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Quantitative analysis of the
dominant external factors
influencing elite speed Skaters’
performance using BP neural
network
Zhenlong Yang1, Peng Ke1*, Yiming Zhang1, Feng Du1 and
Ping Hong2

1School of Transportation Science and Engineering, Beihang University, Beijing, China, 2School of
Competitive Sports, Beijing Sports University, Beijing, China
Introduction: Speed skating, being a popular winter sport, imposes significant
demands on elite skaters, necessitating their effective assessment and adaptation
to diverse environmental factors to achieve optimal race performance.
Objective: The aim of this study was to conduct a thorough analysis of the
predominant external factors influencing the performance of elite speed skaters.
Methods: A total of 403 races, encompassing various race distances and
spanning from the 2013 to the 2022 seasons, were examined for eight high-
caliber speed skaters from the Chinese national team. We developed a
comprehensive analytical framework utilizing an advanced back-propagation
(BP) neural neural network model to assess three key factors on race
performance: ice rink altitude, ice surface temperature, and race frequency.
Results: Our research indicated that the performance of all skaters improves
with higher rink altitudes, particularly in races of 1,000 m and beyond. The ice
surface temperature can either enhance or impaire performance and varies in
its influences based on skaters’ technical characteristics, which had a
perceptible or even important influence on races of 1,500 m and beyond, and
a negligible influence in the 500 m and 1,000 m races. An increase in race
frequency generally contributed to better performance. The influence was
relatively minor in the 500 m race, important in the 3,000 m race, and varied
among individuals in the 1,000 m and 1,500 m races.
Conclusion: The study results offer crucial guidelines for speed skaters and
coaches, aiding in the optimization of their training and competition strategies,
ultimately leading to improved competitive performance levels.

KEYWORDS
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1 Introduction

Speed skating race performance is influenced by numerous factors. Conducting an in-

depth analysis of the patterns of influence of these factors is crucial for enhancing

performance and optimizing training strategies. Research has investigated the influence of

various objective factors on race times, covering gender, season, competition stage, start

position, event importance, number of events per tournament, number of competitors per

race, altitude, time qualification, atmospheric pressure, rink type and location, geographic
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latitude, and oxygen concentration (1–4). Additionally, subjective

factors, like athletes’ technical abilities involving strength, mass,

and motor behavior (6, 7), along with game strategy (8), have

demonstrated a notable impact on game performance.

However, certain common and intriguing factors like ice surface

temperature and race frequency (referring to the number of races a

skater attended in a single season) still lack comprehensive research

regarding their impact on athletic performance. For instance, the

dispute over ice surface temperature settings between professional

athletes and ice technicians at the Beijing Winter Olympics

highlighted divergent understandings even among professional

bodies about the personalized impact of ice surface temperatures

on athletes (9). While existing studies indicate that ice surface

temperature affects the coefficient of friction (10), there remains a

lack of a more holistic understanding of its impact on

performance. On the other hand, some scholars have observed

that in 500 m and 1,000 m short track speed skating, the

completion times in finals, semi-finals, and quarterfinals are likely

to be faster than in preliminary rounds (1). However, this effect

seems negligible in 1,500 m races. The potential positive or

negative impact of competition frequency on athletes has yet to be

explored by researchers.

In addressing the impact of various parameters, traditional

mathematical and statistical methods are commonly employed,

with regression analysis being a frequently utilized technique. For

instance, Muehlbauer et al.’s (11) regression analysis revealed

that a shorter time spent in the last 400 meters of a 1,000-m race

was correlated with a shorter total race time. Knobbe et al. (12)

used linear modeling to integrate exercise sequences, discovering

that sustaining high-intensity training three weeks pre-

competition notably boosted performance, providing strong

backing for future training improvements. Konings and Hettinga

(1) used mixed linear models on log-transformed lap and

finishing times. They revealed that variables like the

competition’s skater count, stage, and importance could impact

skilled skaters’ pacing decisions and, consequently, their overall

performance. Ichinose et al. (13) employed a linear mixed model

to establish a correlation between standardized final rankings and

exposure times. They discovered that skaters hid behind others to

avoid air resistance for a long time before the final lap tended to

win, showcasing the significance of managing energy expenditure

throughout the race. Sun et al. (3) created a multivariate

regression model, concluding that latitude and altitude were

significant factors affecting performance time differences among

various rink locations.

While these methods can derive general patterns, they fall short

in individualized characterization of specific athletes due to the

strong coupling between multiple parameters. Currently, machine

learning-based data mining techniques offer new perspectives.

Machine learning (ML) methods, such as Support Vector

Machine (SVM), Random Forest (RF), Logistic Regression (LR),

K-Nearest Neighbors (KNN), Naive Bayes (NB), and Artificial

Neural Networks (ANN), have emerged as powerful tools that

can enhance prediction efficiency and accuracy compared to

regression analysis (14). ML techniques have gained significant

popularity in sports science, with applications in injury risk
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analysis (15–19), sports performance analysis (16, 20), sports

match prediction (21, 22), and match strategy development

(23, 24). Machine learning, with its ability to learn from large

datasets, enhance predictions, and formulate robust strategies

(25), is anticipated to significantly enhance the objectivity of

decision-making in sports science over the next decade (17–19).

