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Ugandan children with sickle cell
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Introduction: The neurocognitive functions in Ugandan children aged 1–12

years with sickle cell anemia (SCA) were compared to their non-SCA siblings to

identify risk factors for disease-associated impairment.

Methods: This cross-sectional study of the neurocognitive functions in children

with SCA (N = 242) and non-SCA siblings (N = 127) used age- and linguistically

appropriate standardized tests of cognition, executive function, and attention

for children ages 1–4 and 5–12. Test scores were converted to locally derived

age-normalized z-scores. The SCA group underwent a standardized stroke

examination for prior stroke and transcranial Doppler ultrasound to determine

stroke risk by arterial flow velocity.

Results: The SCA group was younger than their siblings (mean ages 5.46 ±

3.0 vs. 7.11 ± 3.51 years, respectively; p < 0.001), with a lower hemoglobin

concentration (7.32 ± 1.02 vs. 12.06 ± 1.42, p < 0.001). The overall cognitive

SCA z-scores were lower, −0.73 ± 0.98, vs. siblings, −0.25 ± 1.12 (p < 0.001),

with comparable findings for executive function of −1.09 ± 0.94 vs. −0.84 ±

1.26 (p = 0.045), respectively. The attention z-scores for ages 5–12 for the SCA

group and control group were similar: −0.37 ± 1.4 vs. −0.11 ± 0.17 (p = 0.09).

The overall di�erences in SCA status were largely driven by the older age group,

as the z-scores in the younger subsample did not di�er from controls. Analyses

revealed the strongest predictors of poor neurocognitive outcomes among the

SCA sample to be the disease, age, and prior stroke (each p< 0.001). The impacts

of anemia and SCA were indistinguishable.

Discussion: Neurocognitive testing in children with SCA compared to non-

SCA siblings revealed poorer SCA-associated functioning in children older than

age 4. The results indicate the need for trials assessing the impact of disease

modification on children with SCA.
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Introduction

Sickle cell anemia (SCA) is a serious inherited blood condition

affecting 0.5%−2% of births in Uganda and other high-prevalence

countries in sub-Saharan Africa (Ndeezi et al., 2016; Ware et al.,

2017; Ambrose et al., 2018; Uyoga et al., 2019; Nnodu et al.,

2020). A high disease burden, compounded by health and health

system challenges in low-income countries, exposes many affected

children to early disease complications, including cerebrovascular

injury (Makani et al., 2011; Bello-Manga et al., 2016; Uyoga et al.,

2019; Nnodu et al., 2021; Ranque et al., 2022). SCA-associated

cerebrovascular injury commonly results in overt and/or clinically

“silent” infarcts, often in children younger than 10 years of

age (Bernaudin et al., 2011; Brousse et al., 2015; DeBaun and

Kirkham, 2016; Munube et al., 2016; Green et al., 2019). Infarcts

can lead to impaired neurocognitive functions (Kawadler et al.,

2016; Prussien et al., 2019a; Knight et al., 2021; Lee et al., 2022).

In high-income countries where successful stroke prevention

strategies are routinely practiced, the continued occurrence of silent

infarcts remains a neurocognitive risk (Bernaudin et al., 2011;

Brousse et al., 2015; DeBaun and Kirkham, 2016; Kawadler et al.,

2016; Kwiatkowski et al., 2019; Estcourt et al., 2020; Longoria

et al., 2022). Worldwide, children with SCA with or without

imaging abnormalities have a heightened risk of intellectual deficits

(Prussien et al., 2019b; Idro et al., 2022).

Severe anemia is a risk factor for SCA-associated cerebral

infarcts and impaired neurocognition due to abnormal blood

flow and reduced cerebral oxygen delivery (DeBaun et al., 2012;

Quinn and Dowling, 2012; King et al., 2014; Ford et al., 2018;

Ogunsile et al., 2018; Estcourt et al., 2020; Jacob et al., 2022).

The risk of cognitive impairment from SCA in sub-Saharan Africa

may be compounded by low parental education, a proxy for

poverty, malnutrition, and endemic infections (Dhabangi et al.,

2016; Oluwole et al., 2016; Macharia et al., 2018; Prussien et al.,

2019a, 2020; Bello-Manga et al., 2020). Moreover, stroke reduction

strategies are not generally available in the region (Noubiap et al.,

2017; Marks et al., 2018; Green et al., 2019). Cerebrovascular injury

among the many African children with SCA raises questions about

the prevalence and types of neurocognitive risk in this population

(Marks et al., 2018). To date, few pediatric studies of SCA in sub-

Saharan Africa have assessed the associated neurocognitive effects

compared to unaffected children (Ruffieux et al., 2013; Oluwole

et al., 2016; Prussien et al., 2019a; Jacob et al., 2022). Only one of

these studies compared results to sibling controls, a strategy that

can better control for environmental and socioeconomic effects

(Jacob et al., 2022).

