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Subtle impairments of perceptual-
motor function and well-being are
detectable among military cadets
and college athletes with self-
reported history of concussion
Gary B. Wilkerson, Marisa A. Colston†, Shellie N. Acocello†,
Jennifer A. Hogg† and Lynette M. Carlson†

Department of Health and Human Performance, University of Tennessee at Chattanooga, Chattanooga, TN,
United States

Introduction: A lack of obvious long-term effects of concussion on standard clinical
measures of behavioral performance capabilities does not preclude the existence of
subtle neural processing impairments that appear to be linked to elevated risk for
subsequent concussion occurrence, and which may be associated with greater
susceptibility to progressive neurodegenerative processes. The purpose of this
observational cohort study was to assess virtual reality motor response variability
and survey responses as possible indicators of suboptimal brain function among
military cadets and college athletes with self-reported history of concussion (HxC).
Methods: The cohort comprised 75 college students (20.7 ± 2.1 years): 39 Reserve
Officer Training Corp (ROTC) military cadets (10 female), 16 football players, and 20
wrestlers; HxC self-reported by 20 (29.2 ± 27.1 months prior, range: 3–96). A virtual
reality (VR) test involving 40 lunging/reaching responses to horizontally moving dots
(filled/congruent: same direction; open/incongruent: opposite direction) was
administered, along with the Sport Fitness and Wellness Index (SFWI) survey. VR
Dispersion (standard deviation of 12 T-scores for neck, upper extremity, and lower
extremity responses to congruent vs. incongruent stimuli originating from central
vs. peripheral locations) and SFWI response patterns were the primary outcomes of
interest.
Results: Logistic regression modeling of VR Dispersion (range: 1.5–21.8), SFWI (range:
44–100), and an interaction between them provided 81% HxC classification accuracy
(Model χ2[2] = 26.03, p < .001; Hosmer & Lemeshow χ2[8] = 1.86, p= .967; Nagelkerke
R2= .427; Area Under Curve = .841, 95% CI: .734, .948). Binary modeling that included
VR Dispersion ≥3.2 and SFWI ≤86 demonstrated 75% sensitivity and 86% specificity
with both factors positive (Odds Ratio = 17.6, 95% CI: 5.0, 62.1).
Discussion/Conclusion: Detection of subtle indicators of altered brain processes that
might otherwise remain unrecognized is clearly important for both short-term and
long-term clinical management of concussion. Inconsistency among neck, upper
extremity, and lower extremity responses to different types of moving visual stimuli,
along with survey responses suggesting suboptimal well-being, merit further
investigation as possible clinical indicators of persisting effects of concussion that
might prove to be modifiable.
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Global view of the concussion problem

Despite an abundance of recent research evidence documenting

structural, functional, and neurometabolic abnormalities among

collision sport athletes (1), there remains a widespread expectation

that most athletes who sustain mild traumatic brain injury (mTBI)

will fully recover within a period of 10 days to 2 weeks (2). The

term “concussion” specifically refers to mTBI that has been caused

by a clearly definable injury event, which produces symptoms that

are relied upon for its diagnosis (2). “Head acceleration events”

(sometimes designated as repetitive head impacts) that do not

produce any readily apparent clinical symptoms have been shown

to cause the same types of cumulative pathological changes as

those associated with a diagnosed concussion (3, 4). Furthermore,

such events appear to have a prolonged effect across the course of

a collision sport season that increases susceptibility to concussion

(5). Athlete reluctance to report symptoms often precludes

diagnosis of concussion, which has been estimated to range from

35% to 62% of athletes who have sustained mTBI (6). Highly

sophisticated, expensive, and relatively inaccessible imaging and

testing procedures can be used to document alterations in brain

pathophysiology, but standard clinical assessment methods have

not been found sufficiently sensitive for consistent detection of

subtle impairments in cognitive, affective, or motor status (7, 8).