Clearly understanding the impact of various factors and

accurately predicting performance are crucial for developing

effective training programs and optimizing athlete strategies,

ultimately leading to competitive success (26, 27). Presently,

machine learning techniques have seen preliminary application in

the field of speed skating. For instance, Gao (28) utilized a

genetic neural network algorithm for data training based on the

results of women’s speed skating competitions across the first 17

Winter Olympics. This approach enabled the prediction of

competition outcomes for the 18th to 21st Winter Olympics,

yielding high accuracy and practicality. Smyth and Willemsen

(29) used case-based reasoning to study how environmental

factors like altitude, track type and ice conditions affect speed

skaters’ performances, aiming to help athletes optimize their

rhythm. Liu et al. (30) analyzed 16 seasons of ISU women’s all-

around speed skating data with machine learning algorithms,

identifying the support vector machine as the best predictor of

performance, especially in predicting advancement to finals based

on 3,000 m event results.

This research leverages authoritative international competition

data provided by the International Skating Union (ISU), applying

the Back Propagation (BP) Neural Network algorithm (31, 32) to

construct a comprehensive predictive model for speed skating

performance. This technique, utilizing error backpropagation for

the training of multilayer feedforward networks, is acclaimed for

its exceptional predictive accuracy and robust generalization

capabilities (33). By conducting an in-depth analysis of various

influential factors, with a particular focus on ice surface

temperature and competition frequency, our study introduces a

quantitative approach to discern their impacts. This elucidates

the underlying patterns that are instrumental in optimizing

athletes’ performances and in devising innovative training

strategies. The fusion of machine learning and data analysis not

only propels the evolution of sports science but also fortifies

objective decision-making within the realm of speed skating.
2 External factors influencing speed
skaters’ performance

2.1 General review

When analyzing the athletic performance of elite speed skaters,

it is crucial to recognize that it is regulated by a combination of

numerous influencing factors, mainly categorized into two:

subjective and objective. The primary subjective factor

encompasses the skater’s technical level, including skating skills,

movement coordination, and other personal abilities. The second

factor is psychological quality, involving handling competitive

pressure, maintaining self-confidence, and controlling attention.
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Another key factor is competition strategy, encompassing the

development of a tactical plan and strategies such as when to

accelerate or maintain a constant speed. Additionally, daily

training and self-regulation, involving the ability to formulate

and execute training plans, as well as self-monitoring and flexible

adjustment of training programs, are equally crucial. Lastly, the

importance that athletes attribute to competition also influences

their self-performance.

The influence of subjective factors is intricate. Elite athletes

possess a relatively stable level of skill and tactics, resulting in

limited subjective influence. Therefore, the impact of objective

factors cannot be overlooked. These factors primarily stem from

the external environment and conditions, as elaborated on the

International Skating Union’s (ISU) esteemed website. They

encompass elements like ice rink altitude, ice temperature, game

time, ambient temperature of the rink, and details about the

inner and outer lanes, among others. External influences differ

based on individual characteristics, duration, and intensity of the

activity and necessitate thorough analysis.

Higher ice rink altitude, associated with lower air pressure and

oxygen concentrations, as observed by Malashenkova and Romova

(34), can potentially hinder a skater’s endurance and aerobic

capacity, leading to quicker fatigue and reduced performance at

high intensity levels. Conversely, athletes acclimatized to higher

altitudes undergo physiological adaptations, such as enhanced

erythropoiesis and increased oxygen utilization, leading to

improved performance. Additionally, the decrease in air density

at higher altitudes lessens skaters’ resistance to movement. An

intriguing study by Noordhof et al. (2) demonstrated that a

decrease in air pressure at higher altitudes can enhance the

likelihood of winning medals in long track speed skating events

by up to 10% owing to diminished air resistance.

Ice temperature and hardness are crucial factors. Higher ice

temperatures reduce hardness, increasing friction and affecting

skidding speed, while enhancing grip for high-speed cornering,

starting, and stopping. Conversely, lower ice temperatures create a

harder surface, diminishing agility and grip. The precise ice

temperature is vital, and existing literature establishes a correlation
FIGURE 1

Variation of Tingyu Gao’s race performance with the race number played in
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between ice temperature and the coefficient of friction (10); Du

et al. (35) have further contributed to theoretical understanding.

Race frequency, defined as the number of races a skater

attended in a single season, exhibiting contrasting influences on

skating performance. While it fosters skill development,

experience, and performance enhancement, it concurrently

imposes greater demands on skaters, necessitating heightened

adaptability and skill execution, posing a risk of fatigue, and

increasing the likelihood of injury. Striking a careful balance,

meticulous race preparation, and adopting a comprehensive

approach to enhance skater fitness are crucial to maximize the

benefits and minimize the potential drawbacks of race frequency.

Illustrated in Figure 1, the low-altitude race data of skater Gao

Tingyu from 2016 to 2017 season through the 2019–2020 season,

for instance, demonstrated improved performance with an

increasing number of races in a single season. The shaded areas

indicate 95% confidence intervals.

The evenness of the ice surface plays a pivotal role in the

performance of speed skaters, and a well-maintained, flat surface

is a prerequisite for optimal athletic performance. Irregularities

such as bumps, cracks, or unevenness can significantly impede

skating speed and pose safety risks. International ice rinks are

renowned for their excellent ice quality. For instance, China’s

National Speed Skating Arena boasts an ice sheet flatness of

≤3 mm over an expansive 12,000-square-meter area, surpassing

the strict ≤5 mm requirements set by the International Skating

Union. Additionally, the positioning of skaters in the inside and

outside lanes of the track profoundly influences their

performance in various ways. The inside lane (lane 1) offers a

shorter skating route than the outside lane (lane 2), providing an

advantage for optimal performance. However, in group events,

the outside lane is easier to overtake. Additionally, the

psychological effects of track position must be considered.

