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Heart rate variability of elite
female rowers in preparation for
and during the national selection
regattas: a pilot study on the
relation to on water performance
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Melissa Haas1, Seraya Makle1, Isis Echevarria1, Rohan Edmonds4

and Stephen J. Ives1*
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United States, 2Oak Ridge Institute for Science and Education, Belcamp, MD, United States, 3United States
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Elite athletes require a delicate balance of physiological and psychological stress
and recovery—essential for achieving optimal performance. Monitoring heart
rate variability (HRV) provides a non-invasive estimation of both physiological
and psychological stress levels, offering potentially valuable insights into health,
performance, and adaptability. Previous studies, primarily conducted on male
participants, have shown an association between HRV and performance in the
context of rowing training. However, given the rigorous nature of rowing
training, it is crucial to investigate HRV in elite rowers, particularly during the
U.S. national selection regattas (NSR).
Purpose: To comprehensively analyze elite female rowers, evaluating acute
changes in HRV and subjective psychometrics during the NSR.
Methods: Five elite female rowers (26 ± 2 years, 180 ± 8 cm, 82 ± 8 kg, 19 ± 6%fat)
were recruited and tracked prior to and during NSR I and II. Morning HRV
measures were completed using photoplethysmography (HRV4training) along
with self-reported levels of fatigue, soreness, rating of perceived exertion,
mentally energy and physical condition.
Results: Significant decreases were observed in log transformed root-mean
square of successive differences (LnRMSSD; p= 0.0014) and fatigue (p=0.01)
from pre-to-during NSR, while mental energy (p= 0.01), physical condition (p=
0.01), and motivation (p= 0.006) significantly increased. These psychometric
measures returned to pre-NSR levels, at post-NSR (all p < 0.05), though HRV
remained slightly suppressed. NSR on-water performance was not correlated to
LnRMSSD or the change in LnRMSSD (p > 0.05).
Discussion: HRV and psychometric measures are sensitive to the stress of elite
rowing competition in females. However, HRV was not associated with on-water
rowing performance during an elite rowing competition.
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1. Introduction

In recent years, sport scientists and coaches have increasingly

employed heart rate variability (HRV) as a non-invasive

physiological marker for evaluating and enhancing athlete

adaptations to training and subsequent performance (1–3). HRV

serves as an index of the autonomic nervous system reflecting

the interaction between the sympathetic and parasympathetic

systems influence on the heart (4, 5). It is assessed by measuring

the variation in R-R intervals, where a changes in the duration of

R-R intervals indicates altered autonomic activity (3). It has

previously been established that HRV measures are associated

with health outcomes, adaptability to training regimens, and

athletic performance (6–9), making HRV a good candidate for

athlete monitoring. Intense training or psychological stress can

suppress vagal indices of HRV, indicating reduced

parasympathetic activity (7). Conversely, heightened sympathetic

nervous system activity, as measured via HRV, has been linked

to fatigue and overtraining (7, 8, 10). For athletes and coaches, it

is important to understand and monitor the physiological and

psychological stress associated with training, traveling, and

competing, to optimize training and performance, but for some

sports, such elite female rowers, there is a paucity of data.

Rowing is a high-intensity sport, which requires significant

strength, power, anaerobic and aerobic capacity (11–14).

International race distance is 2 km and which is covered in 5.5 to

7.5 min in elite rowers, depending upon boat class and gender

(15) and course conditions (16). During racing, aerobic

metabolism likely contributes 67%–84% of the energy

requirement (15); thus, the remaining 16%–33% of energy

demand is met through anaerobic energy producing pathways

such as the phosphocreatine shuttle and anaerobic glycolysis (11,

17). Regarding the latter, peak rowing power over 5 or 10 stroke

maximal tests has been found to be highly related to 500 m (18)

and 2 km times (12). Rowing performance, both on the water

and on a rowing ergometer, is dependent on several physical

determinants, such as height and wing span [recently highlighted

here (19)], and physiological determinants, as mentioned above,

but also includes maximal oxygen consumption (VO2max) and

the power output associated with VO2max (WVO2max) (12, 20).

