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The rapid popularization of advanced metering infrastructure (AMI) smart meters

produces customer high-frequency energy consumption data. These data provide

diverse options for energy economics and policy research. In this review, we

examine studies applying high frequency smart meter data to explore the

overall impact of household new technology adoption and COVID-19 on energy

consumption patterns. We find that high frequency smart meter data boosts the

accuracy of forecasting models with various data-driven algorithms. In addition,

there is a lack of precise assessment and inclusive understanding of energy poverty

in advanced economics. Smart meter data help expand and deepen the energy

poverty research. Research on how vulnerable groups exhibit energy poverty can

improve society’s understanding of energy poverty and help implement related

policy assistance programs.
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1. Smart meter

Smart meters are used to accurately record the amount of electricity consumption at a

very high frequency, dramatically changing the collection of electricity data and driving the

household energy transition (Ribeiro Serrenh and Bertoldi, 2019). High frequency interval

meter data, typically hourly and 15min, provides important and rich information about

household consumption patterns. Smart meter data can be used to cluster, classify, predict,

and optimize electricity consumption patterns through a series of analytical methods and

techniques (Yildiz et al., 2017). The popularity of smart meters has grown rapidly over the

past decade, from <2.5 million smart meters deployed globally in 2007 to ∼729.1 million

in 2019, an increase of 294 times, with the United States and China accounting for the

highest percentage, 85.4% (Sovacool et al., 2021). Smart meters provide utilities with detailed

information and enable effective demand side management. Two-way AMI meters, which

allow communication capability between electric utilities and customers, have been more

prevalent after 2013 [U.S. Energy Information Administration (EIA), 2023]. By providing

real-time or near real-time electricity data, it supports smart consumption applications based

on customer preferences and demand.

The use of smart meters has increased the accuracy and breadth of research in the energy

sector in three main dimensions. Firstly, high frequency electricity consumption data can

inform hourly electricity usage in homes, the peak hours, and detailed outage information

in the event of system disruption. It helps to understand in detail the patterns of electricity

consumption as well as electric load. Secondly, high frequency data improves the accuracy of
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electricity power and energy demand forecasting, providing

support for future energy supply management and energy

transition. Thirdly, combining household smart meter data with

household characteristics, and natural and socio-economic factors

could further explore the relationship between energy consumption

and socio-economic characteristics, promoting policies to address

energy poverty, improve residents’ electricity consumption habits,

and advance overall social development.

2. Electricity consumption patterns
and forecast

High-frequency electricity data helps understand the electricity

consumption patterns in different consumer groups at various time

periods, and the changes in behaviors after the adoption of new

technologies and demand-side management measures. Further,

high-frequency data increases the accuracy of energy consumption

forecasts due to the larger variation provided by the data.

Applying high frequency electricity data during pandemic

times, studies have analyzed and examined the overall impact of

COVID-19 on energy consumption and transition in pre- and

post-pandemic. The world has seen a shift in people’s habits

and daily activities due to the pandemic. Therefore, electricity

consumption patterns in both residential and commercial buildings

have changed. Ku et al. (2022) used individual hourly power

consumption data within a machine learning framework to

examine changes in electricity use patterns due to COVID-19

mandates in Arizona. Chinthavali et al. (2022) examined changes

in energy use patterns on weekdays and weekends before and after

the COVID-19 pandemic. Raman and Peng (2021) used residential

electricity consumption data to reveal a strong positive correlation

between pandemic progress and residential electricity consumption

in Singapore. Li et al. (2021) analyzed data from apartments in

New York to examine the impact of the number of COVID-19

cases and the outdoor temperature on residential electricity usage.

Lou et al. (2021) found that the COVID-19 measures increased

residential electricity consumption by 4–5% and exacerbated

energy insecurity using individual smart meter data from Arizona

and Illinois. Sánchez-López et al. (2022) explored the evolution of

energy demands with hourly data among residential, commercial,

and industrial demand during the first wave of COVID-19.