Analysis by Kamst et al. (36) demonstrated that the disadvantage

of the inside lane at the end of the 500 m race had not been

statistically significant since 2002. The controlled ambient

temperature of a closed ice rink can also affect the performance

of speed skaters. Lower temperatures typically help maintain a
a season from 2016 to 2017 season to 2019–2020 season.
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stiff ice surface, reducing friction but may lead to stiffness and

cooling of the athlete’s muscles, thereby affecting performance.

In conclusion, each of the factors we’ve examined profoundly

influences the performance of speed skaters. In contrast to

subjective factors, external objective factors can be precisely

quantified and assessed, enabling the identification of crucial

elements through scientific analysis. A comprehensive assessment

of these factors is crucial for scientifically advancing the

competitive level of speed skating.
2.2 Dominant factors based on kinematic
model

Drawing on the energy balance model (37, 38), we can establish

a kinematic model that describes the entire skating process of

skaters, taking into account the influence of equivalent propulsive

force, air drag, and friction, as shown in equations (1)–(3).

ma ¼ P0
v
� Fair � Ff (1)

Fair ¼ 1
2
rCdAv

2 (2)

Ff ¼ mmg (3)

Here, m represents the skater’s mass, a is acceleration, P0 is the

propulsion power, v is the relative velocity of air to the skater,

Fair is air resistance, and Ff is friction force. r is air density, Cd

is the drag coefficient, A is the skater’s frontal area, and m is

the ice friction coefficient.

The kinematic model makes it evident that the primary

resistances encountered in skating are air resistance Fair and

friction resistance Ff . Air resistance is directly proportional to air
FIGURE 2

Structure of BP neural network.
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density, and the ambient temperature at international high-level

competition venues remains relatively stable and consistent,

making the influence of the venue’s altitude particularly

pronounced (4, 39). The ice friction coefficient is predominantly

influenced by the quality of the ice surface. In international high-

level competitions, the ice surface is well-leveled, and the key

factors affecting the friction coefficient are the temperature and

hardness of the ice surface. Variations in ice temperature affect

the contact area between the skater’s blade and the ice surface

(40) and the coefficient of friction (10), ultimately influencing

frictional resistance. Propulsive power P0 is influenced by

subjective factors like the individual sporting ability. However, as

previously mentioned, frequent races during the season can alter

the skater’s real-time condition, potentially leading to the

accumulation of fatigue due to insufficient recovery time, thereby

affecting energy output during races. Hence, our focus will be on

the dominant external factors contributing to changes in these

three parameters, namely: ice rink altitude, ice surface

temperature, and race frequency.
3 Methods and verification

3.1 An analyse framework based on BP
neural network model

3.1.1 Neural network model structure
In Figure 2, the back propagation (BP) neural network consists

of three main components: the input layer, hidden layer, and

output layer. The neural architecture within the BP neural

network is illustrated in Figure 3. x1, x2, � � � , xn represent input

signals received from other neurons; wij denotes the connection

weight from neuron j to neuron i; u represents a threshold

(Threshold) or bias (Bias); S denotes summation; and f
frontiersin.org
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represents the activation function. The designed neural network

model employs the mean squared error as the loss function, with

the Sigmoid function chosen as the activation function.
TABLE 1 Variables and samples.

Variables Samples Units
tabs Absolute final time e.g., “34.32” s

trel Relative final time e.g., “1.0014”

A Ice rink altitude e.g., “49” m

T Ice temperature e.g., “ −7” °C

R Race frequency e.g., “3” represents the third race in a season

Tair Temperature e.g., “15” °C

H Humidity e.g., “35” °C

D Race date e.g., “20220212”

L Inner/Outer lane e.g., “1” or “2” represents the inner or outer
lane
3.1.2 Dataset and preprocessing
We obtained data from the International Skating Union (ISU)

official website on 8 elite speed skaters representing the Chinese

National Speed Skating Team in the Speed Skating World Cup

and Winter Olympic Games for at least the last three years (three

male, five female). The competition period spans from 2013 to

2022, with each athlete having a varying number of competition

records, ranging from 13 to 105 ensuring a comprehensive

representation of their competitive history. Removing data with

anomalies helps ensure the reliability and accuracy of the study.

We excluded data where skaters had a clear failure to perform

during a race due to the effects of injury or illness, or where the

result of a race was cancelled by the officials due to foul play.

Data sets for each skater, arranged chronologically, provide a

comprehensive view of each skater’s performance throughout their

careers. This range allows for an exploration of performance trends

and potential correlations with influencing factors. Overall, utilizing

a sizable and reliable dataset from reputable sources is crucial for

conducting a thorough analysis and drawing meaningful

conclusions about the performance of speed skating skaters.

It is noted that because of the presence of training years, there

is an overall difference in the performance of skaters in different

seasons. In this study, the data from all seasons will be fused by

introducing the method of eliminating training years from

“relative final time” expressed in equation (4), so that the results

of data analysis can reflect the pattern of the influence of

external factors throughout the skaters’ sporting careers and

improve the prediction accuracy of the BP neural network.

trel ¼ tabs,i
1
n
S
n
1 tabs,i

(4)

In this context, tabs,i signifies the absolute final time achieved in the

i-th race during a specific season, with i ranging from 1 to n, where
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n represents the total number of races within that season. Table 1

provides a summary of the 9 variables extracted from the public

dataset utilized in this study.

The prerequisite for data normalization prior to training is

imperative, given the substantial disparities in magnitudes

observed among the variables present in the raw dataset. This

entails rescaling all data to the standardized range of 0 to 1, a

procedure delineated in equation (5).