We assessed the frequency of neurological and neurocognitive

impairment in a cross-sectional study of Ugandan children with

SCA ages 1–12 years, “Burden and Risk of Neurological and

Cognitive Impairment in Pediatric Sickle Cell Anemia in Uganda

(BRAIN SAFE)” (Green et al., 2019). The overall frequency of

neurocognitive dysfunction was 11.2%, with older (ages 5–12)

at a 3-fold higher risk of impairment compared to younger

participants (ages 1–4). In this secondary analysis, we report

detailed findings of the neurocognitive evaluation of participants

compared to their non-SCA siblings to identify contributions from

demographic and clinical factors beyond age. We hypothesized

that, compared to non-SCA siblings, children with SCA had lower

neurocognitive functioning and that age, malnutrition, adverse

neurological outcomes of prior stroke, and elevated transcranial

Doppler (TCD) ultrasound velocity were risk factors. In contrast

to other sub-Saharan Africa studies of children with SCA, we

assessed the detailed neurocognitive performance for cognition,

executive function, and attention in a large sample of Ugandan

children compared to non-SCA siblings, as well as the effects of key

demographic and neurological risk factors.

Materials and methods

Study design and setting

A random cross-sectional sample of 265 children with SCA

ages 1–12 years attending the Mulago Hospital Sickle Cell Clinic

in Kampala, Uganda, and a sample of their non-SCA siblings

were enrolled in BRAIN SAFE 1 (2016–2018) (Green et al.,

2019). The sample size was determined from previously reported

frequencies and impacts of cerebral infarction on neurological and

neurocognitive functions (Kawadler et al., 2016; Prussien et al.,

2019a; Knight et al., 2021; Lee et al., 2022). Routine SCA pediatric

care did not include disease-modifying therapy at that time. The

study was approved by theMakerere University School of Medicine

Research and Ethics Committee, the Uganda National Council for

Science and Technology, and the Columbia University Institutional

Review Board.

Participants

As previously reported, inclusion criteria were (a) SCA

confirmed by hemoglobin electrophoresis (HbSS or HbS-B0

thalassemia) and (b) having attended theMulago SCA clinic (Green

et al., 2019). To focus on SCA-related neurological complications,

we excluded those with a history of neurological abnormalities

before 4 months of age (Bainbridge et al., 1985). Caregiver written

informed consent was obtained, with assent from participants

aged 8 years or older. Non-SCA participants (N = 127) were

also enrolled, with inclusion criteria of (a) aged 1–12 years and

(b) hemoglobin electrophoresis demonstrating a lack of SCA (i.e.,

HbAA or HbAS). Among these controls, 119 (93.7%) were siblings;

the rest were other close relatives or neighbors. Hence, we refer to

them as “siblings.”

Physical and neurological assessments and
caregiver education

The World Health Organization (WHO) standards were used

for the anthropometric assessments for malnutrition of the SCA

and sibling participants to detect malnutrition, defined as low

weight-for-height (“wasting”), as previously reported (Duggan,

2010; Green et al., 2019). The assessments of SCA participants

at enrollment were a medical history and physical examination,

an examination for prior stroke using the National Institutes of

Frontiers in Stroke 02 frontiersin.org

https://doi.org/10.3389/fstro.2024.1372949
https://www.frontiersin.org/journals/stroke
https://www.frontiersin.org


Bangirana et al. 10.3389/fstro.2024.1372949

Health (NIH) Pediatric Stroke Scale, and stroke risk stratification

by intracranial arterial flow velocity identified by TCD as elevated

to ≥170 cm/s (“conditional” or “abnormal”) (Green et al.,

2019). Caregiver educational attainment was scored as previously

performed, reported as none, primary school, secondary school,

more than secondary education, or unknown (Bangirana et al.,

2009).

