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Neuromuscular control: from a
biomechanist’s perspective
Daanish M. Mulla and Peter J. Keir*

Department of Kinesiology, Occupational Biomechanics Laboratory, McMaster University, Hamilton, ON,
Canada

Understanding neural control of movement necessitates a collaborative approach
between many disciplines, including biomechanics, neuroscience, and motor
control. Biomechanics grounds us to the laws of physics that our
musculoskeletal system must obey. Neuroscience reveals the inner workings of
our nervous system that functions to control our body. Motor control
investigates the coordinated motor behaviours we display when interacting with
our environment. The combined efforts across the many disciplines aimed at
understanding human movement has resulted in a rich and rapidly growing
body of literature overflowing with theories, models, and experimental
paradigms. As a result, gathering knowledge and drawing connections between
the overlapping but seemingly disparate fields can be an overwhelming
endeavour. This review paper evolved as a need for us to learn of the diverse
perspectives underlying current understanding of neuromuscular control. The
purpose of our review paper is to integrate ideas from biomechanics,
neuroscience, and motor control to better understand how we voluntarily
control our muscles. As biomechanists, we approach this paper starting from a
biomechanical modelling framework. We first define the theoretical solutions
(i.e., muscle activity patterns) that an individual could feasibly use to complete a
motor task. The theoretical solutions will be compared to experimental findings
and reveal that individuals display structured muscle activity patterns that do not
span the entire theoretical solution space. Prevalent neuromuscular control
theories will be discussed in length, highlighting optimality, probabilistic
principles, and neuromechanical constraints, that may guide individuals to
families of muscle activity solutions within what is theoretically possible. Our
intention is for this paper to serve as a primer for the neuromuscular control
scientific community by introducing and integrating many of the ideas common
across disciplines today, as well as inspire future work to improve the
representation of neural control in biomechanical models.

KEYWORDS

neuromechanics, optimization, synergy, musculoskeletal modelling, simulation, muscle,
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1. Introduction

A fundamental challenge facing biomechanists and neuroscientists alike is

understanding neuromuscular control. For a given task, an individual can have several

movement strategies available for facilitating performance (1). Each movement has a

potentially infinite combination of feasible force solutions across muscles (2, 3). A single

muscle can be composed of multiple anatomical regions (4–6), each with their own

mechanical functions that are innervated by hundreds of sensory and motor neurons (7).

How the neuromusculoskeletal system navigates this complex, abundant landscape of

possibilities at several levels while producing smooth, voluntary movement with ease is
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remarkable. The complexity of sensorimotor control can be

especially appreciated when considering the tremendous

challenges that scientists and engineers encounter while

attempting to design biologically inspired robots and machines

(8–10). The upper limb is a particularly intricate system as it

encompasses more than 70 muscles and 34 rotational degrees of

freedom, enabling a wide range of movement and manual dexterity

unparalleled by any other part of the human body (11, 12).

A thorough understanding of neuromuscular control of the arm

will aid in the design of robotic and prosthetic control, and

perhaps more importantly, inform strategies for improving task

performance, skill acquisition, and rehabilitative treatments for

movement disorders.

Several theories and conceptual frameworks have been

proposed to explain and understand neuromuscular control.

Recently, Valero-Cuevas (13) and then Cohn et al. (2) presented

“Feasibility Theory” as an approach grounded in biomechanical

modelling that encompasses prior neuromuscular control theories

(Figure 1). Feasibility Theory aims to understand neuromuscular

control by defining the set of all theoretically feasible solutions

for a task, exploring the structure of the solution space, and how

individuals inhabit and navigate the space. When faced with a

task, an individual’s neuromusculoskeletal system is met with

several constraints. These constraints include neural (e.g., hard-

wire pathways) and mechanical factors (e.g., task demands,

musculoskeletal limb properties) (14–18). Together, the

constraints define the feasible solution space of muscle

activations (i.e., red arrows and black polytope in Figure 1). An

ongoing debate is whether muscle synergies, described as a

functional unit of muscle groups with weighted co-activation, are

an indirect consequence of constraints and optimality principles

shaping the relationships across muscles (i.e., descriptive

synergies) or are a specific constraint by the nervous system

aiming to reduce control into a lower dimensional problem (i.e.,

prescriptive synergies) (13, 19–22). Nevertheless, the

neuromusculoskeletal system can theoretically traverse the

feasible solution space without any immediate impact on task

performance. In other words, accounting for the

neuromechanical properties of the limb and task demands, there

are several ways to activate muscles with no difference in net

joint torques, resulting in identical endpoint wrench (forces and

torques) of the limb (13). The solution space is comparable to

the uncontrolled manifold hypothesis, where the motor system

can take advantage of the abundance of solutions by allowing

elements (in this case, muscle activations) to freely vary within

this subspace while keeping a select performance variable(s), such

as endpoint forces and torques, constant (23, 24).

It is hypothesized that all feasible solutions are not equivalent

and certain solutions may be preferentially selected by

overarching optimality principles. Traditionally in biomechanics

and motor control, this is addressed as the degrees of freedom,

redundancy, abundancy, underdetermined, indeterminacy, or

load-sharing problem. It is commonly resolved using

optimization (e.g., static optimization, optimal control) to

determine a single solution within the feasible space that best

meets a criterion of choice. Note that optimization methods
Frontiers in Sports and Active Living 02
using gradient-based search for minima (e.g., static optimization,

optimal control) are a special case of machine learning. As

described in detail by Valero-Cuevas et al. (25), computational

methods that allow such explorations of feasible spaces are a

combination of machine learning, control theory, and estimation

detection theory. This combination has resulted in methodologies

including reinforcement learning, unsupervised learning, optimal

control, and many others being developed. However, as

traditionally applied to neuromuscular control to find unique

solutions, the choice of objective function to optimize varies but

is often related to minimizing “effort” (i.e., green circle in

Figure 1) (26–30). Others propose the use of multiple objective

functions (31, 32), such as the additional consideration for limb

stiffness (i.e., purple circle in Figure 1) (33, 34). In a multi-

objective optimization, there is rarely a single global solution that

will simultaneously optimize multiple objectives. This leads to a

landscape of optimal solutions depending on the relative weights

given to each objective (i.e., green-purple line in Figure 1).

Optimal feedback control theory is a specific application of

closed-loop optimal control, where a control policy (such as a

gain matrix) is sought to determine the control signals (i.e.,

motor commands) that maximize task goals in addition to

minimize effort (amongst other possible variables) while

integrating state-dependent sensory (feedback) information with

an internal feedforward model (35–38). What remains relatively

less studied is evaluating the landscape of suboptimal solutions

in the neighbourhood of the globally optimal solution (34, 39).

Through exploration of the feasible solution space via trial-and-

error, a probabilistic representation of motor patterns can be

formed (40, 41). This probabilistic representation characterizes

the degree of belief (or uncertainty) in which motor solutions

may work for completing a given task. Such probabilistic

representations are based on prior experiences (habitual

behaviour) and can be further shaped by optimality principles. A

probabilistic trial-and-error search guided by a fitness criterion

functions as a Markov chain (42). Repeatedly exploring the

solution space can lead to finding more rewarding solutions (e.g.,

less effortful solutions for accomplishing the same task) that are

reinforced and exploited over time (i.e., blue gradient cloud of

solutions in Figure 1). With motor learning, individuals may

then converge upon the optimal solution, or alternatively, one of

several approximately optimal solutions [or “good-enough” as

coined in (39)] for a task at hand.

By identifying the set of all feasible motor solutions for a task,

Feasibility Theory provides an elegant approach that embraces the

complementary and competing perspectives of several

neuromuscular control theories (e.g., muscle synergies,

uncontrolled manifold hypothesis, optimization, probabilistic

control). In the process, it naturally raises several fascinating

questions:
• What are the specific neural and mechanical constraints that

define the feasible solution space?

