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Intracranial pressure (ICP) elevation post-stroke has long been thought of as a

cause of secondary deterioration after large, malignant infarction, and dramatic

ICP elevation is frequently a pre-terminal event. However, there is an increasing

body of evidence to suggest that ICP also rises after small stroke, typically

within 24h of the infarct. The timing of this rise suggests that it may play an

important role in the collateral failure associated with early infarct expansion.

Despite its increasingly recognized importance to patient outcome, very little is

currently known about the underlying mechanisms of ICP elevation post-stroke.

The traditional understanding suggests ICP elevation occurs solely due to cerebral

edema, however this does not seem to be the case in mild-moderate infarction.

Instead, recent studies suggest a role for changes in cerebrospinal fluid (CSF)

volume. In this article, we will discuss recent mechanistic observations, as well

as the consequences of ICP elevation post-stroke.

KEYWORDS

intracranial pressure (ICP), cerebrospinal fluid (CSF), cerebral blood volume (CBV),

cerebral edema, experimental stroke, collateral blood flow, early infarct expansion

1. Introduction

Acute ICP elevation (∼24 h post-stroke) has been shown to occur in numerous animal

models of stroke (Verlooy et al., 1990; Bell et al., 1991; Kotwica et al., 1991; Silasi

et al., 2009; Wells et al., 2015; Sorby-Adams et al., 2019a,b; Thakkar et al., 2019). In

2012, our group recognized a link between minor stroke and dramatic, yet transient ICP

elevation at 24 h post-stroke in rats (Murtha et al., 2014a). Previous studies by Kotwica

et al. (1991), and Silasi et al. (2009) showed similar temporal profiles of ICP rise in

rats, however the link between mild-moderate strokes and ICP was not a focus of their

studies and was not specifically discussed (Kotwica et al., 1991; Silasi et al., 2009). Follow

up studies from our group confirmed these findings in three different strains of rats

(Murtha et al., 2014a, 2015, 2016; Beard et al., 2016a; Bothwell et al., 2021; Omileke

et al., 2021a,b,c), using young and aged animals (Murtha et al., 2016) and, using transient

(Murtha et al., 2014a, 2015, 2016; Omileke et al., 2021a,b,c) and permanent middle cerebral

artery occlusion (MCAo) (Beard et al., 2016a) and, photothrombotic stroke (Beard et al.,

2016a; Bothwell et al., 2021). This elevation was associated with larger infarct volumes

and poorer functional outcomes. More recently, Alshuhri et al. (2020) showed similar
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findings in an additional strain of rats. The ICP elevation observed

in the majority of these studies (20–30 mmHg above pre-stroke

levels) is similar to that observed following large, hemispheric

strokes in humans (Frank, 1995; Schwab et al., 1996).

Evidence of a similar ICP rise in higher order animals is

scant and conflicting. Wells et al. (2015) showed that ICP was

significantly higher than sham animals at 24 h after permanent

and transient MCAo (2 h occlusion) in an ovine model of stroke.

A recent study by Sorby-Adams et al. (2019b) showed a similarly

timed significant ICP rise using a permanent MCAo model in

sheep. However, when investigating the temporal profile of ICP

after 2 h transient MCAo the same author found that ICP did not

rise above sham levels until 5 days post-stroke (Sorby-Adams et al.,

2019a). Evidence of early ICP elevation in other gyrencephalic non-

human animals is limited by a lack of monitoring after 18 h post-

stroke (Okada et al., 1983; Bell et al., 1991; D’Ambrosio et al., 2002;

Toyota et al., 2002). It should be noted that, the stroke models used

in the larger animal experiments necessitate opening the skull and

dura, which may have the potential to modify an ICP response,

particularly in the early post-operative period as is the case for

any neurosurgical procedure requiring opening of the skull. These

animal studies raise an important question—could a similar rise in

ICP occur in patients with mild-moderate stroke?