However, quantifying on-water performance is often challenging

because of the environment and the inability to assess the

performance of the crew individually. Although ergometer

performance tests eliminate these constraints, they do not

sufficiently address the skill aspect of performance on the water

(20), and can take away from technical training on the water

which is also essential for performance. As such, identifying key

physiological variables able to monitor and/or predict on-water

performance has merit for coaches aiming to effectively periodize

training workloads. Considering the rise in popularity of HRV

monitoring tools for self-monitoring, in an autonomous manner,

future studies should explore their real-world use.

Given the effectiveness of HRV as in indirect indicator of the

body’s ability to tolerate the stress of exercise training and the

limited study of elite rowers, let alone female rowers, this pilot
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study sought to characterize a group of elite rowers (body

composition, VO2peak, and peak rowing power output), and

assess changes in autonomously monitored HRV and subjective

psychometrics leading to, during, and shortly after U.S. National

Selection Regattas (NSR). For this purpose, we hypothesized that

HRV, self-reported levels of mental energy, and physical

condition would significantly decrease during the NSR and

recover following the competition rebound post-competition. It

was also hypothesized that HRV, and the perturbation in HRV

in response to NSR competition, would be related to on-water

rowing performance. Additionally, we hypothesized that self-

reported levels fatigue, soreness, rating of perceived exertion

(RPE) would significantly increase during the NSR and return to

normal post-competition.
2. Methods

2.1. Participants and general procedures

Elite female rowers were recruited from the Saratoga Rowing

Association Advanced Rowing Initiative of the Northeast

(ARION) program. The athletes were classified as elite

development as they were training for national team selection

and/or national and international level regattas, with rowing

experience (secondary school and/or collegiate). Participants were

recruited verbally and through emails and in coordination with

the head coach. In addition to being part of the ARION training

group, inclusion criteria required that the participants were

healthy, English-speaking, and a smart-phone user. Exclusion

criteria involved any chronic disease or illness or injury that

would prevent them from training or one that could alter their

HRV (e.g., atrial fibrillation), which was acquired by health

history form and reviewed by the study team. The athletes

provided written informed consent prior to participation. This

protocol was reviewed and approved by the Skidmore College

Institutional Review Board (IRB#2112-1010) and conducted in

accordance with the most recent revisions to the Declaration of

Helsinki.
2.2. Study overview

The athletes underwent in-person baseline testing in the

Human Performance Research Laboratory at Skidmore College.

Upon the participants’ arrival, they were screened for eligibility

and written informed consent was obtained. Baseline testing

included a body composition analysis, a maximal power output

test and a peak oxygen consumption (VO2peak) test (21–23).

Following preliminary testing, participants tracked their HRV

and psychometrics each morning leading up to and post the

NSRs using the HRV4Training mobile device application. NSR 1

and NSR 2 occurred 5- and 9-weeks following baseline testing.

The rowers official 2 km times during heats, semi-finals, and

finals of the NSRs were used to assess the on the water

performance, and the best times were used for analysis.
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2.3. Baseline assessment

Height was measured using a stadiometer and body composition

was obtained using air displacement plethysmography (Bod Pod,

CosMed, Chicago, IL, USA) which is a known, reliable method of

assessing body composition (22). To obtain the most accurate

results possible, participants were asked to refrain from eating or

exercise (only snack and water) at least 3 h prior to testing, use

the restroom upon arrival, remove glasses and jewelry, if possible,

to wear their uni-suit, and wore a provided swim cap to compress

air pockets within the hair.

Amaximal rowing power performance test was conducted during

single trial following a participant controlled 5-min warm up (23).