Athletes engaged in collision sports (e.g., football, ice hockey,

rugby, soccer) have been found to exhibit changes in a variety of

brain health indicators over the course of a season, including

evidence of microstructural white matter damage (1, 4, 9–13),

impaired functional connectivity (14, 15), biochemical

abnormalities (16–18), and elevated levels of specific types of small

ribonucleic molecules (19). Very recent research findings strongly

suggest that head acceleration events and/or history of concussion

can activate a series of complex interactions among regional

cerebral blood flow, microRNAs, and dysfunctional metabolic

processes that lead to a persistent state of neuroinflammation (20–

22). Both the speed and accuracy of brain information processing

can be compromised by neuroinflammatory processes that

destabilize the transmission of neural signals across white matter

tracts and through brain circuits (23, 24). Thus, asymptomatic and

apparently healthy athletes who have sustained some level of mTBI

from prior concussion(s) and/or head acceleration events may

actually possess subtle and prolonged manifestations of a chronic

neuroinflammatory response in the brain (20, 25).
Clinical detection of impaired perceptual-
motor function

Primary dependence on vision for guidance of goal-directed

behaviors that require motor control makes rapid and accurate

processing of neural information essential for effective sport

performance and injury avoidance (26, 27). Perception of

proprioceptive, vestibular, and auditory inputs to the central

nervous system supplement vision in generation of an internal

representation of the external environment, which is fundamentally

a cognitive process driven by behavioral goals (28). Although
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perceptual, cognitive, and motor processes can be viewed as

somewhat distinct from one another, perceptual-motor efficiency

refers to the optimal integration of spatially separated brain

processing modules that produce rapid and accurate responses to

goal-related stimuli (29). Because otherwise healthy young athletes

can recruit additional neural resources to compensate for an

impairment of normal processing capability, dual-task assessments

are often used to impose combined cognitive and motor demands

that approach or exceed the limit of available cognitive reserve (30).

Virtual reality (VR) has been advocated as a means to deliver

standardized task stimuli in a manner that can facilitate detection

of a subtle and persistent impairment in perceptual-motor function

following concussion (31). The earliest documented use of VR for

assessment of concussion effects utilized a projection system and

force platform to assess postural responses to visual field motion

(32–34). Subsequent studies combined the VR projection system

with a head-mounted motion tracking system, which demonstrated

post-concussion deficits in postural balance, visual-spatial

calibration, and reaction time (35–37). “Immersive” VR refers to a

system that utilizes a head-mounted display to provide the user

with a sense of presence within a three-dimensional environment,

which was first used to document subtle deficits in attention and

inhibitory control among adolescent athletes who had sustained a

concussion within the preceding 2 years (38). Recent research has

combined pre- and post-season data derived from an immersive

VR system with molecular biology measures relating to energy

metabolism and regional cerebral blood flow to document

associations of adverse changes with head acceleration events

experienced by American college football players (18, 20, 21). A

potentially important factor that has not been incorporated into

immersive VR research is the effect of physical exertion on

cognitive processes, which have been shown to differ from those

measured at rest among healthy adults (39). Furthermore,

moderate-intensity exercise appears to accentuate cognitive

performance differences between otherwise healthy young adults

who differ in terms of remote history of concussion (40).
Interrelated factors characterizing individuals
with remote history of concussion

In addition to cognitive dysfunction, altered connectivity among

brain networks is believed to play a central role in development of

physical, affective, and sleep-related symptoms (41). Behavioral

changes associated with prior concussion tend to be subtle and not

disruptive to daily function among young athletes, but they can be

detected (42). An incremental increase in the severity of symptoms

reported after more than one concussion suggests that a

vulnerability to future brain injury may exist among athletes with a

concussion history (43). Regular baseline screening that includes

administration of a symptom inventory with appropriately

designed dual-task performance testing has been recommended to

potentially identify individuals experiencing long-term adverse

effects, which would otherwise remain undetected (44).

Traditional reductionistic study design and frequentist statistical

inference for testing specific hypotheses have not been very effective

for promoting understanding of complex system phenomena, such as
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TABLE 1 Cohort characteristics: count (percentage), mean ± standard
deviation, or median (range).

History of
Concussion

No History of
Concussion

Participants 20 (27%) 55 (73%)

ROTC 6 (15%) 33 (85%)

Wrestling 5 (25%) 15 (75%)

Football 9 (56%) 7 (44%)

Age (years) 20 (18-23) 21 (18-30)

Sex Male Female Male Female

17 (85%) 3 (15%) 48 (87%) 7 (13%)

Height (cm) 181.6 ±
6.3

170.2 ±
5.1

178.0 ±
8.8

162.6 ±
6.9

Body Mass (kg) 91.4 ±
21.9

68.3 ±
17.8

83.1 ±
18.0

62.6 ±
10.5

ADHD (Self-Report) 4 (24%) 0 (0%) 5 (10%) 1 (14%)

Depression (Self-
Report)