In humans, ICP elevation is known to occur after large,

malignant infarcts, typically between 2 and 5 days post-stroke,

associated with edema and mass effect on imaging (Ropper and

Shafran, 1984; Frank, 1995; Schwab et al., 1996). However, to our

knowledge, there had been no clinical investigations of ICP in

patients with mild-moderate stroke until recently. Such patients do

not experience large volumes of edema, hence it had been assumed

that ICP would not increase in these patients, and therefore highly

invasive ICP monitoring was not justified. Many attempts have

been made to develop accurate and reliable non-invasive methods

for estimating ICP (for more information on invasive vs. non-

invasive ICP methodologies please see review by Evensen and Eide,

2020). Measuring blood flow velocity with transcranial Doppler is

currently themost extensively studied and themost widely available

non-invasive method. Moreover, it is currently the only non-

invasive method that can estimate ICP with a temporal resolution

comparable to that of standard of care invasive methods. Using

this technique, our group have recently assessed ICP in 10 patients

with mild-moderate stroke (Kovacs et al., 2017). ICP increased

significantly between 6 and 24 h among stroke patients (10.18 ±

4.25 mmHg 6 h, 13.31 ± 6.25 mmHg 24 h, n = 10, p = 0.02).

There was no significant change in ICP among control patients

(10.66 ± 3.24 mmHg baseline, 10.41 ± 2.81 mmHg 18 h later,

p = 0.49, n = 75). In 7 of 10 stroke patients, ICP rose more

than the 95th percentile among controls (1.2 mmHg), though their

neurological deficits at the time of ICP measurement were mild

(median NIHSS score of 3 at 24 h). Despite the modest rise in

ICP compared with our animal studies, it must be noted that

Abbreviations: ICP, Intracranial pressure; CSF, Cerebrospinal fluid; MCAo,

Middle cerebral artery occlusion; CPP, Cerebral perfusion pressure; CBF,

Cerebral blood flow; MAP, Mean arterial pressure; DWI, Di�usion weighted

imaging; MRI, Magnetic resonance imaging; CBV, Cerebral blood volume;

rCBV, Relative cerebral blood volume.

“baseline” ICP was measured at 6 h post-stroke. Bell et al. (1991)

showed evidence that ICP may begin to rise as early as 4 h post-

stroke in cats following experimental stroke. If the same is true

for humans, the observed change in ICP from baseline values may

be underestimated. Given the small number of patients assessed,

more investigation is necessary to determine the range of ICP

elevations after small strokes. However, even with an ICP rise

of 5 mmHg, our animal data suggests that this may be enough

to reduce flow through the penetrating arterial flow arising from

collaterals and thus potentially lead to infarct expansion. Further,

we only assessed ICP at the 24-h timepoint and so we do not yet

know whether this rise is transient (as observed in our animal

studies) or sustained. The importance of these findings is that

they suggest that ICP elevation is not limited to large, malignant

infarction. Furthermore, the timing of the ICP rise was before peak

edema volume and at around the time of early infarct expansion.

Importantly, this is the first evidence of ICP elevation in this

patient population and challenges our current understanding of

the prevalence and mechanisms governing ICP elevation post-

stroke. Although extremely promising,more evidence is required to

confirm the presence of an early ICP rise in mild-moderate stroke

patients. If confirmed, our findings may justify ICP monitoring in

this patient population.

2. Potential consequences of ICP
elevation post-stroke

2.1. Collateral failure

There is now strong evidence from clinical studies that

many patients with neurological deterioration in the first days

after stroke suffer infarct expansion within the initially ischemic

territory, rather than recurrent thrombosis. The infarct expansion

is associated with failure of collateral blood flow (Coutts et al.,

2012; Campbell et al., 2013). Leptomeningeal collateral vessels

are anastomotic connections between the distal ends of adjacent

arterial territories and supply residual retrograde perfusion to

the ischemic territory in the event of arterial occlusion during

ischemic stroke. This is the mechanism for residual perfusion,

which may maintain some of the ischemic tissue for some time

after vessel occlusion. This threatened, but potentially salvageable

tissue is known as the ischemic penumbra (Astrup et al., 1981).