• Given these constraints, how do measured muscle activity

patterns compare to feasible solution space of muscle
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FIGURE 1

Conceptual visualization of a feasible solution space of muscle activations for a task at a single instant in time. The example on the left displays the
activation of two muscles as part of a hypothesized limb with n muscles (n > 2) and m kinematic degrees of freedom, where n >m, as representative
of human limbs. Unconstrained, the activation level for both these muscles can range from 0 (no activation) to 1 (maximum activation). Neural and
mechanical factors constrain (red arrows) the activation patterns within a subset of these ranges (black polytope), as required to complete the task.
The set of all muscle activation patterns within this polytope represent the feasible solution space. The feasible solution space will be a convex
polytope in the case of linear constraints that do not produce a null set. Nonlinear constraints could produce nonconvex feasible solution spaces
with curved boundaries. Without additional considerations, the neuromusculoskeletal system is free to vary muscle activations within this space as all
feasible solutions are treated equally while keeping task performance constant. Certain solutions, however, may be preferred as guided by
hypothesized sensorimotor control principles. Optimization aims to identify the single point within the feasible space that best attain the task
performance under such principles. For example, most biomechanical models assume effort minimization, thus, solving for the muscle activation
pattern that affords the lowest effort (green circle). In contrast, a system requiring maximum stiffness would necessitate greater muscle activations
(and forces) as a means of minimizing displacements to perturbations, leading to a drastically different solution (purple circle). If both effort and
stiffness are optimized (i.e., multi-objective optimization), a landscape of optimal solutions is formed depending on the relative weighting between
effort and stiffness (green-purple line) as there is rarely a single feasible solution that globally optimizes multiple objectives. Note that we are
assuming non-linear cost functions (as are typical in the biomechanics and motor control literature), where optimal solutions may lie inside or on the
boundary of the feasible solution space. In the case of linear cost functions, optimal solutions (if they exist) will lie only on the boundary of the
solution space. “Good-enough” solutions are suboptimal and are found in the neighbourhood of an optimal solution in the cost function landscape.
In this case, a “good enough” solution would generate a combination of effort and stiffness costs that would be comparable to the globally optimal
solution but is not the best combination that could be found. A probabilistic perspective to neuromuscular control is driven by exploring the feasible
solution space with trial-and-error, such as Markov chains, simulated annealing, and genetic algorithms. If shaped by optimality principles and
provided with sufficient exploration, the probability density of muscle activation patterns will converge towards optimal solutions with motor learning
(blue gradient cloud). The examples on the right are visual depictions of the same neuromuscular control principles for a higher dimension feasible
solution space.
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activations? Do measured muscle activity patterns occupy a

narrow or wide region within what is theoretically feasible?

• What hypothesized objective(s) does the neuromusculoskeletal

system aim to optimize?

• Can different weightings across multiple objectives help explain

within- and between-subject variability in motor patterns?

• With learning, do muscle activity patterns better approximate

optimal solutions?

• Can variations in arriving at different “good enough” solutions

help explain within- and between-subject variability in motor

patterns?

Although the questions posed above are recognized and tackled in

the literature, finding answers (especially for individuals starting
Frontiers in Sports and Active Living 03
out in this field) can be challenging because insights are often

provided across several papers crossing many disciplines. As such,

the purpose of this review is to explore many of these questions

by integrating ideas from biomechanics, neuroscience, and motor

control to understand how we voluntarily control our muscles. In

particular, we aim to provide a broad presentation of the

challenges and opportunities in this field, incorporating both

modelling and experimental evidence, to allow others to make

sense of the current debates and pitfalls, and help the community

make progress in the future. We begin the paper by first

formulating the degrees of problem using biomechanical modelling

(Section 2). Motivated by the recently proposed Feasibility

Theory (2) and the modelling foundations laid out in the textbook

“Fundamentals of Neuromechanics” (13), we will use the concept
frontiersin.org
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of feasible solution spaces to develop an intuition and understanding

of the degrees of freedom problem, as well as discuss earlier uses of

solution space approaches in biomechanics and motor control

(Section 3 and 4). The feasible solution space defines the set of all

theoretical solutions that an individual’s motor system has

available to perform a task. The focus throughout this paper will

be on the degrees of freedom problem at the muscle level,

especially during static tasks, with particular emphasis on the

upper extremity. The set of all theoretical possible solutions based

on the feasible solution space will be compared with individuals’

actual motor behaviour based on experimental data (Section 5). It

will be highlighted that individuals exhibit structured patterns in

their motor behaviour which inhabit only small volumes of the

feasible solution space, raising the possibility of overarching

neuromuscular control principles and/or neuromechanical

constraints that may be governing motor behaviour. We will

discuss dominant neuromuscular control theories, highlighting

optimality, probabilistic principles, and neuromechanical

constraints that are used to identify families of solutions in the

feasible solution space (Section 6). The incompatibilities between

current optimization-based model predictions and experimental

data will be discussed and used as an impetus for future studies to

account for additional neuromechanical factors and principles that

may be shaping muscle activity patterns but are unaccounted for

in current biomechanical models.
2. Biomechanical modelling and the
degrees of freedom problem

The equations of motion for a rigid body with m number of

kinematic degrees of freedom can be expressed in linear algebra

form as:

t ¼ M(q)€qþ C(q, _q)þ G(q)þ JTtend (1)

where t is the m × 1 vector of the generalized joint forces (i.e., net

joint forces and torques); q, _q, and €q are the generalized joint

positions, velocities, and accelerations, respectively; M(q) is the

m ×m inertia matrix; C(q, _q) is the m × 1 vector of Coriolis

forces that includes the velocity-related terms; G(q) is the m × 1

vector of gravitational forces; tend is the vector of forces and

torques at the endpoint of the limb; and JT is the Jacobian

matrix mapping endpoint to joint-level forces and torques.

The net joint forces and torques are balanced by the internal

force carrying structures at the joints, which mainly include the

musculotendon units, ligaments, and joint contact forces. As

musculotendon units are the main contributors to net joint

forces and torques, especially for postures in the mid range of

motion typical of many tasks, most biomechanical models only

include muscles. For a rigid body system with n number of

muscles, the balance of net joint torques by musculotendon units

can be expressed as:

t ¼ R(q)FMT
0 a (2)

where R(q) is the m × n matrix of muscle moment arms; FMT
0 is the

n × n diagonal matrix of maximum musculotendon forces; and a is
Frontiers in Sports and Active Living 04
the n × 1 vector of muscle activations which is commonly assumed

to range from 0 (no activation) to 1 (maximum activation). For the

purposes of this paper, the term muscle activation will be used

interchangeably to represent the theoretical neural commands

sent to muscles and measurements made using electromyography

(EMG), although caution is advised when interpreting neural

commands through EMG (43, 44). Combining Equations 2, 3

allows us to map a transformation between muscle activations

and the endpoint vector of forces and torques:

R(q)FMTa ¼ M(q)€qþ C(q, _q)þ G(q)þ JTtend (3)

Human limbs have a greater number of muscles than kinematic

degrees of freedom (n >m), which in turn are typically greater

than the number of elements in the endpoint force and torque

vector. As a result, Equations 2, 3 express an important concept

that has challenged the area of biomechanical modelling for the

past few decades and will be central to this paper. These

equations represent a transformation from a higher dimensional

space (muscle activations) to a lower dimensional space (net

joint torques and endpoint force vector). In other words, there

are more unknowns than knowns. Mathematically, Equations 2, 3

represent an underdetermined problem, allowing for several non-

unique solutions (i.e., combinations of muscle activations), if they

exist, for most tasks. In biomechanics and motor control, this is

famously termed the degrees of freedom problem [often traced

originally to the work by Nikolai Bernstein (1)] and is also

otherwise known as the muscle/motor redundancy (or

abundancy), statically indeterminate, or load-sharing problem.

Before proceeding with the biomechanical modelling

formulation presented above, a few remarks are required to set

the context for the rest of the paper. Foremost, the

biomechanical problem noted across Equations 1–3 traditionally

focuses on determining muscle activity patterns to balance the

net joint torques. However, human joints do not only exhibit

rotational but also translational degrees of freedom.

Furthermore, torques are not the only mechanical variable

guiding muscle coordination. Motor behaviour can be driven by

other mechanical factors. In particular, stability considerations

may be essential from a task performance and injury prevention

perspective (45, 46). In fact, the neuromechanical control of

motion vs. force are distinct and can be incompatible with each

other, with impedance control postulated by some researchers

as an approach to bridge between the two (47–50). The flip side

of the control of joint torques being underdetermined is that

the control of movement driven by afferented muscles is

overdetermined (13, 51). Specifically, the change in angles of a

few joints determines the change in lengths of many

musculotendon units. Finally, biomechanical models commonly

assume musculotendon units to act mechanically and

neurophysiologically independent of each other, with the

prescribed activation and consequent forces generated in one

muscle unaffected by other muscles. Our intention to make

these caveats clear from the outset is to caution readers to keep

these modelling assumptions and viewpoints in the back of
frontiersin.org
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their mind. For now, we begin this paper by adopting the

traditional modelling framework (e.g., focusing on balancing

joint torques, assuming independent control of musculotendon

units) because it is the dominant approach in the field of

biomechanics and allows us to be on the same starting page

with the majority of biomechanical models and modelling

programs currently available. Starting broadly also allows

researchers to develop more detailed models as they see fit to

answer their own neuromuscular control research questions of

interest. Over the course of this paper, we will unravel many of

the neuromechanical factors that are not always incorporated in

traditional biomechanical models but may be essential for

shaping muscle activity patterns.
3. Theoretically feasible solutions

The degrees of freedom problem fundamentally inquires about

how the nervous system navigates and selects solutions from the set

of all possible combinations of muscle activations (i.e., feasible

solution space) that can theoretically be used to perform a task.