1 (6%) 1 (33%) 2 (4%) 1 (14%)
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mTBI effects (45). For example, disrupted synchronization of

rhythmic neural processes creates variability in behavioral

performance that is typically attributed to measurement error or

meaningless signal noise (46). Highly heterogenous clinical

presentations among individuals with concussion history, non-

linear interactions among factors influencing status at a given time

point, and the apparent inadequacy of current clinical tests to

detect long-term concussion effects further complicate the search

for meaningful findings (7, 47). Altered neurological status may be

exceedingly difficult to detect when changes are subtle and

fluctuations in performance measures are large. Measures with

high test-retest reliability will not necessarily yield evidence of

dysfunction (48). A sufficiently accurate clinical prediction model

for discrimination between normal and impaired neural processing,

without requiring expensive and relatively inaccessible brain

imaging or neurophysiological testing, could potentially advance

the clinical management of mTBI. Thus, the purpose of this

exploratory observational study was to identify any VR perceptual-

motor performance metric, survey response pattern, or a

combination, that would accurately classify cases with self-reported

lifetime history of concussion.
Anxiety (Self-Report) 4 (24%) 2 (67%) 6 (13%) 1 (14%)

SFWIa (0-100) 74 (50–100) 92 (44–100)

ROTC 71 (50–100) 95 (67–100)

Wrestling 67 (56–86) 86 (44–100)

Football 75 (58–95) 93 (74–100)

aSport Fitness and Wellness Index (Composite of Sport Fitness Index and Overall

Wellness Index).
Methods

A total of 75 college students (20.7 ± 2.1 years) from 3 different

organizational cohorts voluntarily participated in a virtual reality

(VR) test and provided survey responses relating to current well-

being (Table 1). The participants included 39 military cadets (29

male, 10 female), 16 college football players, and 20 college

wrestlers. The only exclusionary criterion was injury-related

restriction from participation in physical activities. History of

having sustained at least one concussion at any time in the past

was self-reported, along with the number of previous concussions

and the estimated number of months since the most recent

occurrence of a concussion. All study procedures were approved or

confirmed as exempt from review by the Institutional Review

Board of the University of Tennessee at Chattanooga.

The VR test involved 40 reaching/lunging movements in left and

right directions in response to the directional motion of horizontally

moving white circles that were visible for 500 ms against a black

background on a head-mounted display (Pico Neo 3 Pro Eye, Pico

Immersive, Ltd., Mountain View, CA). Prior to test initiation, each

participant assumed a “T-pose” (i.e., standing upright with

horizontally outstretched arms and VR controllers in each hand) to

acquire a wingspan measurement that was used to calibrate the

reaching/lunging distance required to contact VR response targets

(i.e., green spheres; Figure 1). After calibration, the response

targets were located 30° anterior to the frontal plane on both sides

of the participant’s standing position at distances corresponding to

80% of the T-pose measurement, which placed them beyond the

peripheral margin of the visual field when looking forward.

Stimulus-response instructions were to reach/lunge to hit the

green target sphere located in the same direction as the horizontal

motion of “solid” white circles (i.e., congruent stimulus-response

motion) and to lunge/reach to hit the green target sphere located

in the opposite direction to the horizontal motion of “open” circles
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with a white border (i.e., incongruent stimulus-response motion).

Participants were instructed to assume a semi-crouched ready

position, with feet positioned at shoulder width and hand

controllers against the chest. A central fixation cross appeared on

the VR head-mounted display for a duration of 2, 2.5, or 3 s prior

to the initiation of each trial to ensure that the eyes were centrally

positioned before a moving circle stimulus appeared. On a given

trial, a solid or open circle either initially appeared in a central

position and moved 60° beyond the left or right peripheral margin

of the viewing screen, or it initially emerged from either the left or

right peripheral margin and moved 60° to the center of the screen.

Thus, 4 types of moving stimuli (i.e., congruent vs. incongruent

and central vs. peripheral initial appearance) were randomly

presented in rapid succession for total of 40 trials (Figure 2). The

speed and direction of each eye, neck, upper extremity, and lower

extremity response was derived from an eye tracking camera and

an inside-out ultrasonic technology tracking system within the VR

head-mounted device, which quantified movements at a 60 Hz

sampling frequency. Both an auditory tone and controller vibration

were provided as feedback that a response target had been

contacted (Figure 3), and which served as a cue to return to the

start position for another trial.

Latency was defined as the interval from stimulus appearance to

10 cm of hand controller displacement by the reaching/lunging

movement, or the interval from the appearance of one stimulus to
frontiersin.org
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FIGURE 1

Virtual reality head-mounted display view depicting green response target spheres prior to T-pose calibration procedure. Throughout 40-trial test, response
targets located beyond peripheral field of view with head in neutral position (i.e., neck rotation to left or right required to locate correct response target).