It surrounds the already irreversibly damaged infarct core, and its

survival is a product of residual perfusion, and time. The recent

positive clinical trials of endovascular therapy in the late time-

window have now shown that in those with excellent collaterals

and small initial infarct core, penumbra may survive for at least

24 h (Albers et al., 2018; Nogueira et al., 2018). With the more

widespread use of advanced brain imaging, it has been recognized

that patients with rapidly improving neurological deficits may have

persistent large vessel occlusion, with excellent collateral supply

(Coutts et al., 2012). However, it is also clear that such patients may

be at significant risk of in-hospital deterioration. Initially excellent

collateral vessel flow can subsequently fail, leading to expansion

of the infarct into penumbra and early neurological deterioration

(Dávalos and Castillo, 2001; Asdaghi et al., 2011; Coutts et al., 2012;

Campbell et al., 2013). There is not yet any definitive evidence for
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the mechanism of such collateral failure. Some hypotheses have

been advanced, such as collateral vessel thrombosis (Liebeskind,

2003), reverse Robin Hood Syndrome (Alexandrov et al., 2007),

and venous steal (Pranevicius et al., 2012), without much direct

evidence for any, to date. We believe that reduction of cerebral

perfusion pressure (CPP) due to ICP elevation, is a more plausible

explanation, and for which there is now an increasing body of

experimental, and preliminary clinical evidence.

CPP is the driving force for cerebral blood flow (CBF). Because

of the “closed” skull, and unlike in all other vascular beds, there

is a significant “downstream pressure,” the ICP, which influences

cerebral perfusion in addition to blood pressure (expressed as mean

arterial pressure; MAP). This is expressed in the equation (Urrutia

and Wityk, 2008):

CPP = MAP − ICP

Under normal circumstances in healthy brain, cerebral

autoregulation preserves tissue perfusion despite fluctuations in

CPP. The cerebral vessels are in a partial state of constriction, from

which they can increase or decrease diameter and hence regulate

CBF in response to metabolic demand, to ensure constant supply

of blood flow to the brain over a wide range of CPP. The primary

determinant of this basal vessel tone is myogenic behavior of the

vascular smooth muscle cells that constrict in response to increased

CPP or dilate in response to decreased CPP to maintain a constant

CBF (Johansson, 1989). In the normal non-ischemic brain, where

autoregulation is intact, an alteration in MAP that changes CPP

values within the range of 50–150 mmHg will have little to no effect

on CBF (Novak et al., 2004). However, in the ischemic cortex during

stroke, cerebral autoregulation is severely impaired since vessels

are already maximally vasodilated in response to ischemia. Hence,

CBF becomes CPP dependent, and any reduction in CPP will

preferentially reduce flow to the penumbra, while autoregulation

preserves flow to the non-ischemic brain. This may give rise to

what has been termed the “reverse Robin Hood” phenomenon,

whereby vasodilators, given in an attempt to improve collateral

flow, may lower blood pressure, and hence CPP, thus “stealing”

blood flow from the penumbra, where the need is greatest (the

poor), and increasing flow to other non-ischemic brain regions

(the rich), which already have plenty (Alexandrov et al., 2007).

Note that mechanisms such as inflammation (Eldahshan et al.,

2019), alterations in energy metabolism (Ferrari and Villa, 2022)

may also impair autoregulation. Readers are directed to Claassen

et al. (2021) for a compressive review of autoregulation physiology

and pathophysiology.

It has previously been hypothesized that patients with early

infarct expansion may have fluctuations in blood pressure due

to autonomic dysfunction (Palamarchuk et al., 2013). However,

despite blood pressure being measured regularly in almost all

hospitalized stroke patients, evidence for the role of drops in

blood pressure preceding deterioration is lacking. The role of

the other side of the CPP equation, ICP, is less often discussed.

We have shown that transient ICP elevation over some hours,

around 24 h after seven minor stroke, is a near universal

phenomenon in rodent stroke models (Murtha et al., 2014a, 2015,

2016; Beard et al., 2016a; Alshuhri et al., 2020; Bothwell et al.,

2021; Omileke et al., 2021a,b,c). Additionally, we have shown

that artificially elevating ICP to similar levels that occur after

minor experimental stroke immediately decreases leptomeningeal

collateral blood flow and blood flow to the penetrating arterioles

they supply (Beard et al., 2015). This provides evidence, first, that

ICP elevation may be a feature of minor stroke, and second, it

establishes the biological plausibility of such an elevation causing

reduction (“failure”) of collateral flow of sufficient magnitude

to cause infarct expansion and early neurological deterioration

in some stroke patients (previously reviewed in Beard et al.,

2016b).

