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The Athlete Biological Passport (ABP)was introduced to complement the direct

anti-doping approach by indirectly outlining the possible use of prohibited

substances or methods in sports. The ABP proved its e�ectiveness, at least

through a deterrent e�ect, even though the matrices used for longitudinal

monitoring (urine and blood) are subject to many intrinsic (e.g., genetic)

and extrinsic (e.g., environmental conditions) confounding factors. In that

context, new and more specific biomarkers are currently under development

to enhance both the sensitivity and the specificity of the ABP.Multiple strategies

are presently being explored to improve this longitudinal monitoring, with the

development of the current modules, the investigation of new strategies, or

the screening of new types of doping. Nevertheless, due to the variability

induced by indirect biomarkers, the consideration of confounding factors

should continuously support this research. Beyond tremendous advances in

analytical sensitivity, machine learning-based approaches seem inevitable to

facilitate an expert interpretation of numerous biological profiles and promote

anti-doping e�orts. This perspective article highlights the current innovations

of the Athlete Biological Passport that seem the most promising. Through

di�erent research axes, this short manuscript provides an opportunity to bring

together approaches that aremorewidely exploited (e.g., omics strategies) and

others in the early stages of investigation (e.g., artificial intelligence) seeking to

develop the ABP.

KEYWORDS

anti-doping, Athlete Biological Passport, blood, urine, serum, biomarkers

Introduction

The Athlete Biological Passport (ABP) was first introduced in 2009 to thwart doping

practices in sports by indirectly pointing out the possible use of prohibited substances

or methods. Through longitudinal, individual, and adaptive monitoring, the ABP was

also developed to target athletes requiring special attention (1) for the subsequent

direct detection of prohibited substances in their urine or blood. While laboratory

detection techniques have improved massively (2), the short detection window for

some substances remains the major limitation to direct detection (3). The first ABP

module implemented includes hematological markers sensitive to different blood

doping protocols, such as different types of erythropoiesis-stimulating agents (ESA) or

autologous blood transfusions (4). A second module was developed to deal with doping
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by the so-called “pseudo-endogenous steroids” (that are,

endogenous steroids when administered exogenously), with a

screening of urinary biomarkers (1). Based on priors using

a Bayesian network (5), the threshold values for each athlete

are individualized as measurement points are recorded (4).

With more than 180 Anti-Doping Rule Violations (ADRV)

since its implementation, the ABP proved its effectiveness, at

least through a deterrent effect outlined by a putative reduced

amplitude of doping practices (6).

The confounding factors impacting the current variables

of the ABP remain one of the main limitations of the indirect

approach. For the hematological module, the impact of

several factors on plasma volume (e.g., physical exercise) and

erythropoiesis (e.g., altitude training) have been identified

(7). Further, the influence of exogenous (e.g., alcohol) and

endogenous factors (e.g., menstrual cycle) were shown to

alter variables of the steroid module (8). We have performed

a comparative analysis of studies published in peer-reviewed

journals, and reporting ABP profiles from the Anti-Doping

Administration and Management System (ADAMS). Very

interestingly, despite a higher occurrence of Atypical Passport

Findings (ATPF) in protocols involving prohibited substances,

atypical profiles were also found in connection with several

physiological confounders (Figure 1). Combined with a

decrease in sensitivity when micro-dosing treatment is

implemented (9), the development of new specific biomarkers

is required. In this context, this perspective article aims to

highlight promising approaches for the future development of

the ABP.

Development of current modules

Variables analyzed by flow cytometry (with the Sysmex

XN instruments generation since 2019) are now used for the

measurement of the ABP hematological variables (10). Using

a slightly modified technology for reticulocytes measurement

compared to the previous XE and XT series (11), this latest

generation of devices provides the quantification of many blood

parameters currently not yet exploited by the ABP. For instance,

reticulocyte hemoglobin equivalent (Ret-He) or immature

reticulocyte fraction (IRF) could be potential candidates for

the development of the ABP hematological module (12). These

latter variables are indeed responsive to erythropoiesis alteration

and independent of acute PV shift (13). Considered as a

potential marker of iron deficiency (14), Ret-He could besides

contribute to the existing work related to iron metabolism

in the ABP framework (15–17). In addition, microvolumetric

capillary whole blood collections have recently been suggested

as an alternative to venous blood sampling (18). Demonstrating

excellent agreement when generating individual ABP profiles,

this collection method could become particularly useful in

sample collection and need to be further explored.