Starting from a rested (non-spinning) flywheel, participants were

then instructed to row as hard as possible for 10 strokes completed

(approximately 15 s) on a Concept2 rowing ergometer (Model D,

Concept2, Morrisville, VT) a pre-determined drag factor of 10, as

described previously (18, 24). The maximum, or highest, single

power output in watts was recorded. A brief recovery was allotted,

and then a graded VO2peak test was run to characterize the aerobic

fitness of the rowers (15). To measure oxygen consumption,

participants were instrumented with a two-way non-rebreathe

mouthpiece (8,900, HansRudolph, Shawnee, KS) attached via hose

to a metabolic cart (TrueOne 2,400, Parvomedics, Sandy, UT),

which has been documented to be reliable and valid assessment of

VO2 (21). The participant also wore a chest strap style heart rate

monitor (H7, PolarUSA, Lake Success, NY). Participants were seated

on the rowing machine until reasonable baseline relative VO2 values

were obtained (3–5 ml/kg/min) before starting the graded exercise

test. The graded exercise test started at 120 watts for 3 min,

increasing 30 watts per 3 min stage until volitional exhaustion and/

or failure to maintain workload following a similar previously

published protocol (25). Increases in work rate were achieved

through increased drive force (“pressure”) and/or stroke rate

(strokes/minute). This was a maximal effort test. Participants’ HR,

ventilation, VO2, and respiratory exchange ratio (RER) were

continuously monitored throughout the test and as criteria as to

whether participants achieved a near-maximal or maximal VO2.
2.4. HRV and psychometric monitoring

Following baseline testing participants were tasked with remotely

recording their heart rate variability each morning upon waking

using the HRV4Training mobile device application (Amsterdam,

Netherlands; see http://www.hrv4training.com/). The HRV4Training

application uses photoplethysmography (PPG) to obtain R-R

intervals from a continuous pulse rate reading (26, 27). Participants

were given a familiarization session with the application along

with an instructional document for reference; additionally, the

application uses a step-by-step process to walk the user through the

measurement. In the morning after voiding their bladder,

participants recorded their HRV for 1 min upon waking while in a

supine position while breathing at self-selected pace (28). HRV was

tracked using root mean square of successive differences (RMSSD),
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natural log transformed RMSSD (LnRMSSD), and standard

deviation of N-N intervals (SDNN). The mobile device application

also tracks other factors that may influence HRV, such as sleep,

training, menstrual cycle status, which the participant was asked to

complete with each reading. A two-week period was used to establish

a normal range for each individual, the app provided a daily

assessment as to whether the athletes’ HRV was within, above, or

below their normal range. This data was relevant for comparing

HRV and training performance.
2.5. Data analysis

During the weeks of March 22nd–25th the participants competed

in NSR I and May 3rd–6th in NSR II. The rower’s 2 km performance

times were recorded and compared to their HRVof the corresponding

day. Additionally, changes in LnRMMSD, 7-day average of

LnRMMSD, RHR, SDNN, RPE, mental energy, soreness, fatigue,

physical condition, and motivation pre, during, and post-NSR were

assessed with a linear mixed model with the fixed effect of time (pre,

during, post NSR) and the random effect of subject ID. Significant

main effects were followed up by pairwise comparisons. Linear

mixed models were checked for homoscedasticity via visual

inspection and Q-Q plots. Finally, a linear regression was performed

to assess the relationship between best on-water performance,

absolute LnRMMSD during the each NSR, and the percent change

in LnRMMSD from pre to during NSR. All calculations and

statistical analyses were run using Microsoft Excel (Microsoft Excel,

v 16.43, Redmond, United States) and open-source statistical

software JAMOVI (29, 30). Estimates of effect size, using Cohen’s

small (0.2), medium (0.5), and large (0.8) were used in accordance

with the model complement p values. The α-level was set to 0.05

and used to determine statistical significance.
3. Results

3.1. Baseline subject characteristics and
performance

Participants were 26.4 ± 1.7 years, height 180 ± 2 cm, weight

81.8 ± 8.4 kg, percent body fat 19.3 ± 6.5%, and percent fat free

mass 80.7 ± 6.5% (Table 1). Participants baseline and on water

performance characteristics are presented in Table 2, average

maximal power output was 681 ± 71 watts, peak heart rate 181 ±

17 bpm, and the relative VO2peak 52.6 ± 3.4 ml/kg/min (Table 2).