2.2. Reperfusion CBF deficits

Autoregulatory failure begins due to a drop in intravascular

pressure and maximal vascular dilation, however there may be

other factors that become important over time that may result

in autoregulatory deficits even after reperfusion, and may last

for up to 2–3 weeks after stroke (Olsen, 1986; Macfarlane et al.,

1991). For example, it has been shown that the loss of myogenic

tone in the middle cerebral artery extracted from rats undergoing

MCAo (Cipolla et al., 2001; Cipolla and Curry, 2002) is positively

associated with the degree of loss of the actin cytoskeleton in

smooth muscle cells surrounding the isolated arteries, essentially

paralyzing the smooth muscle until new actin can be formed

(Cipolla et al., 2001). Therefore, ICP elevation in combination with

persistent autoregulatory failure may lead to perfusion deficits in

the ischemic hemisphere following reperfusion. We have shown in

two separate studies that temporary MCAo results in higher ICP

elevation at 24 h (42 ± 7 mmHg) (Murtha et al., 2014a, 2015),

compared to permanent stroke (17 ± 7 mmHg) (Beard et al.,

2016a). Such a dramatic ICP rise, if not accompanied by a rise in

blood pressure, might have quite consequential effects on perfusion,

particularly in the most vulnerable regions of the reperfused

penumbra, in which autoregulation would also be expected to

be most impaired. This may be further exacerbated by the non-

linear effect of ICP elevation on perfusion to penetrating arterioles

that branch off from the pial branches of the middle cerebral

artery. We have shown that ICP elevation to as little as 5 mmHg

above baseline, almost completely abolished penetrating arteriole

flow in the watershed territory (Beard et al., 2015). This is not

surprising as penetrating arterioles are known as the “bottleneck”

of perfusion to the cortex and have been shown to maintain basal

tone even after 2 h of temporary MCAo and 30min of reperfusion

(Cipolla et al., 2013). This raises the possibility that some of

the injury that has in the past been attributed to “reperfusion

injury” may have been caused by ICP elevation-induced reduction

in CBF, within reperfused penumbra (Aronowski et al., 1997)

(Figures 1A, B).

2.3. ICP rise is a potential physiological
stimulus for infarct expansion after
reperfusion

The diffusion-weighted (DWI) lesion on magnetic resonance

imaging (MRI) is the earliest marker of infarction after stroke
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FIGURE 1

Current hypotheses of the cause and consequence of intracranial pressure (ICP) elevation after mild-moderate stroke. (A) Collateral perfusion helps

to limit the extent of the ischemic core after stroke if ICP remains within the physiological range. (B) Increasing ICP can dramatically reduce collateral

blood flow after ischemic stroke. (C) Schematic showing changes to the cerebrospinal fluid (CSF) system post-stroke that may result in increased

CSF volume and thus increased ICP. ACA, anterior cerebral artery; MCA, middle cerebral artery. Part (A, B) were reprinted from Demuth et al. (2017).

Copyright (2017), with permission from IOS Press (96). The publication is available at IOS Press through http://dx.doi.org/10.3233/RNN-160690. Part

(C) was created with BioRender.com.

but is known to “reverse” to greater or lesser extent with early

reperfusion (van Lookeren Campagne et al., 1999; Labeyrie et al.,

2012; Asdaghi et al., 2014; Soize et al., 2015). However, initial

excitement about this possibility abated significantly when it was

recognized that DWI lesions tended to re-expand at imaging

time points beyond 24 h. This was interpreted as indicating that

the initial reversal represented imaging artifact (van Lookeren

Campagne et al., 1999; Campbell et al., 2012). This conclusion

was reinforced by the lack of clinical deterioration associated with

DWI lesion recurrence. However, we now know that at the time

DWI lesion recurrence occurs (in rats and humans), there is a

newly identified physiological stimulus (ICP rise) that causes blood

flow reduction in the relevant tissues, in experimental models

(Beard et al., 2015). The timing also fits with that of neurological

deterioration in patients with early infarct expansion. We propose

that the severity of insult sufficient to cause initial (reversible)

DWI change is similar to that required for both neurological

functional and blood vessel autoregulatory impairment. Hence

DWI lesion recurrence may be due to infarction in vulnerable

tissue experiencing secondary ischemia. Such regions would be

expected to remain functionally silent at such an early time point,

since recovery of neurological function is known to occur over at

least days, after significant ischemia, which explains why there is

no apparent neurological deterioration. However, this would still

be clinically important, if shown to be true, since such patients

will not recover to the full extent that would have been possible,

had they not experienced a secondary ischemic insult due to

ICP elevation.