For about half a century, since the 1970s, the standard approach

in biomechanics has been to use optimization to solve for the

single solution within the feasible solution space that best

matches a hypothesized control principle approximating how the

nervous system coordinates muscles (16, 18, 27, 30, 52–55).

Before taking a closer look at the use of optimization, the feasible

solution space of muscle activations itself warrants a detailed

discussion as it lies at the heart of the degrees of freedom

problem. Doing so will allow us to place experimental data of

how humans behave within the context of what is theoretically

possible based on biomechanical models. Similar approaches

(uncontrolled manifold, goal-equivalent manifold, and tolerance-

noise-covariation) have been undertaken in the field of motor

control, where theoretical solution spaces of task execution

variables (e.g., angle and velocity at release point during

throwing) are compared to individual performance to reveal

factors associated with motor learning (23, 24, 56–59). The

feasible solution space can be used to generate null models to

statistically test whether observed behaviour exhibit certain

features that would otherwise be unexpected if individuals

randomly navigated (i.e., sampled) the entire space (60). In the

process, it enables researchers to evaluate competing hypotheses

on which neuromechanical factors (e.g., constraints, optimality

principles, probabilistic learning) are shaping the emergence of

the specific muscle activity patterns from the broader landscape

of all possible solutions, and how this may vary across different

contexts, such as with learning, fatigue, neuromuscular

impairments, or following surgical interventions (2, 16).

In general, there are two approaches used to identify the feasible

solution space of muscle activations: analytical and numerical.

Both approaches have elegant graphical interpretations that

further our understanding of the degrees of freedom problem

(16, 61).

Analytical approaches characterize the exact feasible solution

space. For example, from Equation 2, we can mathematically
Frontiers in Sports and Active Living 05
describe a system with 2 muscles and 1 kinematic degree of

freedom as:

t1 ¼ (r1f
MT1
0 )a1 þ (r2f

MT2
0 )a2 (4)

0 � a1, a2 � 1 (5)

where rn, f MTn
0 , and an, refer to the moment arm, maximum

musculotendon force, and activation of each muscle (n)

respectively, which balance the net joint torque t1. Equation 4

represents a linear mechanical constraint to meet task demands

(i.e., net joint torque torque) based on the musculoskeletal

properties of the limb (i.e., moment arms and maximum

musculotendon forces). Equation 5 represents the inequality

constraints bounding muscle activations from 0 (no activation) to

1 (maximum activation). Thus, in this case, the feasible solution

space of muscle activations is a line defined by the mechanical

constraint (Equation 4) within a unit square representing the

muscle activation boundaries (Figure 2A). Increasing the count

to 3 muscles give us:

t1 ¼ (r1f
MT1
0 )a1 þ (r2f

MT2
0 )a2 þ (r3f

MT3
0 )a3 (6)

0 � a1, a2, a3 � 1 (7)

In this case, the feasible solution space of muscle activations is

visualized as a plane (Equation 6) within the boundaries of a unit

cube (Equation 7) in 3D space (Figure 2B), as originally depicted

by Crowninshield & Brand (26, 27) for the case of 3 muscles for an

isometric elbow flexion task. If the number of kinematic degrees of

freedom increase to 2 (e.g., elbow flexion-extension and forearm

pronation-supination), the feasible solution space of muscle

activations is then the intersection (if it exists) of two planes in

3D space, creating a line if the planes are not co-planar (62)

(Figure 2C). Interestingly, Crowninshield & Brand (26, 27)

illustrated changes in the selection of optimal solutions within

the feasible solution space of muscle activations based on the

nature of the cost function, particularly shifting towards the

interior regions promoting higher muscle co-activation when

using non-linear cost functions motivated by physiological bases.

In this vein, analytical approaches are effectively applied to

identify the force-sharing relationships across muscles and

contexts when muscle co-activation can or cannot be predicted

depending on the task conditions and/or structure of the

musculoskeletal model (e.g., number of joints and kinematic

degrees of freedom, uniarticular vs. biarticular groups of agonists

and antagonist muscles) (16, 63–69). However, these

investigations are primarily proof of principle focused on simple

models. Generalizing the analytical approach to increasing

complex models is challenging to interpret and visualize, as the

feasible solution space is the intersection of multiple hyperplanes

(each representing a single kinematic degree of freedom)

imbedded in a hypercube with the number of dimensions equal

to the number of muscles, resulting in a high-dimensional

convex polytope (in the case of linear constraints, see Figure 1

caption) (13). Computational geometry tools, such as vertex
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FIGURE 2

Visualizing the feasible solution space of muscle activations for simple elbowmusculoskeletal models. (A) A system with 2 muscles and 1 kinematic degree
of freedom. Given two muscles, the muscle activation space is two-dimensional as shown in the graph. The black border in the graph represents the
bounds on muscle activations from 0 (no activation) to 1 (full activation) (Equation 5). The grey line represents the combination of muscle activations
that can meet the net joint torque (t1) requirement at the single kinematic degree of freedom (Equation 4). Note that the intercept and slope of the
line is defined by the net joint torque, muscle moment arms, and maximum musculotendon forces. The feasible solution space of muscle activations
is the segment of the line (shaded in blue) inside the muscle activation bounds. (B) The feasible solution space of a system with 3 muscles and 1
kinematic degree of freedom can be represented by the portion of a plane (Equation 6) within the boundaries of a 3D unit cube (Equation 7), as
shaded by the blue area. (C) The feasible solution space of a system with 3 muscles and 2 kinematic degrees of freedom can be represented by the
intersection of two planes, creating a line (shaded in blue) in 3D space. The shape and orientation of the planes in (B, C) are defined by the net joint
torques (t1 , t2), muscle moment arms, and maximum musculotendon forces.
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enumeration algorithms, can be used to determine the vertices of

the resulting polytope (17), and thus, the range of possible

activation levels for each muscle in more complex models. As a

result, researchers may then identify muscles that are “necessary”

or “redundant” based on if a given task can be completed

without activating a given muscle (20, 62). Nevertheless, in the

former study, the model was reduced in complexity (from 44 to

14 muscles) to yield a solvable problem (20). Thus, analytical

methods quickly become intractable when modelling human limbs.

Numerical approaches find approximations to the feasible

solution space that help overcome the difficulties with applying

analytical methods to complex models. Numerical methods can

be broadly grouped into two categories: optimization and

stochastic. Optimization methods find muscle activity patterns

within the feasible solution space that minimize and maximize

the activation of one particular muscle [see Figure 2 from (3)],

thus identifying the range of activations possible for that

muscle. Iterating this optimization process across all muscles

will yield the activation range for each muscle within the

feasible solution space. This method has been applied to quasi-

static feline hindlimb standing balance (3, 34, 70), human

walking (71), and static pedalling endpoint forces (72). Note
Frontiers in Sports and Active Living 06
that optimization in the context of identifying the feasible

solution space differs from the traditional use of optimization

in biomechanics used to find a single solution to solve the load-

sharing problem (see Section 6). Although optimization can be

effectively applied to determine the boundaries of the feasible

solution space, it does not reveal any details on the internal

structure of the feasible solution space. In contrast, stochastic

solutions randomly sample specific points within the feasible

solution space (2, 73, 74). Stochastic methods may not identify

the true boundaries of the muscle activation range, but if

enough points within the space are uniformly sampled, it allows

for a glimpse at the internal structure of the feasible solution

space by identifying how muscles would need to activate in

relation with each other under the biomechanical constraints of

the task and limb [see Figure 3 from (2)]. Alternatively, the

solution space can be explored deterministically by first

identifying the vertices and sampling interspersed points

between the vertices (75, 76). Importantly, numerical

approaches can be applied to approximate the feasible solution

space in highly complex models, ranging from 7 to 92

musculotendon actuators with 4–23 kinematic degrees of

freedom across the studies cited above.
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4. Structure of the feasible solution
space

From our formulation of the feasible solution space, we can

immediately recognize that the structure of the space (i.e.,

number of dimensions, size, boundaries, orientation) will be

fundamentally shaped by the interaction between the

musculotendon mechanics, musculoskeletal geometry, and task

demands. Musculotendon mechanics defines the capacity of our

muscles to generate and transmit forces to bones, and is

determined by properties of the muscle and tendon such as the

maximum isometric force, pennation angle, and force-length-

velocity relationship. Musculoskeletal geometry is the spatial

relationship between the musculotendon units and the skeletal

structure (i.e., muscle lines of action and moment arms) that

map musculotendon forces into joint and endpoint forces/

torques. The term limb mechanics will be used to refer to the

collective effects of musculotendon mechanics and

musculoskeletal geometry. Task demands refer to the magnitude

and direction of the endpoint forces/torques required by the limb

to perform a given task. In our simple case of a 2 muscle, 1

degree of freedom system (Equation 5 and Figure 2A), the

feasible solution space is defined as a line, with its y-intercept

and slope dependent on the maximum musculotendon force

(musculotendon mechanics), moment arms (musculoskeletal

geometry), and net joint torque (task demands). Altogether, limb

mechanics and task requirements represent biomechanical

constraints that shape the feasible solution space, and hence the

muscle activity patterns required to perform a task. As a

consequence, muscle coordination is not an arbitrary recruitment

of muscles that will produce stochastic relationships in muscle

activity patterns. Instead, the feasible solution space will have

intrinsic structure. Multivariate relationships and correlations

between muscles will naturally emerge due to the biomechanical

properties of the limb meeting the specific task demands at hand

(2, 75).