All participants VO2 max ranked >75th percentile for age and

sex specific norms. Individual daily HRV values and rolling

averages are presented in Table 3.
3.2. Changes in estimated cardiac
autonomic activity during the NSR

A significant main effect of time was observed in LnRMSSD

(F = 3.82, p = 0.02, Figure 1A). A pairwise comparison revealed a
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TABLE 1 Subject age, height, weight, % fat and % fat free mass.

Subject Height Weight % fat free

ID Age (cm) (kg) % fat Mass
1 29 184 75.0 11.1 88.9

2 25 177.5 73.0 18.8 81.2

3 27 179 93.0 26.0 74.0

4 27 179 90.8 27.2 72.8

5 24 179 77.3 13.4 86.6

Mean ± SD 26.4 ± 1.74 179.7 ± 2.23 81.8 ± 8.39 19.3 ± 6.47 80.7 ± 6.48
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significant reduction in LnRMSSD occurred for pre-to-during

NSRs (p = 0.006, t = 2.78, ES = 0.47). LnRMSSD was not different

during-to-post NSRs (p = 0.15, t = 1.87, ES = 0.24) or pre-to-post

NSRs (p = 0.11, t =−1.61, ES = 0.27). There was a significant

main effect for time on RHR (F = 5.51, p = 0.005, Figure 1B). A

pairwise comparison revealed a significant increase in RHR from

pre-to-during NSRs (p = 0.001, t =−3.32, ES = 0.56) and from

during-to-post NSRs (p = 0.02, t = 2.25, ES = 0.38). There was no

significant difference in RHR from pre-to-post NSRs (p = 0.19, t

=−1.32, ES = 0.22) Additionally, there was no main effect for

time on SDNN (F = 2.91, p = 0.05, Figure 1C) during the NSRs.

As an aspect of the current study was to utilize autonomous

HRV monitoring (vs. laboratory and/or researcher based) we

observed a 91% compliance rate, with the athletes completing

141 out of 154 possible measurements over the study time frame.
3.3. Changes in psychometric dimensions of
performance during the NSR

A significant main effect of time was observed for mental

energy (F = 5.05, p = 0.008, Figure 2C). A pairwise comparison

revealed a significant increase in mental energy for pre-to-during

NSRs (p = 0.002, t =−3.17, ES = 0.53) followed by a significant

decrease for during-to-post NSRs (p = 0.03, t = 2.20, ES = 0.37).

Pairwise comparison revealed no significant difference in mental

energy between pre-to-post NSRs (p = 0.23, t =−1.19, ES = 0.20).

A significant main effect of time was observed for soreness

(F = 10.4, p = 0.001, Figure 2D). A pairwise comparison revealed

that soreness was significantly decreased for between pre-to-

during NSRs (p = 0.001, t = 3.27, ES = 0.55) and a significant

increase for during-to-post NSRs (p = 0.001, t =−4.52, ES = 0.76).

No significant difference was observed for pre-to-post NSRs
TABLE 2 Subject laboratory and on water performance characteristics.

ID Peak
power
(W)

Peak HR
(bpm)

Peak
absolute VO2

(L/min)

Peak relative
VO2 (ml/kg/

min)

Age a
VO2

1 643 184 4.22 56.3 95

2 571 195 4.16 57.06 95

3 763 190 4.64 49.89 75–

4 677 188 4.49 49.44 75–

5 750 183 3.89 50.34 75–

Mean ± SD 681 ± 71 181 ± 17 4.3 ± 0.3 52.6 ± 3.4 N
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(p = 0.15, t =−1.44, ES = 0.24). A significant main effect of time

was observed for fatigue (F = 8.03, p = 0.001, Fatigue 2E). A

pairwise comparison revealed a significant decrease in fatigue for

pre-to-during NSRs (p = 0.01, t = 3.49, ES = 0.59), while a

significant increase in fatigue was observed for during-to-post

NSRs (p = 0.001, t =−3.72, ES = 0.63). There was no significant

difference in fatigue for pre-to-post NSRs (p = 0.79, t = −0.26,
ES = 0.04). A significant main effect for time was found for

physical condition (F = 4.84, p = 0.009, Figure 2B).