Neurocognitive assessment

Overall neurocognitive functioning, including behavioral

measures, attention, and executive function, was assessed using

age-appropriate tests by experienced testers in both SCA and non-

SCA siblings. All assessment tools had previously been translated

into the predominant local language, validated, and used to

establish age-specific community norms for healthy children in

Kampala (Green et al., 2019). These tools have also been used to

assess cognitive outcomes after severe malaria and pediatric HIV

within the same community (Familiar et al., 2015; Hickson et al.,

2019).

For children aged 1–4 years, the Mullen Scales of Early

Learning (Mullen) and the Behavioral Rating Inventory for

Executive Function–Preschool version (BRIEF-P) assessed

cognitive functioning and executive function, respectively (Gioia

et al., 2002; Boivin et al., 2013). The Mullen subtests assess

gross and fine motor, visual reception, receptive language,

and expression language. A summation of fine motor, visual

reception, receptive language, and expressive language scores

constitute the Early Learning Composite for measuring

overall neurocognitive ability, the primary outcome for the

Mullen. The BRIEF-P is a caregiver assessment of the child’s

executive functioning using 63 items for which the caregiver

endorses child behaviors exhibited over the prior 6 months. The

summation of these items gives a Global Executive Composite

for measuring executive function, the primary outcome of

the BRIEF-P. The subtests were for self-control, flexibility,

and metacognition.

Children aged 5–12 years were tested using the Kaufman

Assessment Battery for Children, Second Edition (KABC-II)

(Tumwine et al., 2018), the BRIEF school-age version (Gioia

et al., 2002), and the Test of Variables of Attention (TOVA)

(Bangirana et al., 2009) to assess overcall neurocognitive

functioning, executive function, and attention, respectively. The

KABC-II subscales assessed working memory, visual-spatial

ability, learning ability, and reasoning. A summation of these

four scales generates a composite value, the Global Mental

Processing Index. The BRIEF for school-age participants uses

caregiver responses on 86 items. Here, the composite score,

computed from the subtests of behavioral regulation and

metacognition, generated the General Executive Composite. The

TOVA, a computerized test for which children are instructed

to press a switch whenever a specific target appears on

the screen, assesses attention and inhibitory control. The

composite score, D-prime, is calculated from subtest scores

for omission errors, commission errors, response time, and

attention-deficit/hyperactivity disorder.

Statistical analyses

SCA and non-SCA participants were grouped into two age

ranges according to the tests used. The raw scores for all

neurocognitive assessments were converted to age-normalized

z-scores using the established standards for unaffected healthy

children, as previously described (Green et al., 2019). Within each

age range, the z-scores were analyzed and compared, by group,

using means and standard deviations. Negative values correspond

to scores below the age-normalized z-scores. In contrast, negative

z-scores for the BRIEF and the BRIEF-P indicate better function.

Hence, the positive signs for those two BRIEF tests were flipped

to negative for a consistent directionality in reporting the results

(Hickson et al., 2019). Data were analyzed using means and

standard deviation. For categorical data, an analysis of variation

and a Pearson chi-square test were used for analyses. Continuous

data were analyzed using the Pearson correlation. The factors

associated with impaired neurocognition were assessed using linear

regression. No missing participant data were imputed.

Results

SCA and non-SCA siblings demographic
and clinical characteristics

Neurocognitive assessment was performed on 242 of 265

(91.3%) SCA participants and all 127 non-SCA siblings. The

parents of the 23 SCA participants without neurocognitive

assessments were unable to schedule testing (Green et al., 2019).

The mean age of SCA participants tested was 5.46 ± 2.98 years

vs. 7.11 ± 3.51 in the non-SCA siblings (p < 0.001; Table 1).

The mean hemoglobin concentration was also highly different by

group: 7.32 ± 1.02 vs. 12.06 ± 1.42 in the SCA vs. control group,

respectively (p < 0.001). Close to half (48.4%) of the SCA sample

was female compared to 43.9% of the non-SCA siblings (p = 0.33).

Malnutrition, defined as weight-for-age at −2 z-scores or below

using WHO global norms by age and sex, was found in 37 (15.3%)

children with SCA and 11 (8.7%) controls (p = 0.20). Caregiver

education differed between the two study groups (p = 0.018), with

a higher proportion of caregivers in the control group having little

or no education.

As the neurocognitive testing platforms used differed by the

two age groups, ages 1–4 and 5–12, key variables were compared

within the group of children with SCA and the controls (Table 1).