2.4. Drops in CPP may provide a unifying
theory of selective watershed infarction
during carotid artery occlusion

Work by us and others has demonstrated that blood flow is

present in collaterals under basal conditions and after reperfusion

in rats (Toriumi et al., 2009; Beard et al., 2015). Leptomeningeal

collaterals receive a dual supply of blood from the two territories

they connect. Under normal conditions, the slow turbulent flow

from each territory meets and enters the watershed penetrating

arteriole at the midpoint of the collateral vessel, to perfuse the

underlying watershed territory (Figure 2A). The small diameter,

high resistance penetrating arteriole arises off a much larger vessel.

It is thus exposed to greater pressure than would normally be

the case for a typical vessel of this size, that arises only after

multiple progressively smaller branching vessels, with progressively

greater resistance and thus pressure drop. In this regard, these

vessels are perhaps most analogous to the deep perforating

vessels arising from the circle of Willis, although the latter are

exposed to the even higher pressures of the proximal intracranial

arteries. Also of note, the midpoint, or watershed, is defined

by the point at which pressures from each side equalize. Thus,

in the presence of intracranial stenosis affecting one territory,

the midpoint/watershed will move toward the affected territory,

as pressure within that territory drops, due to the increased

resistance created by the stenosis. This unique baseline flow

arrangement may mean that small reductions in CPP will have
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a much greater effect on “watershed” penetrating arterioles, since

a greater driving pressure is required to maintain flow across

high resistance vessels. This may be a potential explanation for

why the external or cortical watershed territory is prone to

infarction (“string of pearls” sign on MRI) following occlusion

of the internal carotid artery (ICAo) in the setting of poor

Willisian collateral flow (Hendrikse et al., 2001; Momjian-Mayor

and Baron, 2005) (Figure 2B). This “string of pearls” pattern

of infarction shows a strikingly similar distribution to the

location the leptomeningeal collaterals and associated penetrating

arterioles (Figure 2C). If perfusion to the watershed is “teetering

on the edge,” then even the slightest reduction in perfusion

pressure (e.g., following ICAo, lowering local arterial pressure, or

from ICP elevation) may reduce watershed perfusion below the

threshold for infarction. This may explain why human imaging

studies have shown reduced perfusion in the cortical watershed

territory corresponding to the area of infarction following ICAo

(Leblanc et al., 1987, 1989). These findings have formed the

basis for the “hemodynamic failure” hypothesis for cortical

watershed infarction.

Alternatively, other studies have reported the presence of

microembolic signals using transcranial Doppler (Siebler et al.,

1992) and the presence of microemboli in the distal arterial tree

(Torvik and Skullerud, 1982) which are associated with cortical

watershed infarction following ICAo. It is presumed that the

microembolic signals on transcranial Doppler indicate embolic

materials within the insonated artery, originating from the ICA

thrombosis (Sitzer et al., 1995). Embolic material of specific

size (150–210µm) are thought to be preferentially distributed

in the distal arterial tree (cortical watershed) as a result of

the Fahraeus-Lindqvist (plasma skimming) effect; which states

that “the viscosity of a suspension of particles flowing through

bifurcations will change, such that one of the branches has a

suspension of particles that is less viscous than the parent trunk”

(Pollanen and Deck, 1990). This means that large embolic material,

which travel in the axial stream of flowing blood, will have little

deviation from the parent vessel at asymmetric branch points,

while the marginal plasma flow with fewer emboli gets skimmed

off at each branch point. This ultimately funnels the embolic

material to the distal arterial tree (Pollanen and Deck, 1990).