Studies directly evaluating the structure of the muscle

activation solution space observe a complex dependency on tasks

and limbs. When performing sub-maximal tasks, the feasible

solution space is generally wide, and can range to the natural

limits for many muscles (i.e., activations can range from 0%–

100%) (71); however, this space tends to decrease (i.e., smaller

range of muscle activation levels) as task intensity increases (2, 3).

The increased feasibility at sub-maximal levels is possible because

muscles have more ways to co-contract to compensate and balance

joint moments. As most daily tasks are sub-maximal, this suggests

that there can be substantial opportunity for within-individual

variation in muscle activity patterns despite no changes in posture.

In addition to the task intensity, the precision required for a task,

such as during fine motor activities, will influence the feasible

solution space. Kutch & Valero-Cuevas (62) demonstrated that the

range of feasible activations for index finger muscles were

practically limitless when generating sub-maximal fingertip radial

forces without considering off-axis fingertip forces. Enforcing hard

constraints to the off-axis forces, as simulating a well-directed

precision key pinch task, drastically limited the possible muscle
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activity patterns to a small subset of solutions. The implication is

that muscle impairments resulting in decreased musculotendon

force capacity will predominantly affect the ability to perform

tasks requiring greater intensity and/or precision.

Robustness to perform tasks with muscle dysfunction may

vary across limbs. Comparing across models of varying

complexities, Sohn et al. (72) reported that the feasible

endpoint forces that can be generated at the endpoint of a

human leg is more robust to muscle impairments in models of

decreasing kinematic complexity (i.e., lower number of

kinematic degrees of freedom) and increased number of

muscles. It was further suggested that a ratio of muscles to

kinematic degrees of freedom can provide an estimate of the

musculoskeletal redundancy across different limbs. In other

words, systems with more kinematic degrees of freedom add

constraints which decrease the number of possible muscle

activity solutions for a given task. In contrast, more

independently controllable musculotendon units increase the

possible number of muscle activity solutions. As such, limbs

with a seemingly higher degree of musculoskeletal abundancy

(based on model choices, see next paragraph) may have greater

flexibility in feasible muscle activity patterns. Hence,

relationships emerging from the feasible solution space may be

less structured compared to limbs with a smaller ratio of

muscle to kinematic degrees of freedom, indicating a

fundamental difference in neuromuscular control of limbs of

varying complexities.

The findings from Sohn et al. (72) concurrently reveal the

importance of model choices [for a detailed review, see (77)]. As

an example, the shoulder can exhibit up to nine rotational

degrees of freedom with additional translational degrees of

freedom at the glenohumeral joint (78). Muscle activity at the

shoulder is known to be highly coordinated and is largely driven

by the need to delicately balance all joint torque requirements

along with enforcing joint stability (12, 79). Due to the

challenges with measuring and modelling shoulder kinematics

(78, 80, 81), many upper extremity models may simplify

representation of the shoulder by reducing the number of

degrees of freedom. However, these simplifications must be

informed by the research question. If the aim is to better

understand neuromuscular control of the shoulder, reducing the

kinematic degrees of freedom can eliminate many of the

mechanical functions that muscles enforce. For instance, the

rotator cuff muscles are important stabilizers of the glenohumeral

joint (82). Removing glenohumeral translational degrees of

freedom or not enforcing glenohumeral joint reaction force

constraints can underestimate the activation of rotator cuff

muscles as the stabilizing requirement for activating these

muscles is not modelled (83, 84). Improving anatomic fidelity by

adding kinematic degrees of freedom, such as the toes for lower

limb models (85) or the wrist for hand models (86), will require

secondary moments to be balanced and generally lead to higher

levels of muscle co-activation (69). Similarly, choice of muscle

pathway representation can influence the mechanical functions of

a muscle and affect predictions of neuromuscular control

strategies. MacIntosh & Keir (87) reported improved predictions
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of antagonist muscle activity when incorporating intrinsic finger

muscles and extensor mechanism representation for an index

finger model. Thus, conclusions on neuromuscular control using

biomechanical models can be sensitive to model choices.

Individual differences in limb mechanics will additionally alter

the feasible solution space that can cause inherent between-

individual variation in muscle activity patterns required to

perform identical tasks. Although few studies have explicitly

investigated how the solution space may vary across individuals,

substantial sensitivity in predicting musculotendon forces and

muscle activations is reported with alterations in the muscle model

parameters (88, 89), muscle attachment points (82, 90, 91), and

kinematic definition of the model (42) [for a review on

investigating stochasticity in model parameters, see (92)]. Further

complicating matters, posture will non-linearly affect limb

mechanics properties (e.g., lines of action, moment arms, force-

length, pennation angle, inertia), resulting in alterations in the

mapping from musculotendon forces to endpoint forces. For

instance, cadaveric studies report changes in the fingertip endpoint

force vectors generated when an individual tendon is loaded with

the same magnitude across different postures (93–97). As a result,

muscle coordination patterns required to perform the identical

task are expected to vary within-subject as an individual changes

their posture and between-subjects when comparing individuals

who adopt different postures due to anthropometric differences.

Taken together, relationships in activation levels across muscles

are shaped by the constraints of limb mechanics and task demands,

creating inherent structure in the feasible solution space. The exact

nature of these relationships is dependent on the individual’s

anthropometrics, anatomy, posture, limb, and task at hand. For

most sub-maximal tasks, there is a large feasible solution space

of possible muscle activity patterns that allow for the possibility

of substantial between- and within-individual variation in motor

behaviour.
5. Emergent muscle activity patterns

To this point, we have formally defined the degree of freedom

problem and discussed theoretical solutions to the problem using

the concept of the feasible solution space for muscle activations,

which brings us to a key question: which solutions emerge when

examining individuals in real life? That is, how do individuals

inhabit and navigate the feasible solution space? Several studies

have experimentally measured muscle activity patterns using

EMG of the upper extremity during various static tasks. As

expected due to changes in the feasible solution space, differences

in EMG amplitude are observed with alterations in posture and

task demands at the shoulder (98–102), elbow/forearm

(103–107), and hand/wrist (17, 108–110). Variations in muscle

activity patterns are also commonly noted within- and between-

individuals. Interestingly, within-individual variability in EMG

amplitude appears to increase with task intensity (111) despite

the feasible solution space of muscle activations generally

decreasing. This unintuitive finding is thought to arise due to the

signal-dependent motor noise present within the nervous system
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(i.e., variability in EMG and force increases proportional to

amplitude) (111, 112). The magnitude of between-individual

variability is systematically larger than within-individuals (113),

which is commonly hypothesized to represent individualized

motor control strategies, partly due to differences in limb

mechanics.

Upon further examination of the variability within- and

between-individuals, despite the substantial magnitude of

variability, muscles display relatively stereotypical coordination

profiles as evidenced by extracting low-dimensional patterns

(114–121). Although some structure in muscle coordination is to

be expected due to mechanical constraints, the few studies

making direct comparisons have found experimental data to

exhibit more distinctive and less varying multivariate

relationships across muscles than the set of all theoretically

feasible solutions. During walking, the range of feasible

activations for most lower limb muscles to balance net joint

torques can range between natural limits (0%–100%). It should

be noted that the feasible range of activations are likely to be

reduced when considering the additional dynamical constraints

that were not modelled (e.g., contraction-activation dynamics).