Understanding how household hourly electricity demand changes

after the pandemic, especially due to working from home, provides

electricity system operators with valuable information in operation

and management. Also, based on the changes in the spatial and

temporal distributions of energy consumption, policymakers could

make better decisions to increase the ratio of power supply from

renewable energy sources.

The application of high frequency electricity data could

help understand the electricity consumption patterns of specific

consumer groups, especially families that have adopted new

technologies [e.g., Photovoltaics (PV), batteries, and electric

Vehicles (EV)]. Qiu et al. (2022a) applied a difference-in-

differences approach to 1600 EV households’ high frequency smart

meter data and found that people increased EV charging in

lower-priced off-peak hours. Another study (Oliva and MacGill,

2014) found that households who installed solar panels could

consume more electricity than before. Similarly, Qiu et al. (2019)

estimated an 18% solar rebound effect using hourly electricity

consumption data and hourly solar panel data from 2013 to 2017

in Phoenix Arizona. Al Khafaf et al. (2022) compared the electricity

consumption of consumers with PV and energy storage systems

(ESS) against consumers without ESS using over 5,000 energy

consumers’ 30-min window smart meters recording. They found

that on extremely hot days, installing batteries, to some extent,

reduces peak power usage in the afternoon. Using household hourly

electricity data in Arizona, Qiu et al. (2022b) found a high degree

of heterogeneity in consumption patterns of PV consumers after

adding battery storage. As to heat pump adoption, Liang et al.

(2022a) provided empirical evidence fromArizona which suggested

that heat pumps do not necessarily save energy. Besides, combining

electric vehicle charging profiles with residential electricity data

helps study the impact of EVs on electricity distribution networks

(Hill et al., 2010; Neaimeh et al., 2015; Liang et al., 2022b). These

patterns not only help residents explore the economic benefits of

new technologies adoptions, but also answer whether and how

those new technologies adoption has an impact on existing electric

grid’s capacity.

Forecast analysis relies on the data they’re trained on, and

high frequency smart meter data boosts the accuracy of the

prediction model. High-resolution forecasting models with various

data-driven algorithms need to be validated from high frequency

data. Popularization of smart meters in recent years has created

opportunities for improving household load forecasting. Accurate

electricity load forecasting provides scientific theoretical support

for the smart grid, like demand response, energy management,

and infrastructure planning and investment. Sousa and Bernardo

(2022) compared the accuracy of multivariate adaptive regression

splines, random forests, and artificial neural networks to predict the

load of the next day with 5,567 households’ half-hourly readings.

Shaukat et al. (2021) carried out short-term load forecasting by

different models, such as artificial neural networks. Lin et al.

(2022) combined smart meters, telephone surveys, demographic

information, and physical attributes of 83 houses in Oshawa; and

identified that the backpropagation neural network model is the

best in predicting the annual electricity and gas consumption

among eight data-driven algorithms. Fekri et al. (2021) proposed a

load forecasting method that can continuously learn from new data

and adapt to new patterns to test for load forecasting. Singh and

Yassine (2018) proposed unsupervised data clustering and frequent

pattern mining analysis on three datasets, then did forecasting

with Bayesian network and achieved energy consumption forecast

accuracies of 81.89%. The data resolution of the high-frequency

smart meter reached 6 s and 1min, respectively.

3. Further applications of smart meter
data

Beyond tracking consumption patterns and forecasting, further

applications of smartmeter data include studying household energy

consumption behavior from the socio-economic perspective and

assessing the impact of energy management strategies. Studying

consumers’ demand choices helps optimize electricity operations

and balance electricity supply and demand in a timely fashion.
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Besides, smart meter data can be used to support utility companies

to do revenue protection.