Additionally, a pairwise comparison found no change in

physical condition for pre-to-during NSRs (p = 0.21, t = −1.26,
ES = 0.21). While a significant decrease was observed for

during-to-post NSRs (p = 0.003, t = 2.99.56, ES = 0.50) and

between pre-to-post NSRs (p = 0.04, t = 2.03, ES = 0. 34). A

significant main effect for time was observed for motivation

(F = 6.05, p = 0.003, Figure 2F). A pairwise comparison found

a significant increase in motivation for pre-to-during NSRs (p

= 0.001, t = −3.32, ES = 0.56), while a significant decrease in

motivation was observed for during-to-post NSRs (p = 0.004, t

= 2.92, ES = 0.49). No significant differences in motivation

were observed for pre-to-post NSRs (p = 0.61, t = −0.50, ES =
0.08). A significant main effect was observed for training RPE

(F = 13.4, p = 0.001, Figure 2A). A pairwise comparison found

a significant increase in training RPE for pre-to-during NSRs

(p = 0.001, t = −4.99, ES = 0.91) and a significant decrease

from during-to-post NSRs (p = 0.001, t = 4.15, ES = 0.76).

No significant differences in training RPE for pre-to-post

NSRs (p = 0.43, t = −0.78, ES = 0.14).
3.4. Estimated cardiac autonomic activity
and relation to on-water rowing
performance

No significant relationship was observed for LnRMSSD

during the NSR 1 and on water performance (p = 0.29, R =

0.59, R2 = 0.35, Figure 3A) or for the % change in LnRMMSD

from pre to during NSR 1 and on water performance (p =

0.95, R = 0.03, R2 = 0.00, Figure 3C). Additionally, no

significant relationship was observed for LnRMMSD during

NSR 2 and on water performance (p = 0.23, R = 0.65, R2 = 0.42,

Figure 3B) or for the % change in LnRMMSD from pre to

during NSR 2 and on water performance (p = 0.16, R = 0.73,

R2 = 0.53, Figure 3D).
djusted
ranking

Anaerobic
threshold (AnT)

(W)

HR at
AnT
(bpm)

Average
NSR 1 time

(s)

Average
NSR 2 time

(s)
th % 270 173 452.64 427.01

th % 240 181 461.99 425.31

80th % 240 165 445.64 N/A

90th % 240 159 469.27 435

90th % 240 168 461.00 429.71

/A 246 ± 12 169 ± 7
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TABLE 3 Individual daily and rolling 7-day average of LnRMSSD pre, during, and post NSR 1 &2.