Nevertheless, experimental muscle activity patterns display

stereotypical patterns that fall within a relatively narrow band of

activation levels (71). Similarly, experimental muscle activity

patterns inhabited a small subspace of all feasible solutions

during submaximal isometric finger pressing tasks (108). The

small overlap in motor behaviour between what is observed

experimentally in real-life vs. what is theoretically possible based

on biomechanical modelling is incredibly meaningful and

indicative of: (1) overarching neuromuscular control rules or

principles governing the selection of certain muscle activity

patterns and/or (2) additional neural and biomechanical

constraints beyond just balancing net joint torques that are

unaccounted for in current biomechanical models but may

further shape muscle activity patterns.
6. Neuromuscular control theories:
optimality, probabilistic control, and
constraints

Several neuromuscular control theories (muscle synergies,

uncontrolled manifold hypothesis, optimality, probabilistic

control) are proposed to explain and predict voluntary control

of muscles from the large set of possibilities, each of them

elegantly encompassed within the framework of feasible

solution spaces (2, 13). The muscle synergies theory proposes

that the central nervous system organizes muscles into

functional groups (i.e., synergies) that are tuned to certain

task-level goals (117, 121). As a consequence, instead of

coordinating every individual muscle, the central nervous

system simplifies neuromuscular control by operating within a

lower-dimensional space by recruiting muscle synergies to

perform a wide range of tasks. An alternative perspective is the

uncontrolled manifold (UCM) hypothesis, which suggests that

the sensorimotor system can take advantage of the abundance
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of solutions by allowing elements (e.g., muscle activations and

joint angles) to freely vary as long as errors in the performance

variable(s) of interest, such as endpoint fingertip forces during

pressing, are kept to a minimum (23, 24). In other words, the

central nervous system is free to explore the available solutions

inside the feasible solution space since they are all equivalent

with respect to the mechanical demands of the task. Unlike

muscle synergies, the UCM hypothesis embraces the high

dimensionality of the musculoskeletal system. Interestingly,

both muscle synergies and UCM hypotheses can emerge

naturally by simply applying optimality and probabilistic

principles to neuromuscular control (2). In this context,

synergies are not a hard-wired constraint by the central

nervous system (i.e., prescriptive synergies) but arise inherently

due to the biomechanical constraints and optimization

processes shaping the relationship across muscles (i.e.,

descriptive synergies) (13, 20, 22, 122). Furthermore, if the

system’s goal is to optimize task performance while minimizing

effort, any deviations in degrees of freedom that have negligible

effects on task-relevant variables can be ignored, resulting in an

uncontrolled manifold along task-irrelevant dimensions where

elements are free to vary (36, 37). The following sections will

detail optimality principles and probabilistic control for

promoting the preference of certain muscle coordination

patterns and examine the evidence for neuromechanical

constraints in limiting independent control of muscles.
6.1. Optimality

Optimality, as a neuromuscular control theory, proposes that

sensorimotor behaviour is guided by overarching principles that

aim to best meet neurophysiologically relevant criteria or goals.

Fundamentally, it means that not every feasible solution is

considered equal and that certain solutions are preferred.

Optimality is an attractive idea, having parallels with many

prevalent concepts across science (e.g., natural selection in

biology, entropy maximization in chemistry). It would also be

predictive of stereotypical patterns that fall within a narrow

region of the feasible solution space, as consistent with

experimental data of motor behaviour. In biomechanics and

motor control, optimality principles have been the predominant

approach over the past half-century for resolving the degrees of

freedom problem, including the prediction of load-sharing

across muscles and movement trajectories (123, 124). The two

most common approaches are static optimization and optimal

control. Static optimization is the partitioning of net joint

moments, calculated using inverse dynamics, into individual

muscle forces, and consequently muscle activations,

independently at discrete timepoints (26, 27, 30, 52–54).

Optimal control is a forward dynamics based method that finds

the entire time history controls, typically muscle excitations,

given an a priori cost function (consisting of 1 or more

objectives) and a set of constraints (125, 126). Different optimal

control methods exist [see (25) for a review of applications in

neuromuscular control], with the majority of optimal control
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problems in biomechanics and motor control aimed at tracking

or predicting movement (127–134). Constraints in these

problems can be either incorporated indirectly through

penalties in the cost function or directly enforced to be met. A

less commonly used approach is inverse optimal control, which

seeks to identify the cost function that best matches

experimental data (typically movement trajectories) that is

assumed to be optimal behaviour (31, 135). Optimal feedback

control theory is a closed-loop application of optimal control

that considers task goals and neurophysiological cost(s) while

incorporating additive and/or multiplicative motor noise as well

as delayed stochastic (i.e., noisy) sensory information with an

internal feedforward model (35–37, 136). Integrating sensory

information in a closed loop enables task performance despite

model uncertainties and allows for online adaptations to

instantaneous perturbations (e.g., motor/sensory noise, external

environmental changes) (137) that can predict trial-to-trial

motor variability as commonly observed in experimental

data (37). The central challenge across these methods is

identifying the one (or more) neurophysiological criteria that

can be defined quantitatively as cost/objective function(s),

which the system is presumably seeking to optimize for

governing muscle and movement coordination. Although

optimal control methods have successfully predicted many

salient spatiotemporal features of movement trajectories using

different cost functions, such as minimizing jerk (129, 138),

torque (139), endpoint variance (140), and effort (37, 141), the

focus here will be on predictions of muscle load-sharing.

Formulating a cost function to represent the sensorimotor

system’s goals has challenged researchers since early optimization

models. Early work used linear optimization based on arbitrary,

mathematically convenient objectives, such as minimizing muscle

forces and stresses (force/cross-sectional area) (16, 52–54). The

optimal solutions across these cost functions recruit muscles

based on their moment arms and cross-sectional areas in a

stepwise manner, with unrealistically large forces predicted in

some muscles and minimal or no activity across several other

muscles (28). The inherent limitations of linear optimization

were also noted by Hardt (30), who found non-physiological

results with the number of active muscles depending on the

number of constraints modelled that are fundamentally unable to

distribute forces across synergistic muscles. It was further

suggested that physiological principles should be incorporated

into the optimization process with the recommendation for a

cost function based on muscle thermodynamics and minimizing

the muscle energy requirements. Pedotti et al. (142) were able to

predict forces distributed across muscles more reflective of

experimental data using non-linear optimization (sum of square

of muscle forces and normalized forces) but no physiological

basis was provided for these cost functions. Combining the latter

two approaches, Crowninshield & Brand (27) proposed

minimizing the sum of muscle stresses raised to a power of 3 to

reflect the sensorimotor system’s possible goal of maximizing

endurance during walking based on the non-linear inverse

relationship between muscle stress and endurance. Similarly, Dul

et al. (29) formulated a minimum fatigue criterion based on
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maximizing endurance accounting for muscle fiber type

composition, reporting a better fit with experimental data

compared to previously used cost functions. Since these initial

modelling studies, non-linear effort-based cost functions (mainly

quadratic and convex for ease of finding solutions) have

remained the standard in biomechanics (123, 143). The

definition of effort varies across studies, with most researchers

electing for simple functions approximating what may be

constituted as “effort”, such as muscle stresses, normalized

muscle forces, or muscle activations (i.e., motor commands),

while some studies include parameters underlying the metabolic

processes of energy expenditure (127, 141, 144–146).

Coordinating muscles efficiently based on an effort criterion

appears appealing and plausible. In addition to longer term

evolutionary and developmental pressures (147, 148), several

sources of evidence suggest that effort may drive motor

behaviour. Direct evidence includes decreased muscle activity,

co-activation, and metabolic expenditure (e.g., expired gas

analysis) during learning of novel upper and lower extremity

motor tasks (149–152). Indirectly, modelling simulations can

successfully predict several spatiotemporal characteristics of

reaching and locomotion kinematics using effort-based

objectives (37, 127, 139, 141, 153). Studies making comparisons

between the feasible solution space and EMG findings also

report experimental muscle activity patterns to largely occupy

the lower end of the feasible activation range for each muscle

(71, 108). Although a causal link between effort and

recruitment of muscles by the central nervous system is yet to

be fully established, muscle coordination seems to be related

(either directly or indirectly) with effort considerations.

Nevertheless, the prediction of load-sharing across muscles by

effort-based cost functions have proven controversial and

unsatisfactory in many cases (123, 154, 155). Several studies

observe a systematic failure to predict co-activation, even

amongst the most advanced biomechanical models available

today (156), particularly the under-prediction of antagonistic

muscles by optimization-based models compared to

experimental data. Based on the modelling framework

presented, co-activation of muscles would simply increase the

effort without altering the net joint moment, which would be

“wasteful” mathematically using optimization. Caution should

be made on whether the failure of optimization-based models

to predict muscle co-activation may be due to choices made in

model structure (16, 63–69) (see Section 4, paragraph 4).