These findings have formed the basis for the “embolic” hypothesis

for cortical watershed infarction. The watershed arterioles are

particularly susceptible, since it is at this point that the flow

from the 2 arterial territories meet, and the embolus may act

like a “plug” at the origin of the small diameter draining

penetrating arteriole, through which flow from both territories

drains (Figure 2A).

Our previous work showing the extreme susceptibility of

flow at the watershed penetrating arterioles to even minor

change in ICP, and hence CPP, may provide a unifying theory

for both the hemodynamic failure and embolic theories of

watershed infarction. The already slow blood flow velocity in the

collaterals combined with ICAo may further reduce blood flow

velocity (hemodynamic failure theory) to levels conducive to de

novo thrombosis and embolization (embolic theory) within the

leptomeningeal collateral/cortical watershed region (Powers, 1991).

The bidirectional blood flow may then wash the emboli into

the central watershed penetrating arteriole (like a sink) leading

to penetrating arteriole occlusion and subsequent watershed

infarction. We believe this theory warrants further investigation.

FIGURE 2

Hypothetical role of leptomeningeal collaterals in watershed infarction. (A) Schematic of collateral blood flow direction before and after middle

cerebral artery occlusion (MCAo). The “watershed” penetrating arteriole at the confluence of the bidirectional collateral vessel blood flow (top panel)

was used to demarcate the anterior (ACA) and middle (MCA) cerebral artery portions of the vessel (vertical line). At baseline blood flows in two

directions (from the ACA and the MCA) and both flowing into the midpoint penetrating arteriole to supply blood to the watershed territory. (B)

Human DWI-MRI showing so called “string of pearls” watershed infarction—each “pearl” represents the territory of a single watershed penetrating

arteriole, at the junction of 2 major arterial territories (e.g., anterior-middle cerebral arteries watershed). (C) Rat cortical vasculature showing the

location of pial collateral vessels (colored latex perfusion). Collaterals between the ACA and the MCA, and posterior cerebral artery and MCA are

marked with asterisks. Note the striking similarities between the distribution of cortical collaterals seen in the rat and the distribution of the string of

pearls sign in the watershed region shown in (B). Part (A, C) reprinted by Permission of SAGE Publications. Beard et al. (2015), copyright © 2015 by

SAGE Publications.
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3. Mechanisms of post-stroke ICP
elevation

ICP elevation can be attributed to an uncompensated increase

in the volume of one or more of the intracranial contents as

outlined by the Monro-Kellie doctrine. In short, this doctrine

states that the intracranial compartment is a closed system within

the non-expandable, rigid skull made up of three components:

tissue (including edema), blood and CSF (Monro, 1783; Kellie,

1824; Burrows, 1846). An increase in any one of the components

leading to an increase in volume, will result in a decrease in one

or both other components, to maintain constant ICP. However,

the intracranial cavity only has a small reserve for accommodating

additional volume, which, once exhausted, will result in a dramatic

rise in ICP.

3.1. Tissue volume

Up until recently, post-stroke ICP elevation was generally

considered to result from cerebral edema (Ropper and Shafran,

1984; Schwab et al., 1998). There are 3 categories of edema:

cytotoxic, ionic and vasogenic. Cytotoxic edema refers to the excess

accumulation of fluid within the intracellular space. During a

stroke, cerebral cytotoxic edema occurs as a result of the failure

of ion pumps during the ischemic cascade. The cellular influx of

calcium, sodium and chloride exceeds the potassium efflux and the

subsequent water accumulation results in swelling of the affected

cells (Simard et al., 2007). Cytotoxic edema occurs within minutes

to hours after stroke and is worsened by spreading depolarizations,

developing locally within a few seconds after the onset of the

ischemia (for more information see review Dreier et al., 2018).