ID Pre-NSR 1 daily LnRMMSD During NSR 1 daily
LnRMMSD

Post-NSR 1 daily LnRMSSD

1 8.0 7.4 8.0 8.4 7.6 8.4 8.0 7.8 7.7 7.6 7.4 6.6 7.7 7.6 8.0 8.7 9.2 8.3

2 7.2 8.2 7.0 7.2 7.0 7.6 7.2 7.5 7.2 6.8 7.0 7.5 7.0 7.8 8.0 7.2 7.9 7.5

3 8.1 8.4 8.7 9.1 8.6 8.6 8.4 – – – – – – 7.6 8.3 – 8.2 8.8

4 7.8 8.3 9.0 7.6 9.1 8.4 7.2 7.7 7.7 8.1 6.4 8.1 – 8.7 7.6 7.3 7.4 7.3

5 8.9 – 10.2 8.9 10.9 12.6 8.7 – – 9.0 9.6 8.7 9.8 8.4 8.4 8.9 8.3 –

ID Pre-NSR 2 daily LnRMMSD During NSR 2 daily
LnRMMSD

Post-NSR 2 daily LnRMSSD

1 7.9 7.6 9.4 7.9 – 9.6 9.0 8.4 8.1 7.9 8.0 7.7 9.2 8.8 8.2 7.3 7.5 7.1

2 7.1 7.1 7.9 7.6 7.4 8.0 7.3 7.2 7.6 6.9 7.1 8.2 8.7 7.7 7.7 7.6 7.2 7.7

3 - 9.0 – 8.7 – 7.0 8.1 – 8.8 – 9.0 8.8 7.8 8.8 8.6 8.8 8.5 8.4

4 7.5 7.2 7.4 7.5 8.4 8.2 7.2 6.3 6.2 8.1 7.8 7.3 6.3 7.2 - 8.2 8.0 8.7

5 9.6 – – 9.2 7.8 9.3 9.6 – 8.7 9.1 8.6 8.6 – 9.0 9.2 8.7 9.2 8.6

ID Pre-NSR 1 7-day average LnRMSSD During NSR 1 7-day
average LnRMSSD

Post-NSR 1 7-day average LnRMSSD

1 8.3 8.2 8.1 8.2 8.0 8.1 8.0 8.0 8.0 7.9 7.8 7.6 7.5 7.5 7.5 7.6 7.9 8.0

2 7.3 7.5 7.4 7.5 7.4 7.4 7.3 7.4 7.2 7.2 7.2 7.3 7.2 7.3 7.4 7.3 7.5 7.6

3 8.2 8.2 8.3 8.5 8.5 8.6 8.6 NA NA NA NA 8.5 8.4 7.6 8.0 8.0 8.1 8.2

4 7.7 7.8 7.9 7.9 8.2 8.3 8.2 8.2 8.1 8.0 7.8 7.6 7.5 7.8 7.8 7.7 7.6 7.7

5 9.6 9.5 9.7 9.5 10.0 10.4 10.2 10.3 10.0 10.2 9.7 9.2 9.1 9.0 9.0 8.9 7.5 7.6

ID Pre-NSR 2 7-day average LnRMSSD During NSR 2 7-day
average LnRMSSD

Post-NSR 2 7-day average LnRMSSD

1 7.7 7.7 7.9 7.9 7.9 8.2 8.5 8.6 8.7 8.4 8.5 8.4 8.3 8.3 8.3 8.2 8.1 8.0

2 7.3 7.2 7.4 7.4 7.4 7.5 7.5 7.5 7.5 7.4 7.3 7.4 7.6 7.6 7.7 7.7 7.7 7.8

3 8.3 8.4 8.7 8.6 8.6 8.3 8.2 8.2 8.2 8.2 8.2 8.3 8.5 8.7 8.6 8.6 8.6 8.5

4 7.5 7.2 7.4 7.5 8.4 8.2 7.2 6.3 6.2 8.1 7.8 7.3 6.3 7.2 – 8.2 8.0 8.7

5 8.6 8.6 8.6 8.7 8.5 8.9 9.1 9.0 8.9 8.9 8.8 9.0 8.9 8.8 8.9 8.9 8.9 8.9
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4. Discussion

The current pilot study was one of the first to assess the

autonomously measured changes in HRV and psychometrics

during high-level competition and relation to on-water

performance in elite female rowers. The purpose of the current

study was to characterize a group of elite rowers (body

composition, peak aerobic fitness, and maximal power output),

and assess acute changes in HRV, as an estimate of cardiac

autonomic activity, and subjective psychometrics during the NSRs.