FIGURE 2

Depictions of head-mounted display views of horizontally moving circles, with arrows representing circle movement directions. Each panel depicts a unique
combination of initial moving circle location (center versus periphery) and type (open/incongruent versus solid/congruent). Determination of stimulus type
and movement direction required to locate correct response target.
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the next for trials that did not produce 10 cm of hand controller

displacement, which was used to calculate Rate Correct per Second

(RCS: number of correct responses divided by the sum of latency

values). Response time was defined as the interval from stimulus

appearance to maximum displacement (i.e., eye and neck rotation,

upper extremity and lower extremity translation), which was used

to calculate Conflict Effect (CE) for correct hand controller

directional responses (CE = medial of correct incongruent response

times minus median of correct congruent response times. Although

test-retest reliability has not yet been established for measurements

derived from the VR system that we used, performance

inconsistency may be an important factor that characterizes

suboptimal integration of perceptual-motor processes by the brain.

A derived metric, VR Dispersion, was calculated to represent intra-
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individual variability of standardized (i.e., T-score) values for

correct eye, neck, upper extremity, and lower extremity response

times for the 4 different types of visual stimuli. An advantage of T-

score standardization is representation of standard deviations above

and below a standardized mean value of 50 in units of 10. Because

prior research has associated “dispersion” of standardized

performance values for tasks representing different domains of

cognitive function with various neurodegenerative disorders (49–

52), the prospectively selected performance metric of primary

interest was VR Dispersion.

The Sport Fitness and Wellness Index (SFWI) was administered

prior to VR testing to obtain a global estimate of well-being that was

derived from a combination of responses to the Sport Fitness Index

and the Overall Wellness Index surveys, both of which have been
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FIGURE 3

Reaching/lunging to contact virtual reality response target with hand
controller.

Wilkerson et al. 10.3389/fspor.2023.1046572
validated as indicators of suboptimal status (40, 53–55). A 0-100

SFWI score was generated from responses to 20 items pertaining

to persisting effects of prior musculoskeletal injuries, physical

problems, sleep disruption, cognitive limitations, and mood

disorders (Supplementary Material). Numerical values ranging

from 0 to 5 were assigned to ratings for each of the 20 items, with

higher values assigned to descriptors representing greater problem

severity/frequency or more recent occurrence (i.e., maximum

possible raw score = 5 X 20 = 100). The raw total score was

subsequently subtracted from 100 to represent optimal fitness and

wellness with a high score, (i.e., low SFWI score corresponding to

suboptimal self-rated function and wellness).
Data analysis

Because this was an observational study, participants were not

randomly assigned to groups. To identify any significant

differences (p < .05) between groups defined by whether or not

participants self-reported history of concussion, separate univariate

analysis of variance procedures were performed with activity type

and sex as categorical variables and height, weight, and age as

dependent variables. Because the study was exploratory and the

number of available participants was limited, a priori estimation of

sample size required for detection of a meaningful effect was not

performed. Receiver operating characteristic analysis area under
Frontiers in Sports and Active Living 05
curve (AUC) was used to assess the strength of univariable

association of potential predictive variables with self-reported

history of concussion. Youden’s Index was used to identify the

optimal cut point for maximum discrimination, which permitted

cross-tabulation analysis for determination of sensitivity, specificity,

and an odds ratio (OR) and its 95% confidence interval (CI).

Backward stepwise logistic regression analysis was used to assess

various combinations of continuous predictive variables for

maximum discrimination, which included assessment of the

possible influences of covariates on the final model. To avoid

overfitting, the logistic regression modeling was limited to the

strongest 2-factor combination of predictive variables. To explore

the potential for a simplified interpretation of the logistic

regression result, binary modeling of the strongest 2-factor

combination of variables was also performed. Both Pearson r and

Spearman ρ values were calculated to quantify bivariate

correlations between selected performance metrics.
Results

A history of concussion (HxC) was self-reported by 20

participants (29.2 ± 27.1 months prior, range: 3–96) and 55

participants indicated no history of concussion (NoC). No

statistically significant group (HxC or. NoC) by activity type

(ROTC, Football, or Wrestling) interaction effect was evident for

height (p = .809), body mass (p = .330), or age (p = .970), nor was

there a statistically significant by group by sex interaction effect for

height (p = .985), body mass (p = .729), or age (p = .798). A history

of attention deficit-hyperactivity disorder (ADHD) diagnosis was

self-reported by 20% (4/20) with HxC and 11% (6/55) with NoC,

which was not a statistically significant difference (Fischer’s exact

test 2-sided p = .420).