Research seeking to identify new biomarkers to discriminate

doping practices is the most investigated approach. However,

the development of markers to discriminate the effects of

confounding factors is a further alternative. In this way,

the development of corrected individual limits by combining

multiple markers sensitive to plasma volume (PV) variations has

been suggested (19). This model was further validated in elite

athletes, allowing them to discern hemoglobin concentration

([Hb]) changes caused by an alteration of erythropoiesis from

those resulting from a transient hemodilution caused by physical

exercise (20) or altitude exposure (21). The validity of these latter

serum biomarkers in assessing PV variations was additionally

shown in women monitored over 8 weeks (22). The model,

therefore, seems particularly promising in encompassing all

forms of natural variations in PV over time and could be

considered useful in the toolbox for the interpretation of

individual ABP profiles.

To complement the current steroid module, the

development of a “blood steroid profile” is currently being

developed (23, 24). Through ultra-high performance liquid

chromatography-high-resolution mass spectrometry (UHPLC-

HRMS) analysis, a method to quantify several endogenous

steroids in serum has notably been implemented (23).

Subsequently, a longitudinal evaluation of multiple serum

biomarkers following the administration of transdermal

testosterone (T) in women was performed, where the

T/androstenedione ratio demonstrated the higher sensitivity

during treatment (24). While a recent study reports an urgent

need to develop biomarkers specific to women (25), serum

monitoring has already demonstrated the potential of serum

T measurement by liquid chromatography-mass spectrometry

(LC-MS) to detect T doping in female athletes (26).

The isotope ratio mass spectrometry (IRMS) test is currently

performed in case of suspicious variations of a steroid profile to

confirm the non-endogenous origin of steroids (27). However,

detecting abnormal isotopic values in steroid profile not

identified as suspicious by the current criteria of the steroidal

module of the ABP, longitudinal IRMS has shown a better

sensitivity (28) and a lower individual variability (29, 30)

in comparison to the traditional approach, based on the

concentrations and concentration ratios of the steroid markers.

Moreover, as the confirmation procedure is usually costly

and time-consuming, a fast IRMS analysis has demonstrated

adequate selectivity providing the examination of a larger

number of samples (31). Longitudinal monitoring of 13C

values of the target steroids and of the endogenous reference

compounds would for instance reduce the number of false-

negative results due to the intake of exogenous pseudo-

endogenous steroids with an isotopic signature close to

the endogenous ones. However, using IRMS in an indirect

longitudinal screening procedure would represent a change of

paradigm and current thresholds may result in a higher risk of

false positive testing from a statistical standpoint. Nevertheless,
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FIGURE 1

Occurrences of atypical passport findings (ATPF) as function of the number of subjects in the studies that used the o�cial Anti-Doping

Administration and Management System (ADAMS) training software. Publications involving doping protocols are presented with red symbols,

publications investigating confounding factors in black figures.

although this paradigm change complicates its implementation,

the application of an IRMS approach as an additional screening

tool through the development of an “isotopic module” could be a

particularly promising complement to the detection of steroidal

doping (28).

Investigation of new anti-doping
strategies

In the search for new biomarkers, omics strategies have also

been considered (32). Designed to investigate biomarkers at a

cellular level, this approach was suggested in an anti-doping

approach. If transcriptomic and proteomic investigations have

shown their interest (33), a metabolomic approach has recently

demonstrated an interesting perspective (34). In this context,

a recent study identified a panel of metabolites following

autologous blood transfusion (35). Also applied for the

screening of growth hormone (36) and testosterone misuse (37),

individualized reference ranges seem to be the most promising

approach (34). Nevertheless, the difficulty of setting reference

values due to differences between sports disciplines (38) or

various confounding factors such as intense cardiovascular

effort (39) or nutritional supplements (40) constitute

important challenges for field implementation. Therefore,

despite some limitations, an explorative metabolomics

approach looking for longitudinal profiling should be further

investigated (41).