Many papers use smart meter data to study household energy

consumption behavior from the socio-economic perspective (Kang

and Reiner, 2022a). Kaur and Gabrijelčič (2022) divided the

electricity consumption dataset of 5,038 consumers in Slovenia

into clusters and conducted a cluster analysis to identify the

primary consumption profiles. Wang et al. (2022) investigated the

impact of relationships among household members, community,

and identity on electricity use. Lu et al. (2022) studied electricity

use and household characteristics in a dynamic pricing experiment

in a collective housing area in a Japanese community. Al Khafaf

et al. (2022) studied how residential battery installation leads

to behavioral changes in energy consumption patterns. Tang

et al. (2022) used machine learning to identify the influencing

factors of residential energy consumption patterns from a socio-

economic angle. Tran et al. (2021) studied the end-use of electricity

in 12 households in a purely electric apartment in Japan and

found a significant relationship between household characteristics

and electricity end-use. Andersen et al. (2021) linked smart

meter data from Denmark in 2017 with detailed household

characteristics derived from an administrative register to analyze

the relationship between hourly electricity consumption levels and

these characteristics.

Research also assesses the impact of energy management

strategies [e.g., Time-of-use (TOU) pricing] and economic

incentives on the demand side using smart meter data. Qiu et al.

(2018) evaluated a voluntary business TOU pricing plan in the

Phoenix metropolitan area and found a significant reduction in

energy demand during peak hours. Applying hourly electricity

data, Liang et al. (2021) estimated the electricity savings and

social benefits of energy-efficient AC replacements under different

pricing plans. Liang et al. (2020) also found that TOU consumers

are more likely to have solar panels and estimated that TOU

correlates to the similar impact of incentives provided by tax credits

or solar adoption rebates of $2,070 to10,472. Oliva and MacGill

(2014) examined the financial implications of two net-metering

feed-in-tariffs (net-FiT) policies for residential photovoltaics and

the returns for households. In another study, Oliva et al. (2016)

also investigated the financial advantages of PV in a home, using

actual half-hourly PV generation and electricity data in Australia.

Considering the cost of battery energy storage systems, researchers

study the decision-making of energy storage with smart meter

data (Ratnam et al., 2015; Li et al., 2019; Raillard-Cazanove and

Barbour, 2022). For example, Li et al. (2019) concluded that

energy storage with a battery cost of $0.2/kWh or more was not

economically feasible based on smart meter data and real-time PV

generation in the studied region. Kantor et al. (2015) studied hourly

household data from Ontario, Canada, to analyse the potential for

households to have storage systems by manipulating two financial

policy triggers. A deeper analysis of smart meter data ensures

making evidence-based policy decisions. For example, Liang et al.

(2020) suggested that policymakers could combine TOU and solar

panels when implementing educational programs or providing

financial incentives to consumers. Smart meter data can be also

used to support utility needs, such as load profiling, asset loading,

and revenue protection (e.g., the detection of tampering, theft

or leakage). Canizes et al. (2022) presented a new approach to

enhance consumer demand response participation and flexibility

of renewable energy as an ancillary service are proposed to alleviate

congestion in the low voltage distribution network. Munoz et al.

(2022) presented the design, construction, and validation of a

smart meter as load control that will become part of a household

energy management system. From smart meter data and computer

science, energy theft can be detected and addressed with precision.

Gerasopoulos et al. (2022) reviewed and classified the energy theft

problem in European Union using smart meter data. By imitating

normal consumption patterns and compromising neighborhood

smart meters simultaneously, Cui et al. (2022) presented an

advanced, covert energy theft strategy from machine learning.

Then, they designed a feature extraction scheme that will capture

the relationship between attacks and customers, and developed

a detection model based on deep learning. Tanwar et al. (2022)

proposed an energy theft detection strategy, GrAb, using DL-based

long short-term memory (LSTM) model, which will categorize the

energy losses into technical, energy theft, and normal consumption.