Nevertheless, the incompatibilities between effort-based

optimization models and experimental observations for

predicting muscle co-activation have been challenging to resolve

but may be additionally explained by one or more of the

following causes that will be highlighted in the subsequent

sections:

a. Globally Optimal vs. “Good-Enough”: Is the central nervous

system truly searching for the single best solution or are

certain solutions deemed “good-enough”?

b. Multiple Objectives: Is the central nervous system

simultaneously optimizing other objectives?
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c. Model Assumptions: Are there additional neuromechanical

constraints unaccounted for in the model?

6.2. Probabilistic control

While optimization may drive motor behaviour to explore

more favourable solutions, the neuromuscular system may not

identify the most favourable solution. The complexity of the

high-dimensional feasible solution space limits the opportunity to

exhaustively sample every solution and opens the possibility of

considering “good-enough” solutions (39). “Good-enough”

solutions generate costs that are comparable to the globally

optimal solution, but not the best combination of costs that can

be found (i.e., approximately optimal). A systematic exploration

of the landscape of feasible solutions reveals that a diverse

distribution of globally suboptimal muscle activity patterns can

be found with similar costs (i.e., “functionally equivalent”)

neighbouring the globally optimal solution in the cost function

(i.e., fitness) landscape (34). Note that although different “good-

enough” solutions may be “close” in the cost function space, they

are not guaranteed to be “close” in the muscle activation space

[see Figure 4b in (34)]. Convergence to different “good-enough”

but functionally equivalent solutions may underlie individual

variability in motor behaviour (34). The convergence to

particular solutions may be determined by different initial states

of the system (39), repeated exploration/sampling of the feasible

solution space (157), motor variability (158), habitual behaviour

(159, 160), and the diversity of adaptation strategies across

people (161). Of interest, the exploration of the feasible solution

space can be shaped by optimality principles. Greater variability

in motor behaviour is commonly noted early on during motor

learning, which may correspond with individuals exploring and

searching for more rewarding solutions that are then exploited

with decreasing variability over time (41, 152). As a result,

individual-specific probabilistic representation of solutions are

developed (i.e., multivariate probability distribution of muscle

activities), characterizing the degree of belief (or uncertainty) in

which motor solutions may work best for a given task (40, 41).

Whether these solutions converge upon the optimal solution or

one of several approximately optimal solutions, as well as how

close to optimal constitutes “good-enough”, remain open

questions (34, 39). Interestingly, the combination of “good-

enough” solutions combined with strong prior probabilistic

representations (40) may explain why muscle and movement

coordination during some novel tasks remain similar to baseline

motor tasks despite being suboptimal and individuals provided

opportunities to practice the optimal solutions (see next section

on multiple objectives as an alternative explanation) (159, 160,

162). In this vein, probabilistic methods can be a powerful

approach for predicting muscle load-sharing that has yet to be

fully exploited in biomechanics. Rather than finding the globally

optimal solution with respect to effort, a range of possibilities

can be predicted. These possibilities can be calculated using

priors determined from the feasible solution space and adjusted

based on the effort costs observed in the distribution of

experimental muscle activity, allowing us to move past the
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shortcomings of simple optimization methods identifying only a

single solution. For example, Markov Chain Monte Carlo

methods with a prior weighed towards minimizing effort was

recently used to find a distribution of plausible muscle activity

patterns for a simple elbow flexion-extension motion (163).

Probabilistic methods provide the benefit of capturing potential

within- and between-individual variability in muscle activity

patterns, uncertainty in motor control objectives, and identifying

a range of possible outcomes when generalizing to novel

experimental conditions (e.g., new motor tasks, neuromuscular

impairments, rehabilitation, surgical outcomes).
6.3. Multi-objective optimization

The search for “good-enough” solutions and a probabilistic

approach for predicting muscle load-sharing is especially

promising in light of the growing evidence that the sensorimotor

system optimizes multiple objectives. For example, optimal

feedback control theory hypothesizes that sensorimotor

behaviour balances the internal objective of minimizing effort

with the external objective of maximizing task goals (i.e.,

reducing performance error) (36, 37). This can be evidenced by

experimental studies observing greater muscle co-contraction

during tasks requiring greater task accuracy (150). The central

nervous system may also consider multiple external and internal

objectives. One of the most well-known examples is the speed-

accuracy trade-off that weighs two external task goals. More

recently from the emerging field of neuroeconomics, decision-

making during motor behaviour is found to weigh effort against

rewards such that inefficient movements can be selected to elicit

greater rewards (164, 165). Similar results are observed during

decision-making weighing the relative costs of reaching and

walking (i.e., preference for choosing paths requiring shorter

reaching distances despite walking greater distances), which are

found to be influenced by bottom-up biomechanical mechanisms

(166, 167). Compared to any single measure of effort, multiple

metrics of effort, including mechanical work and metabolic cost,

were able to better estimate optimal strategy during split-belt

adaptations (168). Using an inverse optimal control approach, a

composite cost function combining minimizing effort and

maximizing joint smoothness was able to better predict arm

reaching trajectories compared to any single cost function alone

(31). Likewise, a weighted cost function combining a number of

objectives (cost of transport, muscle activity, head stability, foot-

ground impact, and knee ligament use) resulted in closer

agreement to healthy gait profiles (kinematics, kinetics, and

electromyography) than any one objective (169). Although

intuitively appealing, the implementation of multiple cost

functions through a multi-objective optimization model is not

trivial. Several cost functions may appear as appropriate

neurophysiologically relevant objectives. A better fit between

predicted and observed data may not necessarily reflect the

explicit goals considered by the central nervous system and could

be simple descriptors, but not necessarily causes, of motor

behaviour (170). In fact, a multi-objective optimization model is
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expected to perform at least as well as single objectives since the

weight of the additional objective can be zero if it adds no

predictive value. Nevertheless, statistical comparisons between

cost functions will allow us to start considering the likelihood of

different objectives (170). An alternative approach to model-

fitting with a priori cost functions is to design experimental

paradigms that pit objectives against each other (171). Similarly,

altering the cost landscape and identifying which solutions

individuals converge towards during learning and adaptation

may reveal how much weight (if any) the nervous system places

on different objectives, which likely will vary across populations

and tasks (158, 172, 173).

A plausible candidate for the consideration of additional

objectives to the muscle load-sharing problem is mechanical

impedance. The issue of redundancy has been at the heart of

this review but is not the only “computational” challenge

encountered by the sensorimotor system. Several additional

problems inherent to the system are thought to affect

sensorimotor control: noise, delays, uncertainty,

nonstationarity, and nonlinearity (174). Stochastic sensory and

signal-dependent motor noise (112) as well as uncertainties,

either through imperfect sensory processing, incomplete

environmental information, and unpredictable situations, will

especially challenge our ability to perform tasks with accuracy.

Interestingly, emerging evidence suggests that the majority of

signal-dependent motor noise may not arise at the motor unit

level due to stochastic motor unit discharge rates and unfused

twitches as commonly thought, but rather an emergent feature

of closed-loop feedback control (175–177). Nevertheless,

control challenges related with stochastic noise and

uncertainties can be compounded by delays in our

sensorimotor system. Neural feedback pathways through short-

latency (20–50 ms), long-latency (50–100 ms), and voluntary

responses (>100 ms) may affect our ability to respond to

mechanical disturbances in time (178). To combat these

challenges, it is thought that the sensorimotor system uses

feedforward mechanisms to maintain stability by actively

controlling mechanical impedance, defined as a resistance to

perturbations (45, 46, 179). Particularly important for postural

control during isometric tasks is stiffness. Stiffness is the

component of impedance accounting for resistance to changes

in position and is quantified as the ratio between force and

displacement changes (179–182). Impedance can be altered

through changes in muscle activity that can affect the

viscoelastic properties of individual muscles as well as the

concurrent forces applied by several muscles (i.e., co-activation

of synergists and antagonists). The increased joint stiffness

with greater muscle co-activation outweighs the negative effects

of signal-dependent motor noise resulting in an overall

decrease in movement variability (150, 183, 184). In fact, co-

activation of antagonist muscles can emerge as the minimal

effort solution when incorporating motor noise and time delays

using stochastic optimal control simulations (185, 186). On a

related note, in a redundant task execution space, individuals

find and exploit error-tolerant (i.e., robust) solutions,

presumably so that variations in execution due to sensorimotor
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noise or perturbations will have minimal effects on task

performance (57–59).