For the SCA sample, the older group had higher proportions of

females and malnutrition compared to the younger group. Among

neurological outcomes in the SCA sample, a higher proportion

of the older group had a prior stroke and a marginally lower

proportion had an elevated TCD velocity. Among the controls, the

older group differed only in having a significantly higher mean

hemoglobin concentration.

Supplementary Table S1 compares each age group by SCA

status. As in the overall sample, higher hemoglobin levels were

found in the control group for each age group. No other significant

differences were found between the younger groups. In contrast, the

older SCA group was younger than the control group, had a larger

proportion of malnutrition, and higher caregiver education.
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TABLE 1 Demographic and neurologic characteristics stratified by SCA status and age group, 1–4 or 5–12 years of age.

Total sample SCA by age group Non-SCA sibs by age group

Total SCA
sample

(N = 242)

Non-SCA
Siblings
(N = 127)

p-
value

Ages 1–4
years

(n = 100)

Ages 5–
12 years
(n = 142)

p-
value

Ages
1–4 years
(n = 40)

Ages 5–12
years

(n = 87)

p-
value

Age years,

mean± SD

5.46±2.98 7.11± 3.51 <0.001 2.65± 0.85 7.40± 2.05 <0.001 2.53± 1.12 8.34± 2.52 <0.001

Hemoglobin

(g/dl), mean

(SD)

7.32± 1.02 12.06± 1.42 <0.001 7.35± 1.11 7.29± 0.96 0.71 10.94± 1.55 12.6± 1.06 0.001

Female, N (%) 118 (48.4%) 55 (43.9%) 0.33 41 (41%) 75 (52.8%) 0.02 16 (40%) 39 (44%) 0.39

Malnutrition,a

N (%)

37 (15.3%) 11 (8.7%) 0.20 10 (10.3%) 27 (20.3%) 0.04 3 (7.5%) 8 (9.2%) 0.74

Caregiver

education, N

(%)

0.018 0.12 0.14

None/primary

school

178 (73.6%) 109 (85.8%) 74 (74%) 104 (73.2%) 38 (95%) 71 (81.6%)

Secondary/

tertiary school

56 (23.1%) 18 (14.2%) 23 (23%) 33 (23.2%) 2 (5%) 16 (18.4%)

Unknown 8 (3.3%) 0 3 (3.0%) 5 (3.5%) 0 0

Stroke by

exam, N (%)

15 (6.2%) – n/a 3 (3.0%) 12 (8.5%) 0.05 – – –

Elevated

TCD,b N (%)

37 (15.5%) – n/a 18 (18.0%) 19 (13.4%) 0.08 – – –

Data are expressed as N (%) unless otherwise stated. Bold font represents statistically significant differences (p ≤ 0.05). SCA, sickle cell anemia; TCD, transcranial Doppler; n/a, not applicable.
aDefined by World Health Organization standards for wasting, defined as weight-for-age of−2 z-score or lower (Duggan, 2010). bExcluding 11 children with SCA: 1 who was uncooperative, 1

aged <2 years for whom TCD standards have not been established, and 9 with inadequate temporal bone windows for obtaining TCD velocity.

Overall neurocognition in children with
SCA vs. non-SCA siblings

Themean scores for the groups with SCA and non-SCA siblings

were normally distributed for all three neurocognitive domains

tested. The overall sample with SCA performed significantly worse

for cognition in the standardized age-appropriate tests than the

non-SCA controls, −0.73 ± 0.98 vs. −0.25 ± 1.12 (p < 0.001;

Table 2, Figure 1). Similarly, the SCA sample scored lower for

executive function than their unaffected siblings: −1.09 ± 0.94 vs.

−0.84± 1.26 (p= 0.045), respectively.

Among those in the younger age group, ages 1–4 years, who

were tested, no differences according to SCA status were found in

cognition or executive function. Cognitive function, tested using

the Mullen, was −0.41 ± 0.73 for SCA and −0.21 ± 0.84 (p =

0.15) for non-SCA samples. Similarly, executive function, tested

using the BRIEF-P in these younger participants comparing SCA

vs. non-SCA was −1.47 ± 0.89 vs. −1.61 ± 1.22 (p = 0.44),

respectively. Hence, neurocognitive function was retained in the

younger subsample of children with SCA through age 4.