4. Energy poverty

Research in energy poverty has also evolved because of high

frequency smart meter data. Before, energy poverty, the inability of

a household to meet its energy needs, is characterized by univariate

or multivariate approaches (Alkire and Foster, 2011; Deller et al.,

2021; Sy and Mokaddem, 2022; Wang and Lin, 2022), including

four index (Apergis et al., 2022). Rao et al. (2022) evaluated energy

poverty from three aspects: energy availability, energy affordability,

and energy cleanability. Energy availability mainly refers to the

proportion of the population supplied with electricity. Energy

affordability includes per capita GDP, per capita development

index, etc. Energy cleanability includes energy intensity, clean

fuel accessibility and technologies for cooking, fossil fuel energy

consumption, etc. These indicators’ data are mostly obtained

by questionnaires, but the lack of household consumption data

hinders in-depth research on energy poverty.

The use of high frequency data recorded by smart meter

extends the methodology for describing energy poverty, helping

promote more targeted and effective energy poverty policies.

Fine-grained data on electrical consumption allows us to study

the impact of economic and social activities on electricity

consumption and energy poverty (Fezzi and Fanghella, 2020), and

also can be translated into relevant parameters describing electricity

consumption, such as electricity Gini, to study energy inequality.

Matching the hourly smart meter data of each household with

socio-economic data could reshape the understanding of energy

poverty and the implementation of energy poverty assistance. Lou

et al. (2021) used smart meter data from Arizona and Illinois

to show the differential influence of COVID-19 on different

demographic groups. Chen et al. (2022) used electricity Gini

calculated by smart meter data to study the inequality of electricity

consumption and the vulnerability of adaptation. Other studies

utilize smart meter data to detect household disconnections to

portray energy poverty and to study its relationship with natural

factors and household characteristics (Kang and Reiner, 2022b).
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For example, Longden et al. (2022) studied the length and

number of disconnections in remote indigenous communities

in Australia and analyzed its relation to temperature extremes.

Barreca et al. (2022) used disconnection dates from the smart

meter of 300,000 low-income households in California from 2012

to 2017 to study the relationship between temperature and the

risk of disconnection. However, most of the current electricity

disconnection calculated by smart meters focus on the duration

and number of disconnections, without distinguishing the causes

of disconnection in detail. Some of the disconnections that are

not related to energy poverty, such as self-disconnection due to

traveling, are still counted, which interferes with the accuracy of

depicting energy poverty. Therefore, the algorithms using smart

meter data to detect disconnection can be refined more in future

studies, which will help study energy poverty more accurately.

5. Research gaps

We summarize several areas that need to be further improved

in the existing literature. First, most research currently focuses

on developed economies, possibly because smart meters are

widespread in these regions. However, as smart meter adoption

increases, it is also worthwhile to study higher-frequency electricity

usage patterns in underdeveloped areas as the differing consumer

behaviors, as well as institution and market conditions in

developing countries, might imply different electricity usage

patterns compared to those in the developed regions. Second,

for research on household service disruptions using smart meter

data, the existing literature did not clearly distinguish power

outages (a disruption in the supply of electricity to a specific

geographic area) and power disconnections (a disruption in

the supply of electricity to a customer due to non-payment of

bills). As higher frequency and longer duration smart meter

data become available, there is an opportunity to use machine

learning models in conjunction with demographic data to identify

electricity disconnections. Third, there are few empirical studies

that estimate the impact of new technology adoption such as

battery storage and electric vehicle in-home charging, partially

due to the lack of data on such technology adoption. More

studies are needed to empirically evaluate the impact of these

new technologies because the actual consumer behaviors after

adopting these technologies may deviate from those predicted

by engineering models. Lastly, few studies have focused on the

dynamic tracking of electricity consumption behavior and the

exploration of interannual regularities in electricity consumption

behavior. This helps understand the patterns and reasons for

changes in behaviors over time, which provide implications for

better optimization of consumer electricity consumption behaviors.