Complete VR test data were acquired for neck, upper extremity, and

lower extremity responses, but 11.3% (34/300) of the eye tracking test

results for all 4 combinations of visual stimulus types were not

captured among 10 participants. The lack of complete eye tracking

data may have related to calibration failure. Among the cases with

missing eye tracking data, 50% (5/10) were HxC cases. Rather than

inserting interpolated values for the missing data, the analysis was

limited to potential predictive variables with complete data for the 75

participants. Thus, 12-Metric VR Dispersion was based on the

median response times of 3 movement types (i.e., neck, upper

extremity, and lower extremity) for each of 4 visual stimulus types

(i.e., 12 T-scores). Median and inter-quartile range (IQR) values for

12-Metric Dispersion were 3.5 (2.8, 5.0) for NoC and 4.4 (3.4, 5.6)

for HxC. Corresponding values for SFWI score were 92 (56, 57) for

NoC and 72 (58, 59) for HxC. Among the 20 cases of self-reported

HxC, the most commonly reported factors adversely affecting well-

being related to physical discomfort, sleep disruption, and mood

disorders are presented, along with corresponding data for the 55

NoC cases (Figure 4). The SFWI musculoskeletal item that provided

strongest discrimination documented muscle spasms, stiffness, and/or

aching discomfort during activities of daily living (AUC= .692).

The SFWI score and each of the VR metrics exhibited a

univariable association with HxC (SFWI AUC = .813; RCS AUC

= .556; CE AUC = .615; 12-Metric Dispersion AUC = .593).
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Backward stepwise logistic regression modeling included each VR

metric, SFWI, and interaction between each VR metric and SFWI.

The best 2-factor model included Dispersion (beta = 2.74, p < .001)

and the interaction of Dispersion with SFWI (beta = –0.03, p

< .001), which provided 81% HxC classification accuracy (Model

χ2[2] = 26.03, p < .001; Hosmer & Lemeshow χ2[8] = 1.86, p = .967;

Nagelkerke R2 = .427; AUC = .841, 95% CI: .734, .948). No

significant effect was observed for any covariates, including self-

reported history of ADHD diagnosis. To assess the accuracy of the

2-factor model across the 3 activity groups, separate receiver

operating characteristic analyses of the logistic regression predicted

probabilities demonstrated AUC = .813 for military cadets, AUC

= .921 for football players, and AUC = .853 for wrestlers. Binary

modeling that included 12-Metric Dispersion ≥3.2 (range: 1.5–

21.8) and SFWI ≤86 (range: 44–100) demonstrated 75% sensitivity

and 86% specificity with both positive (OR = 17.63, 95% CI: 5.00,

62.10), with a clear interaction effect (Figure 5). A potentially

meaningful correlation was evident between 12-Metric Dispersion

and RCS responses (r = –.534, p < .001; ρ = –.527, p < .001;

Figure 6). An RCS value ≤0.73 demonstrated only 30% sensitivity,

but 89% specificity for discrimination between HxC and NoC (OR

= 3.50, 95% CI: 0.98, 12.56). A linear correlation was not apparent

between 12-Metric Dispersion and CE (r = –.017, p = .885; ρ

= –.119, p = .310), but a ≥135 ms binary categorization of CE

demonstrated 50% sensitivity and 78% specificity for
FIGURE 5

Prevalence of self-reported concussion within subgroups defined by
binary categorizations of 12-metric VR dispersion and SFWI.

FIGURE 4

Most common complaints among self-reported history of concussion
(HxC) cases, with corresponding frequency of each complaint for no
concussion (NoC) cases.
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discrimination between HxC and NoC (OR = 3.58, 95% CI: 1.21,

12.61).

To assess VR 16-Metric Dispersion derived from median

response times of all 4 movement types (i.e., eye, neck, upper

extremity, and lower extremity) and each of 4 visual stimulus types

(i.e., 16 T-scores), a logistic regression analysis was completed for

the 65 cases with complete eye tracking data (15 HxC and 50

NoC). A 2-factor model that included SFWI (beta = –0.11, p < .001)

and the interaction of the 16-metric VR Dispersion with SFWI

(beta = 0.002, p = .069) provided 81.5% HxC classification accuracy

(Model χ2[2] = 18.60, p < .001; Hosmer & Lemeshow χ2[7] = 6.42,

p = .491; Nagelkerke R2 = .377; AUC = .855, 95% CI: .749, .960).