We observed decreases in LnRMSSD during competition which

rebounded 72 h post competition. However, neither HRV nor the
FIGURE 1

Estimated cardiac autonomic assessments pre, during, and post NSRs in elite fe
transformed root mean square of successive differences, LnRMMSD, (C) stand
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change in LnRMSSD were related to on-water performance during

the NSR. Secondly, these changes were accompanied by alterations

in psychometrics, such increased mental energy, decrease in

fatigue, and increased self-report of physical condition, while

soreness was unaffected during the competition; these parameters

returned to baseline approximately 72 h post competition. This is

the first study to report autonomous HRV and perceptual

dimensions of training and performance in rowers; thus,

collectively we demonstrate that athletes are capable, and willing,

to self-monitor (observed 91% compliance rate), which can

provide an insight into their physiological and psychological status

in the context of high-level competitions.
male rowers (n= 5). (A) Resting heart rate, RHR (beats/min), (B) natural log
ard deviation of N-N intervals, SDNN.
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FIGURE 2

Performance related psychometrics for pre, during, and post NSRs in elite female rowers (n= 5). (A) Training rating of perceived exertion (training RPE), (B)
physical condition (C) mental energy, (D) muscle soreness, (E) fatigue, (F) training motivation.

FIGURE 3

The relationship between on-water performance and average absolute LnRMMSD and % change in LnRMMSD during NSR 1 & 2 in elite female rowers (n=
5). (A) Absolute HRV (LnRMSSD) and best NSR 1 performance, (B) absolute HRV (LnRMSSD) and best NSR 2 performance, (C) % change in HRV (LnRMSSD)
and best NSR 1 performance, (D) % change in HRV (LnRMSSD) and best NSR 2 performance.
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4.1. Changes in estimated cardiac
autonomic activity during the NSRs

We observed significant acute decreases in LnRMSSD from pre

to during the NSRs with a rebound occurring 72 h post NSR

(Figure 1). An oversimplification or lack of context to this

response could be a cause for concern since decreases in HRV

during a training cycle are often interpreted as indicative of a lack

of adaptability to training (31), and when depressed chronically,

LnRMMSD is related to all-cause mortality (32, 33). The observed

acute decrease in HRV can be attributed to pre-performance

anxiety or stress response as previous research has demonstrated

an anticipatory response to stressful tasks, meaningful

competitions and high-intensity training sessions decreases HRV

(34–36). The performance impact of HRV reductions are

equivocal, and could be attributed to the level of athlete and/or

the importance of the forthcoming performance bout (37–39). As

such, these acute changes can be seen as expected or beneficial, as

increases in sympathetic activity facilitate increases in

norepinephrine, epinephrine (36), bioenergetic pathways (40, 41),

and neurological processes (i.e., reaction time) (42). Thus, this

short-term suppression of HRV estimated cardiac autonomic

activity may indicate a “readiness to perform”, as indicated in

previous literature (43). Our observation that parasympathetic

reactivation did not occur within 72 h partially contradicts

previous literature where an observed rebound occurred within

48 h (39, 44). This difference might be attributed to the effects of

a multiday event delaying full autonomic recovery, and/or the

potential for travel to suppress HRV (45). Therefore, athletes,

coaches and or sport scientists using HRV monitoring strategies

should consider adopting an individualized return to training plan.
4.2. Changes in psychometric dimensions
of performance during the NSRs

This study found that psychometric profiles improved during

NSRs and returned to pre-NSR values following the competition

(Figure 2). Specifically, we found improvements in mental energy,

physical condition, motivation, in addition to the reductions in

fatigue occurred during competition as LnRMSSD decreased. Flatt

et al., (2017b) observed that both psychological (stress, soreness,

fatigue, and mood) and LnRMMSD profiles improved (i.e.,

LnRMMSD increased and perceived fatigue decreased) as Division I

swimmers tapered for a national competition. The improvements in

psychological and physiological status when reducing training

volume likely contribute to the ergogenic effects associated with

tapering (46). Similarly, our group has demonstrated significant

reductions in fatigue and improvements in motivation in

recreationally active volunteers participating in HRV-modulated

training prescribed with lower training volumes (47). Reductions in

LnRMSSD have previously been associated with reductions in

fatigue and soreness (48); however, these findings are not universal

and may be subject to interindividual variability associated with

HRV outcomes (49). While reductions in LnRMSSD have been
Frontiers in Sports and Active Living 07
associated with increased training stress and incomplete recovery