X ¼ x � xmin

xmax � xmin
(5)

The Mean Absolute Percentage Error (MAPE) is a vital metric for

neural network model assessment, as illustrated in equation (6).

MAPE ¼ 1
k

Xk
t¼1

At � Ft
At

����
����� 100 (6)

Here, k represents the number of testing and training datasets,

At stands for the actual value, Ft represents the predicted value

through neural network. In this context, uppercase E and

lowercase e represent MAPE for testing and training datasets,

respectively. When evaluating the model, it’s crucial to balance

the model’s fitting capability for a particular combination and its

corresponding prediction accuracy.

In this study, we introduce the parameter Δ, as outlined in

equation (7), and assess its significance across various scenarios.

A lower Δ is indicative of superior performance. Utilizing this

metric, we make informed decisions regarding the selection of

input and output metrics for the neural network model,

determining the optimal number of neuron nodes in the hidden

layer, and identifying high-performing neural network models

suitable for network aggregation.

D ¼ E þ e (7)

The model underwent optimization through parameter

adjustments and the exploration of various combinations of

input and output parameters. The results show that when the

input parameters are ice rink altitude, ice surface temperature

and race frequency, and the output parameter is relative final
frontiersin.org
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time, the D obtained according to equation (7) is the smallest,

which is exactly the same as the important influencing factors we

obtained through theoretical analyses. Therefore, we elected to

these indicators as input factors, while utilizing relative final time

as the output factor to construct our neural network model.

This strategic selection aims to enhance the model’s robustness

and applicability.

3.1.3 Determining hyperparameters
The number of nodes in the hidden layer of the BP neural

network model is determined by equation (8) (41), where m

represents the hidden layer nodes, n stands for the input layer

nodes, l is the output layer nodes, and a is a constant within

the range of 1 to 10.

m ¼
ffiffiffiffiffiffiffiffiffiffi
nþ l

p
þ a (8)

In our study, we set n ¼ 3 and l ¼ 1. Hence, m varies between 3

and 12. To mitigate the influence of chance, 10 training sessions

were carried out for each node count. The corresponding

D values for different node counts in the hidden layer are

as follows: 1.17%, 1.16%, 1.20%, 1.16%, 1.23%, 1.22%, 1.19%,

1.13%, 1.14%, and 1.25%, respectively. We determined that

the optimal number of hidden layers for skater GAO

Tingyu’s dataset is 10.

3.1.4 Constructing the prediction matrix
In order to obtain the influence patterns of the three dominant

factors, a continuous prediction matrix needs to be built. Firstly, for

a single data point, the predicted relative final time, trel, is

calculated using the neural network model with input variables

(A0, T0, R0). Subsequently, the predicted absolute final time,

Ŷ0, is obtained by multiplying trel by the total career average

final time of the corresponding skater, tave, as illustrated in

equations (9) through (11).

trel ¼ f (A0, T0, R0) (9)

tave ¼ 1
a
S
a
1tabs,i (10)

Ŷ0 ¼ trel�tave (11)

In these equations, the function f represents the neural network

model, responsible for the processes of normalization,

prediction, and recovery of input variables (A0, T0, R0).

Meanwhile, tabs,i signifies the absolute final time of the i-th race

within a skater’s race dataset, where i ranges from 1 to a, and

a denotes the total number of races in the dataset pertaining to

a specific skater.

This study assesses the overall impact of a variable on race

performance, specifically under conditions of low altitude,

average ice temperature, and mid-season settings. Consequently,

Acon is fixed at 50, while Tcon and Rcon are established at the
Frontiers in Sports and Active Living 06
respective mean values extracted from the skater’s dataset, as

expressed in equations (12) and (13), respectively.

Tcons ¼ 1
a
S
a
1Tj (12)

Rcons ¼ 1
a

Xa

1
Rj (13)

In the context of the variables under investigation,

Amin, Amax, Tmin, Tmax, Rmin, and Rmax denote the minimum and

maximum values pertaining to altitude, ice temperature, and the

number of races participated in a season, all of which constitute

the independent variable matrix. Specifically, Amin is standardized

to 0, while Amax is set at 1,500 to simulate realistic altitude

variations on the ice rink. Tmin and Tmax are determined from

the respective minimum and maximum values observed in the

ice temperature variable within a particular skater’s dataset.

Moreover, Rmin is established at 1, and Rmax corresponds to the

highest number of races played across all seasons. To ensure the

creation of a continuous prediction curve, the matrix is

composed of 500 columns, encompassing 500 uniformly selected

data points that span the range between the minimum and

maximum values, so a prediction matrix can be built from

multiple prediction points.

We can define the altitude influence matrix, MA, by

incrementing d for the front and rear columns of the altitude

variable. When MA is input into the neural network model, it

yields multiple results, Ŷ , thereby forming the prediction curve.

The altitude’s influence slope can be determined by calculating

the slope of this curve. equations (14), (15), and (16) provide the

specific expressions:

MA ¼
Rcon Rcon Rcon

Tcon Tcon Tcon

Amin Amin þ d Amin þ 2d

� � � Rcon

� � � Tcon

� � � Amax

0
@

1
A (14)

Ŷ ¼ N(MA)�tave (15)

kA ¼ K(Ŷ) (16)
Ŷ represents the set of 500 predicted results, and the function K

calculates the slope of the curve formed by Ŷ :kA represents the

slope characterizing the influence of altitude on performance,

computed from the predicted results of a single neural network

model, with units expressed as seconds per kilometer (s=km).