Median (and IQR) values for 16-Metric Dispersion were 6.6 (4.8,

8.2) for NoC and 6.4 (5.4, 10.9) for HxC. Median (and IQR)

values for 12-Metric Dispersion were 3.6 (2.7, 5.0) for NoC and 4.4

(3.6, 5.6) for HxC, which were nearly identical to the

corresponding values for the full cohort of 75 individuals. The

same was true for SFWI score median (and IQR) values, which

were 92 (57, 60) for NoC and 73 (58, 61) for HxC. To further rule

out any important difference between the 10 cases missing eye

tracking data from the other 65 cases, Mann-Whitney tests for the

strongly skewed distributions failed to identify differences for 12-

Metric Dispersion (p = .864) or SFWI (p = .458). Fischer’s exact 2-

sided test demonstrated identical proportions of self-reported

ADHD (p = 1.00). To assess the accuracy of the 2-factor model

across the 3 activity groups, separate receiver operating

characteristic analyses of the logistic regression predicted

probabilities demonstrated AUC = .970 for military cadets, AUC

= .730 for football players, and AUC = .800 for wrestlers. Binary

modeling of SFWI ≤86 (AUC = .812) and 16-Metric Dispersion

≥10.0 (AUC = .605) did not demonstrate the interaction found for

the continuous variables, but ≥1 of the 2 binary factors positive

demonstrated 93% sensitivity and 64% specificity (Odds Ratio =

24.9, 95% CI: 3.0, 205.2). A graphic representation of within-

subject variability in successive eye, neck, upper extremity, and

lower extremity response times is provided for comparison of cases

exhibiting low variability and high variability (Figure 7).
FIGURE 6

Inverse correlation between 12-metric VR dispersion and rate correct per
second.
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FIGURE 7

Graphic depiction of within-subject variability in response times for 40-
trial virtual reality tests of 2 college football players: low variability (A)
and high variability (B).
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Discussion

Early studies that utilized VR to create a visual illusion of self-

motion through a “moving room” projected onto a screen identified

an impairment in postural balance among recently concussed

individuals, which persisted for at least 30 days after injury (32–34).

Because postural sway was not evident in the absence of the visual

illusion, nor during testing with the visual illusion that was

conducted prior to concussion, the terms “perception-action

disintegration” and “visual-motor disintegration” were used to

designate the concussion-related impairment (32, 34). Subsequent

studies confirmed the effect of visual motion on postural sway

among individuals who had sustained a concussion within the

preceding 7 to 10 day period (35, 36), as well as an effect on the

accuracy and speed of whole-body responses to unpredictable

changes VR motion direction (37). Another early study utilized an

immersive VR head-mounted display to document impairments in

sustained attention, response time, and inhibition of distracting

stimuli among adolescents who had sustained a sport-related

concussion from 1 to 24 months prior to testing (38). The findings

of this study suggest that performance variability in execution of

motor responses to different types of visual stimuli displayed within

an immersive VR environment represents a behavioral manifestation

of inefficient neural processing, which may be a very long-lasting

effect of prior concussion.
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Several previous studies have documented an association between

concussion history and intra-individual variability in the speed of

responses requiring discrimination between different types of visual

stimuli (62–65), and others have related such behavioral

performance inconsistency to neural correlates of inefficient brain

function (65–68). Distinctive aspects of this study include the use

of moving visual stimuli and the measurement of coordinated eye,

neck, upper extremity, and lower extremity responses during

whole-body reaching/lunging movements toward VR targets

located beyond the peripheral field of view. Moving visual stimuli

activate the hV5/MT +motion sensitive area of the brain that is

involved in the neural process of generating rapid motor responses

(69–71). Horizontally moving circles that impose a cognitive

demand (i.e., congruent vs. incongruent stimulus-response

instructions) may provide a more perceptually challenging and

ecologically valid representation of a real-world dynamic

environment than the statically displayed stimuli that are typically

used to assess neurocognitive status (72). Given the complexity of

the central nervous system and individual variations in its

architecture, some amount of within-subject dispersion among

different types of stimuli and corresponding responses generated

by different body parts is not surprising (73). Thus, previous

research that has linked excessive dispersion to early development

of aging-related neurodegenerative conditions may have relevance

to neural impairment caused by mTBI among adolescents and

young adults (46). Consistent with the findings of a recent study

involving elite athletes (29), dispersion of multiple standardized

values for test metrics representing somewhat different

performance domains provided greater discriminatory power for

identification of HxC cases than any single test metric. The diffuse

and heterogenous nature of mTBI might explain the greater

discriminatory power of a multifaceted composite metric compared

to a single test result (50).