(50) the changes in LnRMSSD are interpreted as a positive response

due to the increases in psychological status, which other

investigators have suggested are key to interpreting HRV outcomes

(51). Thus, the inclusion of perceptual or psychometric assessments

is valuable to coaches, athletes, and sports scientists monitoring

athlete workload.
4.3. Estimated cardiac autonomic activity
and on-water performance during the NSRs

This study found that neither absolute LnRMMSD or the %

change in LnRMMSD during competition was related to on-water

performance. This finding supports the previous research by

DeBlauw et al. (2022), that found no difference in 40-min cycling

time trial performance when HRV (LnRMMSD) was within or

outside an individual’s smallest worthwhile change window. There

is substantial evidence that daily HRV monitoring is a useful tool

for monitoring and adapting training cycles (52–54) as well as

identifying when negative adaptations or overtraining may be

present (8). However, HRV’s relation to performance may be more

nuanced than initially thought, in that parasympathetic

(LnRMSSD) HRV metrics suggest that an inverse relation may

exist insofar as greater HRV may actually be associated with slower

on water racing times (R = 0.6–0.7, Figure 3), and the percent

change in the same metric is unrelated to on water performance.

Thus, rowers and/or coaches may consider hiding or masking

HRV values during competition to avoid further anxiety around

their values and interpretation.
4.4. Experimental considerations

The sample size used in the current study was small but was

representative of female rowers from an elite team. No sample size

estimation or power analysis was conducted because we aimed to

recruit all of the rowers on the team who were currently at the

training center. Due to intensive training camp logistics we were

only able to recruit 5 athletes for this study, similar to other

investigations ranging from 2 to 6 elite athletes (Edmonds et al.,

2014; Plews et al, 2012). Due to the remote nature of the HRV data

collection we were unable to enforce a pre-reading stabilization

period or seated position for HRV readings which may have an

effect on resting HRV values (27, 55). Additionally, the statistical

analysis used in our previous investigations demonstrated that

changes in HRV is an appropriate method in similar small

populations (56). Finally, we did not control for the menstrual

cycle phase in this study. It is important to note that (57) has

demonstrated that in female rowers large perturbations in

autonomic activity can occur during the menses phase of the

ovarian cycle, which may overlap with competition, and this did

occur within our one of our specific athletes. This may have

influenced their respective LnRMMSD values. However, these

athletes will still be expected by coaches and themselves to perform

at high-level regardless of menses. Despite this, our approach
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represents an ecologically valid perspective given that these women

likely train and compete during all phases of the menstrual cycle.

Further research may be necessary to determine more significant

relationships and findings, but the current study provides effect

sizes for subsequent studies and meta-analyses.
4.5. Future directions

There has been limited previous literature on how HRV may

affect water performance for rowers, especially female

populations. The importance of assessing HRV in an

underrepresented population may provide extremely useful

feedback for coaches when designing an effective exercise

program. Further applications on HRV could provide a stronger

or more significant relationships of HRV and on water

performance. Further assessment of an individual’s HRV within

and outside of their normal window (above, below and normal

ranges) and the effect on rowing performance.
5. Conclusion

The current pilot study is one of the first to use autonomous

monitoring of HRV and psychometrics in elite female rowers

leading up to, during, and following U.S. National Selection

Regattas, and characterized their performance related parameters

(body composition, peak aerobic fitness, and maximal power

output). We observed decreases in LnRMSSD during

competition, which was mirrored by increased mental energy,

decrease in fatigue, and increased self-report of physical

condition, which reversed 72 h post competition. However,

neither HRV nor the change in LnRMSSD were related to on-

water performance during the NSR, perhaps the reductions in

HRV are reflecting a readiness to perform and not an acute

maladaptive response. Collectively, this novel pilot study

highlights that athletes are capable of autonomous monitoring

HRV and perceptual dimensions of training and performance;

which can provide an insight into their physiological and

psychological state but the temporal relations amongst these

variables may be complex and context dependent.
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