Importantly, cytotoxic edema is potentially reversible if energy

metabolism is restored. However, excessive water accumulation has

the potential to cause cellular rupture. Cytotoxic edema alone does

not influence ICP, as it is merely a redistribution of water (and

ions) from the extracellular to the intracellular space. However, this

redistribution creates gradients promoting influx of ions and water

from capillaries into the interstitial space, termed ionic edema. This

does increase the net intracranial volume and thus results in ICP

elevation. As the extracellular sodium ions are drawn from the

extracellular space to the intracellular space an osmotic gradient

is formed which favors the influx of intravascular sodium and

water into the extracellular space causing tissue swelling (Mori

et al., 2002). A recent study by Mestre et al. (2020) has shown

evidence of CSF redistribution from glymphatic circulation within

minutes of stroke suggesting that CSF may also contribute to

the influx of water into the extracellular space. Importantly, for

ionic edema to occur there needs to be a source of fluid, i.e.,

blood/ glymphatic flow (Simard et al., 2007). Therefore, ionic

edema is more likely to occur in the penumbra than the infarct

core. Vasogenic edema occurs in the days following stroke and

involves the breakdown of tight junctions between endothelial cells

that make up the blood-brain-barrier (for more information on

the underlying mechanisms see review by Stokum et al., 2016).

This allows the passage of plasma proteins and fluid into cerebral

tissue leading to increased extracellular fluid volume. The resulting

swelling has the potential to displace brain structures and even

hemispheres, leading to the compression of neurons and cerebral

blood vessels.

Much of our understanding of ICP elevation in patients post-

stroke comes from patients with malignant infarction. In this

patient population, ICP elevation is associated with large infarction,

significant cerebral edema and mass effect, peaking 3–5 days post-

stroke (Ropper and Shafran, 1984; Frank, 1995; Hacke et al., 1996;

Schwab et al., 1996). Extremes of ICP are often a pre-terminal

event in such patients, however notably, clinical signs indicating

herniation from mass effect are normally present before the pre-

terminal dramatic ICP rise (Schwab et al., 1996; Poca et al., 2010),

suggesting the latter is an effect of herniation (likely mediated

by blockage of venous outflow) rather than the cause thereof.

Similarly, while edema is present in all such patients (and the reason

ICP is being monitored), only a minority have significant ICP rise

prior to signs of herniation (Frank, 1995).

There is an increasing body of preclinical evidence suggesting

that stroke induced ICP elevation can be caused by other

mechanisms, in addition to edema. When investigating potential

mechanisms of the dramatic ICP elevation observed at 24 h post-

stroke in rats with mild-moderate infarcts, we observed that

significant ICP elevation occurred in the presence of small infarcts

with minimal to no cerebral edema (Murtha et al., 2014a, 2015,

2016). This finding was met with considerable skepticism since

it ran counter to the general understanding of post-stroke ICP

elevation. To ensure the veracity of the findings, they were

confirmed using histology, wet weight-dry weight and in vivo

magnetic resonance imaging to measure edema (Murtha et al.,

2015). A recent study from Alshuhri et al. (2020) supports and

extends these findings, showing no correlation between edema and

ICP elevation 24 h after permanent MCAo in rats. Furthermore, in

Sprague-Dawley rats, our group demonstrated that treatment with

short duration hypothermia soon after stroke completely prevented

ICP elevation at 24 h despite the presence of large edema volumes

(Murtha et al., 2015).

There are many similarities in the biological processes recruited

in response to many acute neurological diseases. It is enticing

to speculate that this may also apply to other acute neurological

injuries associated with ICP elevation.

3.2. Cerebral blood volume

Changes in cerebral blood volume (CBV) may contribute to

ICP elevation post-stroke, however, no studies have simultaneously

monitored ICP with a continuous measurement of CBV following

stroke. There are data, however, in two patients with intracranial

hypertension, where acute transient rises in ICP (plateau waves)

were simultaneously recorded with continuous regional CBV

(rCBV)measurements frommultiple brain locations (Risberg et al.,

1969). Here, it was shown that every plateau wave was accompanied

by an increase in rCBV, after the initial spontaneous ICP elevation.

Interestingly, the largest changes in rCBV were measured from

parts of the brain that included the ventricles and the choroid

plexuses. These data suggest that there may be an important role for

CBV in some forms of ICP elevation, but its investigation has been
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limited by the lack of well-validated tools to measure it. Therefore,

the specific role of CBV during ICP elevation in stroke and other

neurological disorders awaits further investigation.