Similarly, kT and kR can be determined, with units denoted

as seconds per degree Celsius (s=�C) and seconds per game

(s/game), respectively.
3.1.5 Neural network model aggregation
Neural network models are renowned for their nonlinear

characteristics, rendering them susceptible to singularity and

randomness errors, particularly when dealing with limited
frontiersin.org
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datasets. To mitigate this concern, this paper leverages ensemble

learning and an aggregation model (42), as referenced in formula

(7), which selects multiple high-performing neural network

models and computes their average output after multiple

calculations. The neural network model evaluation metrics for

the i-th training iteration on the same dataset, including Di, Ei
and ei, are delineated in the formula. For instance, taking skater

Gao Tingyu’s dataset as an illustration, with a hidden layer node

count of 10 and training iterations ranging from i ¼ 1 to 1,000,

the number of retained neural network models, following the

removal of instances where ei . Ei (where Ei generally exceeds ei
in the i-th training), amounts to 870. The plot of neural network

model evaluation metrics, sorted by Di in ascending order, is

depicted in Figure 4.

KA,b, KT ,b and KR,b are defined as the average slopes

representing the influence of three factors on final time. These

average slopes are computed based on predicted slopes obtained

from multiple neural network models. The calculation method

for KA,b is outlined in equation (17).

KA,b ¼ 1
b
Sb
1kA,(j) (17)

Here, the subscript j of kA,(j) denotes the altitude influence slope

predicted by the neural network model associated with evaluation

indicator Di located at the j-th position in ascending order, where j

ranges from 1 to b, and b represents the total number of selected

neural network models. The calculation methods for KT ,b and KR,b

are identical to the equation (16) presented earlier. Parameter

independence analysis reveals that the observed trend remains
FIGURE 4

The curves of Ei , ei , Di of the network model sorted in ascending order of
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stable when the number of neural network models reaches 100.

Therefore, this paper opts for b ¼ 200.

3.1.6 Summary of the overall algorithm framework
In order to compare and analyze variations in the impact of

three factors on different skaters, we identify appropriate node

numbers for each skater’s dataset pertaining to various race

distances. Subsequently, we select high-performing neural

network models for predictions to derive KA, KT , and KR. The

influence of parameters on the overall algorithm framework is

visualized in Figure 5.
3.2 Algorithm verification

Building upon the model described earlier, Figure 6 presents a

histogram illustrating the frequency distribution of slopes

pertaining to altitude, ice temperature, and race frequency, all of

which influence the 500 m race final time for skaters A and

B. Notably, the majority of altitude influence slopes exhibit

negative values, suggesting that higher altitudes generally

correlate with improved race performance. For skater A, the

slope is predominantly concentrated between −0.75 s/km and

−0.25 s/km, while for skater B, it falls mainly between −1.15 s/km
and −0.3 s/km. These findings align with both theoretical

analysis and practical experience outcomes. Conversely, the

influence of the other two factors, namely ice temperature and

race frequency, appears relatively minor, with their impact being

less pronounced compared to altitude. This observation is

consistent with theoretical predictions. These results substantiate

the efficacy of the algorithm.
Di.
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FIGURE 5

Flow chart of model establishment.
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Moreover, the frequencies of the three slopes for both skaters

displayed a trend resembling a normal distribution, with a

concentration around the mean values of each slope.

Table 2 presents the mean slope values for the three influencing

factors, offering valuable insights into the distinctive performance

characteristics of skaters A and B. It is evident that rink altitude

and ice temperature exert a substantial influence on skater B,

whereas race frequency plays a significant role in skater A’s

performance.

As illustrated in Figure 6, skater A’s performance demonstrates a

gradual improvement with an increasing number of races played

within a season, aligning with the observations made in this study.

In contrast, skater B’s performance tends to exhibit better results in

the early stages of the season, as indicated by the positive slope value.
3.3 Assessment of dominant external
factors

In order to mitigate the impact of the original data dimensions,

influence values are derived from the dimensionless slopes and KR

to quantify the degree of influence. The altitude influence values

can be determined using equation (18), as shown below.

NA,i ¼ cKA,i

Sc
1jKA,ij (18)

In this scenario, c represents the number of samples, which is 15

while KA,i signifies the raw calculated slope value influenced by

the altitude for each sample. Similarly, NT ,i and NR,i are obtained

as the influence values of ice temperature and race frequency.
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4 Results and discussion

The results of these calculations are presented in Table 3. The

designations “Skater A-H” represent the 15 datasets derived from

the participation of the 8 skaters in our study, with an asterisk

denoting a female skater. To delve deeper into valuable insights,

we computed dimensionless influence values utilizing the

findings derived from an extensive dataset featuring 8 diverse

skaterss participating in varying race distances, totaling 15 races.

Subsequently, we conducted succinct influence ratings and

analyses rooted in these values, aiming to uncover the distinctive

characteristics of external influences on the performance.
4.1 Ice rink altitude

Utilizing the absolute influence values from Table 3, we assessed

the degree of the influence of the three dominant factors on race

performance. Categorizing influence ratings as negligible, perceptible,

and important based on the ranking of absolute influence values in

the top 33%, middle 33%, and bottom 33%, with corresponding

boundary values of 20 and 100. Figure 7 visually presents the

influence values of ice rink altitude, along with the influence ratings

and their boundary lines. The rink altitude ranges from 0 to 1,425 m.

Table 4 was generated from Figure 7, providing statistical results of

altitude influence ratings for different playing distances.

Figure 7 illustrates that higher rink altitudes correspond to an

enhancement in race performance. This observation aligns with

previous studies (2, 3, 4). For instance, Muehlbauer et al. (5)

demonstrated that at high altitudes, skaters exhibit shorter time per

split lap (p < 0.001), resulting in a shorter total time. The reduced
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TABLE 3 Influence values of the three influencing factors.