The interaction between 12-Metric Dispersion and SFWI score

for identification of HxC cases depicted in Figure 3 may relate to

the manner in which brain networks interact with one another to

create integrated circuits (74). The default mode network includes

key nodes in the ventromedial prefrontal cortex, posterior cingulate

cortex, and precuneus that exhibit a high level of activation in the

absence of externally-imposed cognitive processing (75), which is

inversely correlated with the activation level of the frontoparietal

executive control network during engagement in a goal-directed

task (65). The anterior cingulate cortex and insula comprise the

salience network, which suppresses the default mode network and

activates the executive control network when a goal-relevant

external stimulus is detected, and which regulates a number of

interactions among distributed nodes of networks that subserve

cognitive, sensory, and affective information processing (14).

Synchronization of neural signals that oscillate at different

frequencies in spatially separated neuron populations provides the

mechanism for functional connectivity among brain networks,

which is directly related to the relative balance of excitatory and

inhibitory activity at neuronal synapses (76–79). Although

seemingly paradoxical, performance consistency in goal-directed

activities has clearly been linked to global variability in neural
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signals (80–82). Furthermore, disrupted functional connectivity

between the salience network and nodes of other networks may

adversely affect perceived well-being related to alterations in

autonomic and emotional regulation processes (14, 83, 84).

Numerous studies have demonstrated abnormalities in both the

structure and function of the default mode network among

individuals who have sustained mTBI (15, 75, 59–85).

Microstructural disruption caused by diffuse axon injury can result

in hypoconnectivity among network nodes (i.e., reduced within-

network connectivity) and/or between networks, but

hyperconnectivity (i.e., increased activation of adjacent neuronal

pathways) can provide a compensatory mechanism to sustain

information processing at the cost of lower metabolic efficiency (15,

61). Patients with chronic mTBI symptoms have been found to have

an imbalance in the ratio of cerebral blood flow between nodes of

the default mode network (increased perfusion) and those of the

executive control network (reduced perfusion), which corresponds to

less efficient salience network regulation of functional connectivity

between the default mode network and executive control network

(86). Because the metabolic cost of sustained hyperconnectivity

imposes oxidative stress that can ultimately produce microstructural

damage and hypoconnectivity within or between networks (60, 61),

the overall effects of different combinations of increased and

decreased functional connectivity within brain circuits can change

over time. Alteration of normal interactions between the default

mode network and salience network following mTBI can disrupt

efficient default mode network disengagement and activation of the

executive control network, thereby impairing the ability to rapidly

detect salient external stimuli (87). Furthermore, inefficient

disengagement of the internally focused default mode network may

produce elevated awareness of post-concussion symptoms (14).

Because the anterior insula component of the salience network

integrates visceral, emotional, and autonomic inputs, its interactions

with the default mode network and executive control network

contribute to the regulation of the heart, the gastrointestinal tract,

and emotional responses (84). Microstructural white matter damage

may ultimately be related to the findings of a recent report that

documented significantly increased risk of medical and behavioral

health diagnoses within 5 years of concussion occurrence (88).

Although the 12-Metric Dispersion value for neck, upper

extremity, and lower extremity responses provided the best VR

indicator of HxC, test results that do not require standardization

permit immediate post-test assessment of an individual’s

performance. Only one prior study has utilized a similar moving

circle paradigm for assessment of the ability to cognitively suppress

execution of incorrect responses to stimuli that elicit a processing

conflict, which demonstrated a lesser Conflict Effect for football

players compared to non-athletes (72). Expected associations of

HxC with both Conflict Effect and Rate Correct per Second were

evident, but lack of a meaningful correlation between Conflict

Effect and Rate Correct per Second suggests that they represent the

output of different neural processes. The inverse correlation

between 12-Metric Dispersion and Rate Correct per Second

depicted in Figure 5 suggests that both measures may represent

some aspect of the relationship between neural processing and

behavioral performance.
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The term “neural efficiency” specifically relates quantifiable

mental effort (i.e., elevated brain activation) to performance goal

attainment, for which the relationship between speed and accuracy

of behavioral responses is recognized as a readily attainable

estimate (89, 90). The Rate Correct per Second measure offers a

numerical representation of performance that adjusts for the

inherent speed-accuracy trade-off imposed by choice responses to

successive visual stimuli (91). Paradoxically, greater moment-to-

moment brain signal variability characterizes a well-functioning

neural system that produces accurate, fast, and consistent cognitive

performance across multiple performance domains (80, 92). Neural

efficiency is closely related to the concept of cognitive flexibility,

which refers to the ability to switch between different modes of

neural processing in response to changing internal or external

environmental demands (81, 82). Conversely, cognitive stability is

needed for tasks that require focused attention and inhibition.