Through a microscopic approach, the morphology of red

blood cells (RBC) could also be an innovative perspective

in the future of blood doping detection, especially for blood

transfusion. If the homologous blood transfusions (HBT) are

detectable by flow cytofluorimetry-based method (42, 43),

autologous blood transfusions are currently only trackable

through indirect biomarkers (33). It is known that some

properties of RBCs will be altered during storage (44),

especially to membrane modification inducing a reduction of

the deformability (45). Based on a recent study, it seems

besides that deformability alteration is observed generally but

also in the different subpopulations of RBC maturation (46).

In this way, changes in the expression of CD 55 and CD

59 surface RBC proteins and variation in cell size have been

observed (47), demonstrating the relevance of biomarkers

related to blood aging and storage. More recently, a recent

study investigated circulating RBC extracellular vesicles after

transfusion, showing an increase of this biomarker in the

Frontiers in Sports andActive Living 03 frontiersin.org

https://doi.org/10.3389/fspor.2022.986875
https://www.frontiersin.org/journals/sports-and-active-living
https://www.frontiersin.org


Krumm et al. 10.3389/fspor.2022.986875

hours following reinfusion, thus providing additional evidence

in case of suspicious hematological profile (48). Therefore, a

morphological approach to RBC membrane alterations could

complement the ABP in the ABT identification and needs to

be investigated.

Screening new forms of doping

Longitudinal biomarkers sensitive to other types of doping

may also be another axis of research in the development of

the ABP. Being under development for more than a decade

by the World Anti-Doping Agency, an endocrine module will

be introduced to tackle doping and particularly to address the

use of growth hormones in an ABP approach (49). Several

biomarkers have hence been investigated in the screening of

different growth hormones (GH), in particular procollagen

type III N-terminal peptide (P-III-NP), insulin growth factor-

I (IGF-I), and the GH-2000 age discriminant score resulting

from these two biomarkers (50–52). The stability of these

markers confirms their relevance in a longitudinal approach

(52), although a large intra-individual variability seems to be

observed in women (53), complicating longitudinal follow-up.

Showing very encouraging results when applied to the ABP

model despite short detection windows (49), these outcomes

strengthen the hypothesis for the future implementation of the

endocrine module to complete the ABP screening spectrum.

A similar approach seems to be the only option to detect also

doping by other growth factors, that are presently not detectable

by other analytical approaches.

Application of artificial intelligence

Key in today’s data processing, the application of artificial

intelligence (AI) in anti-doping has been investigated for

several years and should be the subject of further research.

By developing software gathering various types of information

(e.g., physical performance or hematological data), an innovative

strategy was initially developed to improve the target testing

by emphasizing abnormal patterns (54). Since then, several

approaches seeking to investigate multiple machine learning

algorithms to identify general (55) or specific doping practices

(56) have been investigated. These projects have confirmed

the large potential of machine learning in anti-doping, leading

the way for more elaborate design (56). Following a similar

approach, performance monitoring has been suggested as an

alternative to biological matrices (57). Using performance

data such as competitive results (58, 59) or on critical

power (60), an “athlete performance passport” has been

suggested for building individualized career performance

trajectories (61). Therefore, these models could contribute

to trace abnormal performances and completing biological

investigations in a field where AI will undoubtedly be part of

future development.

Conclusion

The development of new biomarkers is required for the

later development of the ABP. Several fields of investigation

are currently being pursued, in which AI will certainly

play an essential role. Nevertheless, to provide specific and

robust analysis, these new markers need to be studied

extensively to determine the natural variability, especially

in a population of elite athletes with increased influencing

factors. Overall, all these resources could grant a step forward

in the target testing and support anti-doping authorities in

obtaining the right sample, at the right time, from the

right athlete.
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