A couple studies to date have combined effort and mechanical

impedance in a multi-objective optimization. Of particular

relevance is a recent study investigating trade-offs between effort

and limb stability in an isometric postural control task using a

cat hindlimb model (34). The authors reported that effort and

stability are competing objectives, resulting in a landscape of

optimal solutions based on how much weight (0–1) is given to

each term between globally minimizing effort and maximizing

stability. The landscape of optimal solutions is termed the Pareto

optimal set, where no solution can be found without making at

least one of the objectives worse. Interestingly, it was found that

small increases in effort from the minimal effort solution resulted

in rapid increases in limb stability, indicating that low amounts

of muscle co-activation can be an effective feedforward

mechanism for increasing the mechanical impedance of a limb.

The study did not collect any EMG, so no conclusions were

made on the relative weight between effort and stability in real-

life motor behaviour and whether these weights are generalizable

across individuals and tasks. During an isometric elbow flexion

task with fatigue, predicted muscle activations from a multi-

objective optimization between minimizing effort and

maximizing joint stiffness was strongly associated with collected

EMG (R2 = 0.94) (33). The effort term was weighed more than

joint stiffness but with fatigue, an increase weighting towards

joint stiffness was observed and suggestive of alterations in the

objectives of the central nervous system with changes in task

demands. Joint stiffness has been a common focus in the spinal

literature (187, 188) but has garnered lesser attention across

other body parts. Intuitively, the shoulder would be a natural

location for the central nervous system to weigh effort and

stiffness together given the lack of passive restraints and reliance

on active musculature for minimizing glenohumeral joint

translations (12). Studies have implemented joint reaction force

constraints at the glenohumeral joint based on cadaveric data for

joint dislocation to confer stiffness (84, 189). However, these

constraints still under-predict muscle co-activation, with the

minimal effort solutions typically directed at the rim of the

glenohumeral joint that could easily dislocate with perturbations

or motor noise (83). Thus, an open question is whether

neuromechanical factors, such as joint stiffness, are to be treated

as objectives that are optimized vs. constraints to be kept at or

within a certain level. There is some evidence to suggest that

individuals exhibit greater levels of stiffness than the minimum

required for stability during mechanically unstable force

production tasks (46). Overlaying the neuromechanical costs

(e.g., joint stiffness) that individuals exhibit during real-world

tasks (190, 191) with the feasible solution space can help future

studies tease apart the consideration of objectives vs. constraints.

In addition to task performance and effort considerations,

muscles have a key mechanical function in injury prevention and

progression that may be guiding neuromuscular control

strategies. The active role of musculature in enforcing postural

and limb stability does not only facilitate task performance, as

discussed above, but also minimizes the risk of acute injuries,
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such as the prevention of falls and joint dislocations (192, 193).

Of equal importance, muscles impose substantial internal

joint-level loads that can mechanically contribute to the

development of chronic musculoskeletal disorders (e.g.,

osteoarthritis) (194–196). For instance, hip reaction forces during

walking are modelled to range anywhere from 1 to 10× body

weight when calculating the feasible muscle activation space

when only considering joint torques (74, 75). Given the role

these mechanical loads play in chronic injury development,

neural control of muscles may be tuned to not only maximize

task performance (i.e., satisfy joint torque requirements of the

task), but to also minimize internal joint stresses. Perhaps

the strongest evidence to date indicating that neuromuscular

control strategies may (in part) be regulated by joint-level

mechanical loads is the recent work by Matthew Tresch and

colleagues (197–199). Across a series of three experiments,

quadriceps muscle activity patterns (vastus lateralis, vastus

medialis, vastus intermedius, rectus femoris) were measured in

rats to investigate their role in regulating mediolateral

patellofemoral loads. First, across all locomotor task conditions

tested (different slopes and speeds), the vastus medialis and

lateralis exhibit the strongest pairwise correlations in muscle

activity patterns (between all quadriceps muscles), likely

reflecting a concerted neuromuscular effort to generate knee

torque while balancing net mediolateral patella force (197).

Furthermore, induced lateral loads on the patella through a

spring promoted an adaptive decrease in the ratio of vastus

lateralis-medialis activity (198). Finally, paralysis of the vastus

lateralis resulted in a maintenance of vastus medialis activity and

an increase in rectus femoris activity during locomotor tasks

(199). In the latter study, if the rats compensated for the lost

vastus lateralis torque by increasing vastus medialis activity alone,

it would be at the expense of minimizing joint stresses (due to

unbalanced net mediolateral forces). Alternatively, if vastus

medialis activity decreased, substantial increases in rectus femoris

activity would be needed to compensate for the lost knee

extension torques from both the vastus medialis and lateralis;

however, this could come at the expense of task performance due

to the bi-articular nature of the rectus femoris that would require

complex compensations at other joints. Thus, the experimentally

observed maintenance of vastus medialis activity and moderate

increase in rectus femoris activity in response to vastus lateralis

paralysis is hypothesized to reflect a central nervous system goal

of balancing the multiple objectives of minimizing internal joint

stresses and maximizing external task performance (199). Others

have similarly thought that the central nervous system regulates

its neuromuscular control strategies to limit mechanical loads

across joint-level tissues (17). Notably, muscle activity patterns

that minimize joint loads do not necessarily align with

optimization-based predictions of minimizing muscular effort,

which has promoted the development of neurorehabilitation

strategies to identify and train muscle activity patterns that

minimize mechanical joint loads to limit the progression of

pathologies (200–203). As a result, evaluating the delicate balance

between the multiple competing neuromechanical objectives

related to task performance, effort, and injury does not only offer
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a deeper understanding of human movement, but can also inspire

novel strategies at injury prevention and restoring function in the

presence of neuro-musculoskeletal pathologies.
6.4. Neuromechanical constraints: are
muscles independent actuators?

In our modelling framework so far and as consistent with most

biomechanical models, muscles are assumed to act as independent

actuators. However, neural and mechanical factors can lead to force

production and transmission between muscles (15, 204, 205).

Perhaps the clearest example in humans is in the hand. Fingertip

force production and/or movement of one finger leads to

involuntary fingertip force production and movement of other

digits (206–210). The relative contributions of neural vs.

mechanical factors to the lack of muscle independence is often

debated. Regardless, strong dependencies between muscle

activations and force transmission would act as a constraint to

the feasible solution space, such that certain combinations of

muscle activations and forces are unattainable (e.g., maximal

activation of index finger flexors without activating the middle

finger flexors). Failure to account for neuromechanical

constraints could lead to activity patterns substantially different

than what may be predicted using optimization. Assumptions of

independent control are thought to explain the poor prediction

of finger forces during multi-finger tasks compared to individual

finger tasks (143, 210). In the following subsections, we will

review the evidence of mechanical and neural constraints limiting

independent control of muscles.

6.4.1. Mechanical factors
Mechanical constraints are attributed to passive tissue linkages

between musculotendon structures [for a detailed recent review, see

(211)]. The anatomical structures involved include connective

tissue and neurovascular tract attachments between adjacent

muscles and tendons, fascia surrounding muscle compartments,

and intertendinous fascia (205, 211–213). As a result of these

structures, force generation and length changes in one muscle

can pull taut the connective tissue attachments, consequently

leading to force transmission and altered force-generating

capacity in neighbouring muscles.

Although the existence of inter-connections leading to

interactions between musculotendon units is undoubted, their

functional relevance remains uncertain. Early studies

investigating musculotendon inter-connections in animal models

observed differences in tendon forces between the origin and

insertion sites, indicating force transmission outside the

musculotendon unit. The tendon forces of a muscle can be

further altered by changing the length and relative position of a

neighbouring muscle (214–217). The functional contribution of

these force transmission pathways during everyday behaviour is

questioned (218), as manipulations to neighbouring muscles were

beyond physiological ranges of motion. Follow-up experiments

focused on manipulating limbs through the range of motion,

particularly examining muscles crossing the knee and ankle.
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Within this experimental paradigm, knee flexion-extension angles

were manipulated to produce length changes of biarticular

muscles crossing both the knee and ankle (e.g., gastrocnemius). If

forces are transmitted between the biarticular muscle and

neighbouring uniarticular muscles crossing only the ankle (e.g.,

soleus), then different magnitudes of ankle moments across knee

angles would be expected upon electrically stimulating the

uniarticular ankle muscles. Yet, limited changes in ankle

moments were found across knee angles among both cats and

rats (219–221), with force transmission effects between muscles

observed only when muscle groups were electrically stimulated at

maximal levels (222, 223).

Conflicting evidence is also reported for the role of connective

tissue linkages in limiting finger independence. Tensile forces

applied to the tendon of one digit result in movement of

adjacent digits (213). Removal of connective tissue linkages (e.g.,

intertendinous fascia, webbing) nearly eliminates movement at

adjacent digits, supporting the mechanical function of

intertendinous tissue in transmitting forces across fingers.