6. Conclusion

High frequency smart meter data increases the breadth

and depth of the analysis of household energy consumption

patterns. Firstly, a rich amount of studies in recent years applied

high frequency electricity data to explore the overall impact of

COVID-19 on household energy consumption and transition

in pre- and post-pandemic. They focused on examining the

policy interruptions such as the “STAY AT HOME” order in

different states. Other studies, with the help of high frequency

electricity data, could explore the private and social benefits

of household new technology adoption, such as EV, PV, and

battery energy storage systems. With smart meter data, these

new findings provide reliable information and empirical evidence

for residents and communities to better plan for the adoption

of new technologies. Also, these empirical studies and scenario

analyses can help the government optimize interventions and

design more targeted policies to improve the social benefits of

adopting these technologies. Secondly, the data boosts the accuracy

of various energy prediction models with data-driven algorithms

and underpins household and utility companies’ dynamic energy

management. Better forecasting also supports the government in

infrastructure planning and investment. Besides, integrating high-

frequency smart meter data with information about household

characteristics, as well as natural and socio-economic factors, can

facilitate a deeper understanding of their interrelationships. By

doing so, it may be possible to target households with potential

energy poverty and inform the development of energy assistance

policies and programs. This approach can serve as a foundation

for more effective policymaking and program design. Current

federal and state energy assistance programs, such as the Low

Income Home Energy Assistance Program and the Weatherization

Assistance Program, focused on low-income households instead

of energy poverty households. Evolving energy poverty studies

could provide targeted energy vulnerability household assessment

methods, not only based on income.

Moving forward, there are a few important research areas

worth further exploring with the assistance of smart meter data.

First, the pandemic has changed the way people work, such as

working from home and online education. In the post-pandemic

era, what will the new normal bring to energy transition and energy

consumption? Some evidence has shown that residential electricity

demand increased more than before; the peak time for electricity

demand shifted; people could increase EV charging after the

pandemic (Jiang et al., 2021). High prices and volatility caused by

political instability have placed an excessive burden on consumers.

How is this reflected in residents’ electricity consumption patterns

and consumer behavior through smart meter data? These findings

are important for utility companies for better grid operation and

management. For example, utility companies could design a wider

choice of contracts such as the option for long-term prices to avoid

excessive risks. Second, smart meter data, especially household

sub-meter data, can help innovate dynamic pricing contracts.

Designing real-time demand response programs relies on smart

meters and dynamic pricing plans. This is promising for residential

customers to take advantage of price variability with increasing

penetration of technologies such as electric vehicles, solar panels,

and battery storage. Third, with the promotion of smart meters,

policymakers can better answer questions such as how to accurately

define energy poverty, identify households who are in energy

poverty in a timely fashion, and implement targeted assistance.

This could significantly enhance the protection of vulnerable

groups. We also need to inclusively understand and evaluate the
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impact of current energy poverty programs, refine energy poverty

determination and the analysis of influencing factors, and based

on this, prompt policy action to better address energy poverty.

And distinguishing the disconnection caused by energy poverty

helps make policies to protect vulnerable consumers in arrears

from being disconnected. The fourth is to apply smart meters

to indicate broader social behaviors. Electricity smart meters can

evaluate and track populationmigration and housing vacancy rates.

Lastly, a promising research direction is to utilize smart meter data

to study the threat of natural disasters and extreme weather to

vulnerable communities and find ways to reduce negative effects.

Determining the optimal timing for the restoration of services

is an area that warrants further investigation. The electricity

consumption patterns revealed by smart meter data (such as energy

limiting behaviors) combined with factors such as the severity of

weather conditions, poor quality housing, income status, and poor

health conditions will imply different degrees of energy restoration

urgency and the extent to which vulnerable households are affected.

Therefore, further research is needed to identify best practices for

restoring power in a timely and equitable manner using smart

meter data, especially for vulnerable communities.
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