Sample number Skaters Race distance N

NA NT NR

1 A 500 m −13 0 −10
2 B* 500 m −34 44 4

3 C 500 m −16 19 −9
4 D* 500 m −18 −6 0

5 E 1,000 m −89 15 −4
6 D* 1,000 m −78 −16 −2
7 F* 1,000 m −81 36 −109

FIGURE 6

The slope frequency distribution histogram of the final time of player A and B influenced by three influencing factors.
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oxygen supply at high altitude and its impact on energy output have

been crucial discussion points. While high altitude leads to decreased

oxygen supply, the findings suggest that, within the altitude range of

speed skating rinks (0–1,425 m), high altitude does not negatively

affect performance due to reduced oxygen supply. van Ingen

Schenau et al. (43) also concluded that at altitudes of 2,000 m or less,

a reduction in oxygen consumption is unlikely to significantly

impact speed skating. Therefore, the dominant factor influencing the

performance of all skaters is the reduction in aerodynamic resistance

due to high altitude.
TABLE 2 The average slopes of the race performance of player A and B
influenced by three factors.

Skaters Gender K

KA KT KR

A Male −0.3011 0.0004 −0.0557
B Female −0.7685 0.0654 0.0217

8 E 1,500 m −141 80 −13
9 G* 1,500 m −105 −28 −196
10 D* 1,500 m −128 63 −31
11 F* 1,500 m −138 29 −99
12 H* 1,500 m −78 −121 −122
13 F* 3,000 m −98 134 −221
14 G* 3,000 m −214 −510 −187
15 H* 3,000 m −270 −399 −494
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FIGURE 7

Bar chart of ice rink altitude influence values and the boundary line of influence rating.
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Table 5 indicates that ice rink altitude can have a perceptible or

even important influence on performance in races of 1,000 m and

above. In the 1,000 m races, altitude’s influence is consistently

perceptible; in the 1,500 m races and beyond, altitude is more

likely to exert an important influence. Conversely, altitude

influence is predominantly minor in the 500 m races, underscoring

the growing importance of altitude with increasing race distance. A

prior study by Muehlbauer et al. (5) revealed significant time

differences in race times at high and low altitudes for women’s

3,000 m and men’s 5,000 m races, amounting to 11.75 s (p < 0.001)

and 24.44 s (p < 0.015), respectively. Another study (2)

demonstrated that altitude’s influence on junior skaters’

performance in short (500 m and 1,000 m) and long (1,500 m and

3,000 m) races was 2.5% and 3.2%, respectively. Additionally, the

performance prediction model proposed by van Ingen Schenau

et al. (4) indicated that higher altitude resulted in a more

pronounced time advantage with increasing race distance,

validating our findings. Clearly, since shorter race distances

consume less time, athletes experience a shorter duration in a low

air density environment. Therefore, in the shortest distance race of

500 m, cases where the influence of altitude was negligible were

predominant. As the distance increases and the duration of the

race extends, the time gain from altitude amplifies.

Researchers have observed that a 1,000-m increase in altitude

boosted the average performance of junior skaters by 2.8%, with

high-level athletes experiencing a slightly lower increase of 2.1%

(2). This discrepancy is likely attributed to their differing levels of

proficiency: junior skaters, with fewer races and an underdeveloped
TABLE 4 Statistical table of influence ratings of ice rink altitude.

Factors Ice rink altitude
Distance 0.5 km 1 km 1.5 km 3 km

Negligible 3 0 0 0

Perceptible 1 3 1 1

Important 0 0 4 2
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technical and tactical system, contrast with elite skaters who

benefit from better race preparation, greater experience, and more

consistent motivation derived from top athletes, making them less

susceptible to external factors. Additionally, there is inherently less

internal variability among senior athletes. For instance, among

junior skaters, female athletes exhibit higher internal variability

than males, whereas among elite athletes, the difference between

males and females is negligible.

In conclusion, elevating altitude will positively affect the

performance of elite athletes, with the influence becoming more

pronounced as the race distance increases.
4.2 Ice temperature

Figure 8 illustrates the values and ratings indicating the

influence of ice temperature, while Table 5 presents the influence

ratings of the ice temperature across various race distances.

Figure 8 suggests that the influence of ice temperature is more

individualized, with some skaters displaying better performance at

lower ice temperatures, while others excel at higher ice temperatures.

Despite limited studies on the influence of ice temperature on

skating performance, the results indicate an uncertain relationship

between ice temperature and race performance, likely varying among

skaters with different skill profiles. As ice temperature decreases, the

ice surface becomes harder, potentially reducing frictional resistance

during skating (10). This change may benefit skaters focusing on

longer skating times, applying higher pedal forces, and employing
TABLE 5 Statistical table of influence ratings of ice temperature.

Factors Ice temperature
Distance 0.5 km 1 km 1.5 km 3 km

Negligible 3 2 0 0

Perceptible 1 1 4 0

Important 0 0 1 3
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FIGURE 8

Bar chart of ice temperature influence values and the boundary line of influence rating.
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lower pedal stroke frequencies. Conversely, relatively high ice

temperatures may favor skaters who adopt a higher frequency of

pedal strokes and lower pedal force.

As per Table 5, the influence of ice temperature becomes

perceptible in the 1,500 m race and importantly affects the

performance time in the 3,000 m race.The influence is mainly minor

in the 500 m and 1,000 m races, at 75% and 67%, respectively. In

line with our own findings, simulations by de Koning and Schenau

(44) indicated that the influence of ice temperature becomes more

pronounced with increasing race distance. The amplification of this

impact is attributed to the prolonged duration of its influence on

race time, akin to that of ice rink altitude.