Reinforcing these findings, passive motion of one digit at the

metacarpophalangeal joint results in movement of other fingers

(206), with similar magnitudes of involuntary movement

observed during active motion (206) without any changes in

motor unit activity (204, 207). In contrast, passive motion of the

distal interphalangeal joint with anesthesia did not result in

movement of other digits (204) and electrical stimulation of the

extensor digitorum muscle compartments found relatively small

magnitudes of force transmission to adjacent fingers (224).

Overall, the inconsistent evidence across studies suggests that

assuming muscles are mechanically independent is non-trivial.

Certainly, assuming that torque contributions from individual

musculotendon units sum up linearly does not necessarily hold

true. Several studies observe the phenomenon where electrically

stimulating individual muscles and summing up their individual

joint moment contributions does not equal the total joint

moment when all muscles are simultaneously stimulated,

indicating mechanical interactions between muscles (225–228).

Furthermore, even if connective tissue attachments play a limited

mechanical role in force transmission between muscles, spindle

behaviour can be altered (229, 230), thereby affecting neural

control of muscles through sensory pathways. Thus, a complex

interplay between neural and mechanical factors, which are

largely unaccounted for in current biomechanical models,

emerges upon questioning whether muscles are independently

controlled.

6.4.2. Neural factors
Hard-wired neural pathways can constrain the ability to

independently control muscles. Within the motor cortex,

corticomotoneuronal cells projecting onto different muscles have

overlapping regions (231–234). In addition, neural circuits in the

spinal cord can diverge onto multiple muscles (235–237). Using

viral retrograding techniques, premotor interneurons across the

spinal cord are found to have monosynaptic connections with

motoneuron pools of multiple synergistic and antagonistic

muscles (236). As such, excitatory (or inhibitory) inputs can be
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delivered simultaneously to different motoneuron pools, which

may underlie common synaptic input and neural drive to

muscles (238). These circuits may form the neural substrates

limiting independent muscle control but allow for muscle co-

activation and co-inhibition to generate coordinated movement

across limbs or regulate limb stiffness. In support of these

neuroanatomical observations, synchronous discharge rates

between pairs of motor units are observed within and between

muscles (239–241), although whether common synaptic input is

causing this synchronicity is questioned (242, 243). The

differences in divergent synaptic connections across descending

pathways may act as a further neural constraint to task

performance. For example, the reticulospinal tract is highly

divergent and is hypothesized to play a larger role in gross motor

actions at the hand (e.g., grasping), as opposed to the less

divergent corticospinal tract that can promote individuated finger

control essential for fine motor tasks (e.g., manipulation) (244–

247). The different functional roles of these descending pathways

are speculated to compete against each other when met with the

interacting mechanical demands of multiple tasks (e.g., postural

maintenance vs. force control vs. movement) (47, 248, 249),

which may require integration of separate neural control

strategies (250, 251). The control strategies can be further

complicated by the emergence of stochastic signal-dependent

noise from the closed-loop aspect of motor control (175–177).

Moreover, while control of joint torques is underdetermined (i.e.,

many muscle activity solutions for a given combination of joint

torques), movement is driven by afferented muscles via spindles,

rendering the control of muscle excursions as overdetermined

(13, 51). That is, the length changes of many musculotendon

units are determined by changes in fewer joint angles, leaving at

best one solution for the control of muscle excursions. Amongst

this backdrop of multiple constraints arising from the neural

circuitry, the feasible solution space of muscle activity patterns

will be reduced.

As an extension of neural constraints limiting independent

control of muscles, some scientists hypothesize that the central

nervous system recruits muscles in groups known as synergies

(117, 121). A synergy is defined here as a functional unit

comprised of muscles with weighted activations to represent

muscles that are co-activated (or reciprocally inhibited). Each

synergy is thought to be tuned to a specific task-level goal (107,

252, 253). Hence, instead of coordinating muscles individually,

the central nervous system functions within a lower-dimensional

space by recruiting muscle synergies to perform a wide range of

tasks. The concept of muscle synergies parallels that of neural

manifolds, where cortical activity during motor behaviour is

observed to occupy a lower-dimensional space (i.e., manifold)

(254, 255). Evidence for muscle synergies is mainly derived from

stimulation of the brain and spinal cord (256–261). In these

experiments, electrical stimulation of the central nervous system

is observed to generate multi-joint torques that produce

functionally relevant actions (e.g., reach or grasp). Supporting

these findings, dimensional reduction statistics (e.g., principal

component analysis, non-negative matrix factorization) reveal

robust structural variations in muscle activity patterns that can
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largely be described by a small number of synergies (114–121).

For example, Roh et al. (107) accounted for greater than 90% of

the variation in EMG amplitude across 8 arm muscles during a

submaximal isometric hand task across 210 force directions using

4 synergies. However, whether these synergies are “prescribed” by

the central nervous system as a control scheme or are simply

“descriptive” of the relationships between muscles is debated (13,

19–22). Based upon the same task conditions from Roh et al.

(107), simulations performed using a musculoskeletal model with

static optimization were able to re-produce synergies matching

those found experimentally (262). This finding would be

consistent with the argument that muscle synergies are not

encoded as a control scheme but are a by-product of

biomechanical constraints and learning optimal policies within

the neuromuscular system (2, 20, 122, 263–265). Furthermore,

although behaviour may be largely explained by a few groupings

(i.e., synergies), the remaining unexplained variance that is often

disregarded as noise may be under volitional control and

required for task performance, manipulating compliant object

interactions, or explaining control differences in clinical

populations (266–270).

Regardless of the neural origin of muscle synergies, it appears

that the neural circuitry provides at least some level of constraint

on the voluntary control of muscles. The advantage offered by

such constraints are to simplify the ability to control our high-

dimensional neuromusculoskeletal system. Neuromechanical

constraints may further serve to uniformly distribute stress

across musculotendon units, reducing injury risk (271). In

contrast, constraints to muscle control would decrease the

feasible forces that can be produced at the endpoint of a limb

and limit the ability to generate rich, flexible behaviour, such

as adapting to novel environments, learning new tasks, or

regulating limb stiffness (13, 72, 255, 272, 273). It is possible

that the nervous system may be operating across both high-

and low-dimensional spaces (274). For instance, the ability to

independently control individual motor units varies from

remarkable flexibility (275, 276) to rigidly constrained (277).

Similarly, coherence analyses of motor units spike trains

indicate that the motoneuron pool for a single muscle may not

all receive the same common synaptic input, while

motoneuron pools from different muscle compartments or

groups may be constrained by the same common synaptic

input (278–280). These observations have led to the recent

viewpoint that muscles may not be the fundamental building

blocks of neuromuscular control but rather “clusters” of motor

neurons, striking a balance between flexibility and simplified

control (281).
7. Conclusion

We started this paper by formulating the degrees of freedom

problem using biomechanical modelling. The degrees of freedom

problem is described as finding a solution within a large number

of possible solutions, termed the feasible solution space. The

feasible solution space is constructed based on modelled
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neuromechanical constraints, accounting for task demands and

limb properties, and will include muscle activity patterns that

are both optimal and suboptimal based on any theoretical cost

function. Defining the feasible solution space does not mean

that individuals are traversing across all the solutions when

performing and learning a task. Rather, it identifies that

individuals must be somewhere on this landscape. In fact, real-

world motor behaviour, specifically muscle activity patterns in

the context of this paper, appears to occupy only small regions

of the feasible solution space. Perhaps the most fascinating

question, one that scientists from many disciplines have been

grappling with over the past century, is why individuals are

choosing certain solutions within this wide landscape of

sensorimotor possibilities. Underpinning this question are a

conglomeration of interacting neuromechanical factors that

may be shaping muscle activity patterns through the

considerations of task performance, effort, and injury

prevention. Although it may be a daunting task to piece

together this apparent muddle of puzzle pieces, the challenges

and opportunities available make the goal of better

understanding neuromuscular control an exciting endeavour.

As a scientific community, it is clear that our path ahead

requires multi-disciplinary teams to meet at the intersection of

biomechanics, neuroscience, and motor control. At the same

time, we want to encourage readers to not let scientific

progress be tracked solely by intellectually stimulating

conversations within academic circles. Equally important is the

ability to translate knowledge of neuromuscular control into

the real-world, whether it is to inform neurorehabilitation

strategies, develop safe workplace practices, or train athletes to

maximize performance. After all, the ultimate measure of

scientific success in our viewpoint is defined by the difference

we make in human lives.
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