In contrast, lower z-scores were found according to SCA status

for the older children for neurocognition, tested using the KABC-

II, −0.93 ± 1.25 vs. −0.36 ± 1.24 (p < 0.001), and for executive

function, tested using the BRIEF, −0.69 ± 0.83 vs. −0.32 ± 0.99 (p

= 0.009). However, testing for attention, using TOVA, which was

possible only among the older age group, demonstrated a similar

performance between the two groups: −0.37 ± 1.4 vs. −0.11 ±

0.17 (p = 0.09) for the SCA and control groups, respectively. Two

of the three areas of assessment, cognition and executive function,

were lower in the older subsample of children with SCA compared

to controls.

To remove the potential of excess influence on cognition from

prior stroke within the SCA sample, we reanalyzed the mean z-

scores after removing 15 affected SCA participants (mean age 6.0±

2.59 years). As expected, the mean z-score for the SCA subsample

with prior stroke vs. no stroke was much lower −2.18 ± 1.53 than

the overall scores (p < 0.001). However, removing this small subset

affected by stroke from the SCA sample had no significant effects

on the mean SCA z-scores for cognition or executive function

compared to controls.

Factors associated with impaired cognition
in SCA children vs. non-SCA siblings

The overall neurocognitive test results for each of the domains

for SCA were compared to controls for each variable collected.

We first asked whether hemoglobin concentration for the SCA

group compared to controls had effects that were separable

from SCA in neurocognitive outcomes. Using linear regression

with both variables in the model—SCA status and hemoglobin

concentration—the difference was p = 0.004, with the main

effect largely driven by SCA. No effects from sex, malnutrition,
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TABLE 2 Composite neurocognitive test results, by z-scores, for children aged 1–4 and 5–12 years, assessed by tests for cognition, executive function

and attention (the last test was used only with the older group).

Overall di�erences by sickle cell status, aged 1–12 years

SCA participants (N = 242) Non-SCA siblings (N = 127)

Mean± SD (Range) Mean± SD (Range) p-value

Overall cognition −0.73± 0.98 (-5.0-2.51) −0.25± 1.12 (-3.84-3.42) <0.001

Overall executive function −1.09± 0.94 (-2.56-3.25) −0.84± 1.26 (-2.87-3.35) 0.045

Di�erences by sickle cell status, aged 1–4 Years

SCA participants (N = 100) Non-SCA siblings (N = 40)

Mean (SD) (Range) Mean (SD) (Range)

Mullen scales of early learninga −0.41± 0.73 (-3.66, 1.20) −0.21± 0.84 (-1.65-3.42) 0.15

BRIEF-P: global executive functiona,b −1.47± 0.89 (-1.01-3.25) −1.61± 1.22 (-2.87-3.35) 0.44

Di�erences by sickle cell status, aged 5–12 years

SCA participants (N = 142) Non-SCA siblings (N = 87)

Mean (SD) (Range) Mean (SD) (Range)

KABC-II mental processing indexa −0.93± 1.25 (−5.00–2.52) −0.36± 1.24 (−3.84–3.16) <0.001

BRIEF: global executive functiona,b −0.69± 0.83 (-2.56–2.05) −0.32± 0.99 (−2.81–1.86) 0.009

TOVA: D’ Primea,c −0.37± 1.4 (-3.31–1.80) −0.11± 0.17 (−3.10–5.00) 0.09

Standardized age-normalized z-scores were scored based on local unaffected controls.1 (Ref. Bangirana et al., 2009; Green et al., 2019).
aThe 2 to 5 component sub-tests for each neurocognitive test are listed in the Methods.
bBRIEF-P and BRIEF scores were flipped from positive to negative for the for consistent data directionality.
cThis test is not valid in children below age 5.

Bold font represents statistically significant differences (p ≤ 0.05).

or elevated TCD velocity were found in any of the three

neurocognitive domains tested (Table 3).

We then examined overall test outcomes for factors

contributing to the outcomes (Table 3). For overall cognition

or executive function, age-normalized z-scores declined with

age. Adjusting for other variables of hemoglobin concentration,

caregiver education, and prior stroke demonstrated their impact on

effect sizes. Despite those changes, the outcomes were unchanged.

These findings demonstrated that the poorer function of the SCA

group was attributed to the impact of the disease.

By the TOVA test, for attention in the older participants in

both SCA and controls, age also negatively impacted z-scores.

The influence of age for the SCA group was assessed as r2 =

−0.58 and −0.72 for the controls (both p < 0.001). Unexpectedly,

neither prior stroke nor elevated TCD was associated with

reduced attention.