It is noteworthy that there is considerable consistency in the

influence of ice temperature on most all-around skaters

participating in races at various distances. For instance, skaters E

and F consistently performed better at higher ice temperatures in

the 1,000 m, 1,500 m, and 3,000 m races, while skaters G and H

consistently performed better at lower ice temperatures in the

1,500 m and 3,000 m races. However, the influence of ice

temperature on different distances may exhibit opposite trends in

the same skater. For example, skater D performed better in the

1,500 m race when the temperature was lower and the ice was

harder, whereas the opposite was true in the 500 m and 1,000 m

races. Specifically, in a 500 m race one season, Skater D clocked

38.49 s at −4.8°C ice temperature compared to 39.21 s at −7.3°C,
while in a 1,500 m race, she achieved a time of 117.081 s at −8°C
ice temperature compared to 121.087 s at −6°C. This observation
underscores the possibility that skaters tend to adapt different

technical attributes to their strengths at different race distances.

To further validate the reliability of the results, we obtained actual

game times and ice temperatures from the official website of the

National Skating Union for Dutch high-level all-around male

players Kjeld Nuis, Thomas KROL, and female players Jutta

Leerdam, Antoinette Rijpma-de Jong, during the 2022–2023 season

at low altitude rinks. To eliminate the impact of different race

distances, we normalized the race times by dividing them by the
Frontiers in Sports and Active Living 11
average of the race times within the corresponding race distances.

Figure 9 illustrates the relationship between standardized race time

and ice temperature for the 4 Dutch all-around speed skaters, along

with linear fitting curves. The figure indicates a significant positive

correlation between performance time and ice temperature for the

Dutch high-level athletes, consistently performing better at lower ice

temperatures across all distances competed. Importantly, we did not

observe a change in the correlation between performance and ice

temperature for the same skater across different race distances,

suggesting that these all-around high-level athletes exhibit relative

stability in terms of their competition skill characteristics.

To sum up, the trend in the influence of ice s temperature is

highly correlated with the technical characteristics of skaters,

emphasizing the importance of considering individual technical

and tactical attributes when assessing their influences. For

instance, optimizing performance could involve engaging skaters

with “ Prefer low ice temperatures” skill profiles in more low ice

temperature races. Alternatively, in high ice temperatures, the

skater should increase pedal frequency appropriately and

minimize skating time on the ice. Conversely, in low ice

temperatures, the opposite holds true, particularly in

competitions exceeding 1,500 m. We recommend making

technical adjustments tailored to the skater’s performance on a

given ice surface to fully capitalize on the rink conditions.
4.3 Race frequency

Figure 10 displays the influence values and influence ratings of

race frequency, while Table 6 presents the influence rating results of

race frequency within different distances.

A crucial observation from Figure 10 is that performance in most

races improves with the increasing race frequency. This aligns with

previous research advocating high pre-competition training loads,

emphasizing the potential benefits of peaking before competition (12).

Moreover, finals, semi-finals, and quarterfinals generally exhibit
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FIGURE 9

Relationship between normalized race time and ice surface temperature for the 4 Dutch all-around speed skaters.
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faster finishing times than the preliminary stages of the competition.

The influence of race frequency on finishing time gradually

diminishes as the race progresses (1). High-level skaters progressively

enhance their competitive level, adapting to the race environment and

pressure through the accumulation of races. The growing significance

of races further enhances skaters’ concentration. It is noteworthy

that high-level skaters embrace a more scientific approach and rely

on robust team safeguards during race preparation, enabling them to
FIGURE 10

Bar chart of race frequency influence values and the boundary line of influe
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manage fatigue effectively and promote rapid body recovery.

These efforts ultimately contribute to significant improvements in

their athletic performance.

According to Table 6, the influence of race frequency on the

performance of the 500 m race is negligible, while it is all

important on the 3,000 m race, and its influence on other

distance races is more variable. The total time of the 500 m race

is the shortest. With the increasing race frequency, the time
nce rating.

frontiersin.org

https://doi.org/10.3389/fspor.2024.1227785
https://www.frontiersin.org/journals/sports-and-active-living
https://www.frontiersin.org/


TABLE 6 Statistical table of influence ratings of race frequency.

Factors Race frequency
Distance 0.5 km 1 km 1.5 km 3 km

Negligible 4 2 1 0

Perceptible 0 0 2 0

Important 0 1 2 3
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improvement in the 500 m race will inevitably be smaller compared

to the 3,000 m race, which has a longer total time and more

opportunities to demonstrate progress in technical movements.

Additionally, there is a notable disparity in the magnitude of the

influence of race frequency on different skaters within the same

distance. In the 1,000 m and 1,500 m races, the influence of race

frequency may range from important to minor. As previously

mentioned, the varying technical progress and fatigue

management levels among different skaters as race frequency

increases result in diverse sensitivity to the influence.

Consequently, the progress levels of each skater are also

inconsistent, with considerable individual differences.

Similarly, we explored the relationship between the race results

of the four mentioned Dutch skaters and the race frequency in the

season. The data points were linearly fitted, as illustrated in

Figure 11. The fitting curve indicates that as the race frequency

increases, the skater’s performance significantly improves, aligning

with our analysis results. It is noteworthy that the dotted box in

the Figure 11 corresponds to the second stop of the 2022–2023

season in Heerenveen, the Netherlands, for the World Cup, where
FIGURE 11

Relationship between normalized race time and race frequency for the 4 D
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the average ice surface temperature was as low as −10.56°C, 34%
lower than the average ice temperature of −7.88°C in other games.

