeling in HF, NAFLD, and

obesity (Figure 2).

Future directions and perspectives

Why do the health benefits of exercise extend beyond

the skeletal muscles to the whole body? Although the

full mechanism still remains unclear (1), the discovery of

molecules that are the key to the systemic effects of exercise,

namely myokines, has greatly advanced the field of exercise

physiology (3, 28). Through the discovery of myokines,

which are specific molecules that have physiological activity

and can be secreted into the blood, it has been shown

that exercise and caffeine, an exercise mimetic, have effects

not only on skeletal muscle itself, but also on remote

organs via skeletal muscle (4, 29, 60). In addition, many

mechanisms underlying the association between intracellular

calcium dynamics and intracellular transport and secretion

resulting from caffeine stimulation have been elucidated (26,

27), and because intracellular calcium also demonstrates

characteristic dynamics during muscle contraction, it can be

speculated that myokine secretion into the blood is regulated by

exercise (5, 28).

However, it should be reiterated that the intracellular events

reproduced by caffeine stimulation reflect some mechanisms

of some modes of exercise within the larger framework of

exercise. Indeed, it has been reported that the composition of

proteins in the blood changes with the intensity and type of

exercise performed (61), and hence attention should be paid

to what type of exercise is reproduced by caffeine. Caffeine

has the potential to increase our understanding of exercise-

induced myokine secretion and its systemic effects, which is

an interdisciplinary field between exercise physiology and cell

biology. Furthermore, clarifying the mechanism of myokine

secretion induced by exercise may help to resolve the effects

of physical inactivity in older people and enhance the efficacy

of post-injury rehabilitation. This is because some myokines

have already been found to be clinically significant (46, 62, 63).

In addition, not surprisingly, patients facing clinical challenges

often have difficulty exercising on their own, so the systemic

effects of myokines induced by caffeine stimulation as an

exercise mimetic have great promise (4, 64).

In this review, we connected “(1) the positive effects of

myokines on skeletal muscle” with “(2) the secretion of these

myokines by caffeine and their effects on skeletal muscle”

to form the hypotheses shown in Figure 1. The results of

(1) and (2) are from separate studies, and it hence remains
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unclear whether caffeine has acute or chronic effects on

skeletal muscle via myokines, and whether caffeine improves

exercise performance.

Conclusion

The ergogenic effects of caffeine are mediated through

myokine regulation. Clarifying the underlying mechanisms will

require elucidation of not only the ergogenic effects of caffeine,

but also the mechanisms of the effects of exercise and myokines.
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