Metastability refers to an optimal balanced state within the brain

that facilitates rapid reconfiguration of networks to enhance

information processing capacity (58, 80, 93, 94), which could be

expected to produce the inverse relationship between low 12-

Metric Dispersion and high Rate Correct per Second that was

observed.

Elevated risk for repeated concussion (14, 95), as well as more

severe symptoms from repeat concussion (43), suggests that a

complex cascade of neural, autonomic, immune, endocrine,

metabolic, and epigenetic interactions can have long-term adverse

effects without producing symptoms that necessarily raise concern

about vulnerability to further brain injury. Such vulnerability may

be particularly insidious among collision sport athletes who have

experienced default mode network alteration as a result of repeated

head acceleration events (15). Consistent with recent work that has

documented the predictive value of self-reported HxC with

symptom severity among college athletes (42), SFWI responses

identified headaches, trouble falling asleep, and anxiety as

complaints more commonly reported by individuals with HxC. In

contrast to the widely used 22-item Sport Concussion Assessment

Tool and the 22-item Post-Concussion Symptom Scale, the Overall

Wellness subcomponent of the SFWI includes muscle aches and

joint aches as response options that were among the most frequent

problems reported by individuals with HxC. The 10-item Sport

Fitness subcomponent of the SFWI addresses factors that may

impair sport performance and/or elevate risk for musculoskeletal

injury. Any response other than “not at all” to a query about

“muscle spasms, stiffness, and aching discomfort during activities

of daily living” also made a substantial contribution to the

observed relationship between SFWI score and HxC. Although

musculoskeletal complaints reported by HxC participants may not

be causally related to prior concussion, chronic neuroinflammation

could certainly play a role in development of heightened symptom

awareness (14, 96).

Another aspect of the study findings that warrants consideration

is the greater value for 16-Metric Dispersion compared to 12-Metric

Dispersion for the subset of 65 participants who had complete eye

tracking data. The optimal categorization cut point for 12-Metric

Dispersion was ≥3.2 for the full cohort, whereas the cut point for

16-Metric Dispersion for the slightly smaller cohort was ≥10.0.
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Variability in oculomotor performance has previously been identified

as an important indicator of impairment among adults with a history

of concussion (97), as well as an association with head acceleration

events sustained by high school ice hockey players over the course

of a season (57). Decreased oculomotor efficiency from pre- to

post-season among athletes participating in collision sports has

also been reported (98). Because visual perception is dependent on

oculomotor control, regular assessment of the ability to consistency

and rapidly detect task-relevant environmental stimuli may be an

important consideration for management of injury risk among

collision sport athletes.

Surveillance of head acceleration events across a sport season

provides an ideal mechanism to study short-term effects, but

deployment of wearable microtechnology is an expensive and time-

consuming endeavor that is not feasible in most settings. Although

reliance on self-reported lifetime history of concussion represents

an imperfect means to identify individuals who may possess

suboptimal neurologic status, complete medical records are rarely

accessible. Given the strong possibility of underreported HxC

among NoC participants, the actual predictive value of the VR 12-

Metric Dispersion value and SFWI score for identification of

individuals with suboptimal neural processing efficiency was more

likely underestimated than overestimated. Lack of test-retest

reliability data for any of the VR metrics represents an important

limitation that needs to be addressed by future work. More

research may lead to development of valid and reliable VR metrics

that can differentiate individuals with relative resilience to the

potentially adverse effects of mTBI from those who possess

elevated vulnerability, as well as documentation of the effectiveness

of interventions for risk reduction.
Summary

The findings of this study suggest that inconsistent temporal

coordination of motor responses to virtual reality visual stimuli,

combined with self-reported physical, affective, or sleep-related

problems, can discriminate between military cadets and college

athletes who self-report versus deny a lifetime history of at least

one concussion. A substantial body of recent evidence suggests that

few athletes who have sustained mTBI have fully recovered normal

brain function prior to return to sport participation, but current

clinical assessment methods lack adequate sensitivity to detect

subtle impairments. A state of neuroinflammation that has no

readily identifiable signs or symptoms may persist for months or

years after mTBI, which makes detection of subtle impairments

perceptual-motor efficiency and overall well-being essential for

optimal clinical management.
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