The low ice temperature conditions may have contributed to their

results being better than the average performance of the season, so

the data is relatively smaller and was not considered in the fitting.

In summary, the findings suggest that race frequency has an overall

positive influence on athlete performance, potentially through

multifaceted mechanisms, especially in the 3,000 m races. However,

significant individual differences exist, emphasizing the role of

performance decline in some skaters and underscoring the

importance of personalized monitoring. Therefore, increasing race

frequency could be a viable strategy to enhance performance,

provided that skaters’fitness and recovery levels are carefullymonitored.
4.4 Comprehensive analysis

Figures 7–11 illustrate the unique influence characteristics of

the three dominant external factors, effectively highlighting

variations in the sensitivity of different skaters to external

influences. Further comparative analysis allows a deeper

exploration of these specific influence characteristics.

Utilizing the mean and standard deviation of the absolute

influence values within a specific distance can characterize

the overall average influence of external factors on skaters and

the degree of difference in influence. Figure 12 illustrates the

relationship average influence of three dominant external factors

and the influence difference on skaters.
utch all-around speed skaters.
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FIGURE 12

Normalized mean influence and the influence difference of ice rink altitude, ice surface temperature, and race frequency on skaters.
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In this context, the average influence of each influencing factor

on the 3,000 m race serves as a benchmark which is 1.The average

influence values and the standard deviations of the influence values

for other race distances are normalized. This approach enables a

clear expression of the characteristics of the three influencing

factors on different race distances.

The observation reveals that as the race distance increases, the

influence of the three key external factors significantly intensifies.

When the race distance reaches 1,000 m, we cannot overlook the

advantageous influence of altitude. The distinction lies in the fact

that, in comparison to other distances, the influences of ice

temperature and race frequency are crucial for the 3,000 m race.

Consequently, with increasing race distances, skaters must

prioritize the influence of external factors and leverage them to

enhance performance, particularly in races of 3,000 m and longer.

Combining Table 3 and Figure 12 reveals the distinctive

influencing characteristics of the three factors. Firstly, regarding

influencing trends, the consistency of ice rink altitude is the

strongest, with all skaters performing better at high altitudes; an

increase in race frequency also generally has a beneficial influence

on performance; however, the influence trend of ice surface

temperature varies from person to person. Secondly, considering

the difference in the degree of the influence, the influence of

altitude on different skaters within the same distance is the

smallest, suggesting that the altitude’s influence mechanism is
Frontiers in Sports and Active Living 14
straightforward, yielding clear and easily observable results, and is

less susceptible to other factors. In contrast, race frequency and ice

surface temperature exhibit significant individual differences due

to their complex influencing mechanisms.
4.5 Limitations

The study recognizes that limitations in sample size and data

precision may influence the accuracy of the analysis, and our

conclusions might be influenced by the characteristics of the

study sample and the selected group of skaters. However, with

the accumulation of more high-precision data in the future, the

analysis is poised to become more reliable and insightful.

Consequently, further research should aim to include a larger

number of athletes at different levels to validate this trend.
5 Conclusion

The speed skating performance of elite athletes is intricately

influenced by the complex interplay of multiple factors.

Traditional two-dimensional scatter plots only depict the overall

influence trend, lacking the ability to exclude the influence of

other potential factors on the results. Hence, there is an urgent
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need for an efficient algorithm to dissect this intricate relationship.

This study constructs a quantitative evaluation model for each

skater’s dataset, based on a large number of high-performance

neural network models, which are aggregated to dig deeper into

the skaters’ race datas and the potential connections between

race performance and dominant external influencing factors. We

obtained the influence law of game performance by external

factors under the condition of maximizing the exclusion of the

influence of other factors, which could not be reached by the

traditional analysis method using a single neural network model

(33). It unveils the influencing characteristics of three factors and

the varying degrees of influence on different skaters. Finally, we

validated the effectiveness of the algorithm proposed in this

study through comparisons with existing literature and actual

data, emphasizing its significant advantages in terms of accuracy

over traditional analysis methods. The results highlighted several

major factors influencing skating performance:

1. Ice rink altitude: Skaters experience improved performance

with higher ice rink altitudes, especially in races of 1,000 m

and above. The variation in the influence size among

different skaters at the same race distance is not conspicuous.

2. Ice temperature: Ice temperature can either enhance or impair

performance and varies in its influences based on skaters’

technical characteristics. It has a perceptible or important

influence on races of 1,500 meters and longer, while its influence

on the shorter 500 m and 1,000 m races is generally minor.

3. Race frequency: Increased race frequency generally enhances

skaters’ performance. The influence on the 500 m race is

negligible, while it is important for the 3,000 m race. The

influence on the 1,000 m and 1,500 m races varies among

individuals.

In summary, this study aims to identify and explore dominant external

factors influencing speed skating performance, particularly those easily

observed in publicly available datasets. The findings indicate that rink

altitude, ice surface temperature, and race frequency significantly

influence skaters’ performance. We recommend skaters capitalize on

the performance benefits of lower air resistance at higher altitudes.

Additionally, adjusting technical and tactical movements based on

ice surface temperature conditions enhances adaptability. Finally,

heightened monitoring of fitness, fatigue, and recovery is crucial

throughout the season. To conclude, our research enhances

understanding of performance mechanisms and offers substantial

guidance for speed skaters in optimizing responses to external

factors for peak competitive performance.
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