Finally, we examined the SCA sample for impact from prior

stroke or elevated TCD velocity on each of the three outcomes.

Prior stroke strongly affected cognition (p <0.001) but had no

significant effects on executive function or attention (Table 4).

Elevated TCD velocity had a borderline impact on cognition, but it,

like prior stroke, had no impact on executive function or attention.

Discussion

Children with SCA in sub-Saharan Africa are at risk for

disease-associated cerebrovascular injury as well as environmental

challenges (Oron et al., 2020; Nnodu et al., 2021). In a large clinic-

based sample of Ugandan children with SCA in Kampala compared

to their non-SCA siblings, our cross-sectional neurocognitive

assessment revealed these main findings: (1) The mean test z-

scores for cognition and executive function were substantially

lower in the SCA sample, even after accounting for age,

hemoglobin concentration, caregiver education, and prior stroke.

No discernable effects were seen regarding sex, malnutrition,

or elevated TCD velocity. These findings confirm SCA as the

main cause of impaired neurocognition in this study. Lower

scores in cognition testing of approximately 0.5 z-scores in the

children with SCA correspond to approximately 8 IQ points below

that of their siblings. (2) The differences by hemoglobinopathy

diagnosis were driven by the older subsample with SCA, ages

5–12 (Gur et al., 2021). In contrast, children with SCA aged

1–4 were not different in cognition or executive function from

unaffected siblings in that age group. (3) Age and clinically evident

prior stroke, but not elevated TCD arterial velocity, were the

largest drivers of impaired cognition. Nonetheless, excluding a

modest number of SCA participants with prior stroke from the

analyses did not significantly affect the results of the remaining

sample. (4) Among those aged 5–12, attention was not significantly

different from the controls unless accounting for differences in

age and/or prior stroke. (5) The non-SCA siblings in our study

scored below healthy Kampala-based age-normalized controls.

What social, economic, and/or educational opportunities affected

neurocognitive performance in the siblings was not assessed.

Similar findings of impaired neurocognitive function and

attention of older SCA children compared to non-SCA siblings
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FIGURE 1

Cognitive findings by SCA status and age group (1–4 and 5–12 years) compared to una�ected siblings. Age-normalized z-scores for mean cognitive

testing were lower in the SCA group but only in the older age group (p < 0.001).

were observed in a prior Tanzanian report of a smaller sample

(Jacob et al., 2022). Similar to prior reports of children with SCA

in Africa, the United States, and elsewhere, our study’s participants

with SCA had lower executive functioning (Ruffieux et al., 2013;

Prussien et al., 2019a; Jacob et al., 2022). This consistent finding

was seen despite our use of a test by parental report, which may

under-report functional deficits, rather than direct testing used by

other studies (Prussien et al., 2019a; Trpchevska et al., 2022).

Unlike our findings here, the Tanzanian study did not observe

a decline in performance in older vs. younger SCA participants

(Jacob et al., 2022). As that study tested children aged 6 years

and older, taken together, these findings support our findings of

the sparing and/or resilience of the younger age group with SCA.

Consistent with this observation, the cumulative effects of SCA

cerebrovascular injury over time are considered to be primarily

responsible for the association between age and neurocognitive

impairment in children with SCA (Wang et al., 2001; Schatz

and McClellan, 2006). Collectively, these observations suggest that

low caregiver education, alone and/or as a surrogate for low

socioeconomic status (SES), and/or educational disadvantages may

contribute to—but are not the main drivers of—the age effects seen

in children with SCA in sub-Saharan Africa (Bangirana et al., 2009).

Similar findings were reported in a U.S. study, in which SCA and

social factors both influenced neurocognition (King et al., 2014).

The effect of age on the neurocognitive outcome in our study could

also be a consequence of “growing into deficit,” whereby effects of

brain injury become apparent as the child grows older (Zhuo et al.,

2022).

A relatively high proportion of neurocognitive impairment in

the older group of non-SCA siblings may be at least attributable

to social issues, as all neurocognitively impaired siblings had

caregivers with low education. Our group has previously reported

this association among healthy children in Kampala (Bangirana

et al., 2009).
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TABLE 3 Neurocognitive outcomes compared between the groups with

SCA and controls.