3.3. Cerebrospinal fluid volume

Accurately quantifying CSF volume has proven challenging,

both in humans and in experimental animals. Measurement is

complicated due to the space being surrounded by bone, the

constant yet uneven circulation of CSF, and the convoluted

pathways CSF travels around the brain and spinal cord. Some

have sought to measure volumes post stroke, e.g., using ventricular

volume as a surrogate measure (Dhar et al., 2016, 2018, 2020,

2021; Kauw et al., 2019, 2022; Monch et al., 2020; Jiang et al.,

2022), but given the ventricular compression known to occur from

hemispheric swelling, this is not an entirely satisfactory surrogate

for total cranio-spinal CSF volume. Similarly, CSF tracer dilution

studies have been used to try to estimate volume (Oshio et al., 2005).

Such studies rely on achieving steady-state tracer concentration.

However, the convoluted CSF flow pathways and, speed of turnover

likely prevent this ever occurring within the entire CSF space,

making such methods unreliable (Oreskovic and Klarica, 2014).

Another important consideration for CSF volumetric analyses

is that CSF volume is not confined within the cranial cavity.

Investigations into CSF volume often focus on cranial CSF (Chiu

et al., 2012; Murtha et al., 2014b) due to the technical challenges

of spinal CSF imaging, and thus likely underestimate total

CSF volume.

One way to circumvent these issues is to use surrogate

measurements of CSF volume, e.g., via changes in CSF dynamics

(production, flow, and outflow) (Heisey et al., 1962; Pappenheimer

et al., 1962; Yasuda et al., 2002; Karimy et al., 2015; Bothwell

et al., 2021). CSF volume is a product of the balance between

the production and outflow of CSF. Therefore, increased CSF

production and/ or decreased outflow that results in a change in

CSF volume could cause ICP to rise. Using this understanding,

there is an increasing body of pre-clinical evidence implicating the

CSF system in the early ICP rise post-stroke (Figure 1C). Alshuhri

et al. (2020) investigated CSF production and outflow in rats post-

stroke. Whilst they did not detect an increase in CSF production,

the authors found evidence of a direct link between CSF outflow

resistance and ICP post-stroke. The authors showed a 2-fold

increase in CSF outflow resistance at 24 h post-permanent MCAo

in rats which significantly correlated with ICP. These findings

suggest that CSF volume may be contributing to post-stroke ICP

rise, and that reduced or impaired clearance of CSF could be an

underlying mechanism. The specific cause of the increased outflow

resistance was not investigated in those studies, however Bothwell

et al. (2021) found evidence that stroke reduces transit of CSF

tracers to the deep cervical lymphatics (one of the CSF outflow

pathways) 18 h after photothrombotic stroke in rats with ICP rise.

Interestingly, an increase in spinal CSF transit was observed by the

authors, suggesting the possibility that this outflow pathway may

be a compensatory mechanism in response to elevated ICP when

direct cranial clearance pathways are absent. Interestingly, similar

reductions in transit of CSF tracers to cervical lymphatics have

been observed in rats (Bolte et al., 2020) and rabbits (Griebel et al.,

1989), after experimental traumatic brain injury and subarachnoid

hemorrhage, respectively. This may indicate that there are similar

mechanisms present in other acute neurological disorders that

involve raised ICP.

4. Conclusions and future directions

This review highlights compelling evidence for a previously

unsuspected early, transient elevation of ICP occurring ∼24 h

after the onset of minor/moderate stroke. In experimental studies,

greater ICP elevation was seen after temporary than permanent

vessel occlusion. Increasing experimental evidence suggests a role

for reduction of CSF outflow, thereby increasing CSF volume,

as a contributing factor to stroke-induced ICP rise, however

the exact mechanism is yet to be elucidated. Regardless of the

cause, it has become clear that ICP changes may be frequent

and dynamic and ICP elevation may be an important, previously

unrecognized, pathophysiological mechanism of infarct expansion

and neurological deterioration in stroke patients. Taken as a whole,

the findings highlight how little is known about the fundamental

mechanisms of ICP regulation in health and disease. Future studies

should be undertaken to confirm the clinical relevance of ICP

elevation in patients with mild-moderate strokes. If confirmed this

may have major implications for patient management, including

the justification for ICP measurement in this population.
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