Cognition F-Value p-Value

Unadjusted 16.1 <0.001

Model 1: Adjusted for age 15.0 <0.001

Model 2: Adjusted for age, hemoglobin,

caregiver educationa
8.5 <0.001

Model 3: Adjusted for age, hemoglobin,

caregiver education, prior strokea
12.6 <0.001

Executive function

Unadjusted 10.8 0.001

Model 1: Adjusted for age 5.4 0.005

Model 2: Adjusted for age, hemoglobin,

caregiver educationa
2.6 0.034

Model 3: Adjusted for age, hemoglobin,

caregiver education, prior strokea
2.3 0.04

Attention

Unadjusted 2.9 0.09

Model 1: Adjusted for age 3.6 0.03

Model 2: Adjusted for age, hemoglobin,

caregiver educationa
2.0 0.10

Model 3: Adjusted for age, hemoglobin,

caregiver education, prior strokea
2.6 0.028

By linear regression, adjusting for age, hemoglobin, caregiver education and prior stroke

changed affect sizes but not outcomes of cognition or executive function, thereby identifying

SCA as the primary source of group differences. ∗In contrast, attention was largely influenced

by SCA and age differences between the two samples.
∗These variables had no effect on outcomes: sex, malnutrition, elevated TCD velocity.

Caregiver education had a modestly significant impact on executive function.
a Hemoglobin concentration did not impact the variance beyond that from SCA.

Bold font represents statistically significant differences (p ≤ 0.05).

TABLE 4 Examining the role of prior stroke or elevated TCD velocity on

neurocognitive outcomes within the SCA sample.

Prior stroke F-value p-value

Cognition 25.1 <0.001

Executive function 0.06 0.43

Attention 0.14 0.71

Elevated TCD Velocity

Cognition 3.4 0.067

Executive function 0.23 0.63

Attention 0.01 0.91

By linear regression of age-normalized z-scores, adjusting for prior stroke demonstrated a

strong relationship with cognition but not the other outcomes. In contrast, adjusting for

elevated TCD velocity demonstrated that no outcome was affected∗ .
∗1 participant had both prior stroke and elevated TCD velocity.

Bold font represents statistically significant differences (p ≤ 0.05).

This study’s limitations include potential biases from SCA-

associated survival and the cross-sectional study design. These

issues may have affected the relationships seen with age.

Nonetheless, our data reflect results from a substantial number

of children receiving SCA care at a large urban center. Executive

function was based on parental report rather than direct child

assessment; hence, it could have been biased. More direct measures

of executive function may provide clearer insights. A test for

attention comparable to the TOVA for children ages 1–4 years

was not available. Executive function was not tested directly,

as the BRIEF and BRIEF-P use parental reports. At that time,

we had no other option for which local translated platforms

and age-normalized standards were available. We have previously

used these tests to assess executive function in local studies

on childhood malaria and HIV infection (Familiar et al., 2015;

Hickson et al., 2019). Additional limitations include potential

differential influences from illness-associated school absences

adversely impacting test results and no assessment of attention in

the younger age group (Olatunya et al., 2018). The contributions

from hemoglobin concentration could not be discerned from SCA

as they were tightly linked. Unlike the random SCA clinic-based

selection, sibling participation may have been biased, for example,

from possible parental concerns. The potential for downward

socioeconomic pressure associated with having a child affected

by SCA may have contributed to subnormal scores among the

siblings (Amarachukwu et al., 2022). Low caretaker education level,

a marker of poverty, may have adversely affected neurocognitive

scores, although the sibling assessment would have modulated

those effects (King et al., 2014; Bello-Manga et al., 2020; Jacob et al.,

2022). No adjustments were made for multiple comparisons.

In conclusion, comparing a sample of Ugandan children with

SCA to their non-SCA siblings aged 1–12 years, we demonstrated

that children with SCA had worse cognitive impairment and

executive function than the unaffected siblings and that these

differences were attributable to the older age group, aged 5–12. The

younger children with SCA were not different from their non-SCA

siblings. Age 5–12 and prior stroke were most strongly associated

with neurocognitive impairment, with some contribution from

caregiver educational attainment. Low neurocognitive z-scores by

age among non-SCA siblings suggest environmental influences, for

example, SES and education, among all participants, with potential

parental selection bias for the siblings tested. Given the increased

risk of impairment with age, interventions in early childhood

may more likely provide benefits. Disease-modifying therapies, for

example, hydroxyurea, should be tested for stabilizing or improving

neurocognitive functions in young sub-Saharan children through

amelioration of modifiable risk factors with SCA, including anemia

(Tshilolo et al., 2019; Opoka et al., 2020).
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