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The landscape of commercial poultry production is changing due to increasing trends

in consumer preference for organic sources of poultry products. This is in part due

to perceptions regarding food safety and environmental issues, along with concerns

for livestock animal welfare. Consequently, alternative poultry production systems such

as small-scale farming and mobile poultry processing units (MPPUs) have achieved

a certain level of popularity. However, these alternative production systems, like

conventional poultry processing systems, face food safety concerns, due to potential

of Campylobacter and Salmonella prevalence. Unlike stationary processing systems,

MPPUs may have limited access to sanitation products as they often attempt to

comply with organic processing regulations. They may also have limited access to a

consistent, high quality water supply whichmay pose additional food safety andmicrobial

contamination concerns. Due to these food safety concerns and potential limitations on

traditional sanitizers, botanicals, organic acids, dry acids, bacteriocins, and phages may

offer alternative potential solutions to ensure poultry product safety. The objective of this

review is to discuss food safety concerns within alternative poultry processing systems,

particularly MPPUs, and describe potential sanitizer strategies.

Keywords: reuse water, mobile poultry-processing unit, organic, poultry processing, bacteriocins, botanicals,

organic acids, bacteriophage

INTRODUCTION

Consumer preferences are leading to changes throughout the poultry industry (Northcutt and
Jones, 2004; Fanatico et al., 2005; Meneses et al., 2017). From 2016 to 2017 the amount of organic
poultry production has increased by 76%, holding a 2016 market share of $750 million (Philips,
2017). This is compared to an increase of the total organic agricultural farming market share which
rose only 23% (Philips, 2017). This is partially influenced by consumers believing the higher cost
of pasture flock chicken at market implies a product higher in quality (Hanning et al., 2010; Van
Loo et al., 2012). Also, chickens typically considered free range and raised outdoors in pasture
flocks are perceived by consumers as being in a more “natural” environment (Fanatico, 1998; Jacob
et al., 2008; Hilimire, 2012). These flocks can be processed for retail using systems such as mobile
poultry processing units (MPPUs) described in research studies (Trimble et al., 2013; O’Bryan et al.,
2017). Use of MPPUs for small scale pasture flocks is potentially advantageous, due to the limited
scale of the operational production of these small farms and potential geographical distance from
large-scale processing facilities (O’Bryan et al., 2014).
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To ensure consumer acceptance of these emerging alternative
production systems, public health, and environmental impacts
must be evaluated (Hanning et al., 2010; Van Loo et al., 2013;
Park et al., 2016). Studies have noted pathogenic Campylobacter
and Salmonella within pasture and free-range flocks at higher
or similar rates than traditional poultry farming (Avrain et al.,
2003; Colles et al., 2008; Hanning et al., 2010). However, like
other organically focused processing facilities, the intervention
strategies for sanitation in theMPPUs aremore limited compared
to traditional poultry processing due to the more restrictive
requirements for sanitizers and their practical usage within
MPPUs (O’Bryan et al., 2014; National Organic Program, 2018).
There are other factors to consider as well. For instance,
water usage, and therefore water-based sanitization, can be
particularly limited inMPPUs as the inherent quality of the water,
including source, pressure, and composition varies from location
to location (United States Department of Agriculture Food Safety
and Inspection Service., 2010). While conventional production
systems may use water extensively with an estimated 21 to 30 L
per bird, and processors often integrate water use within their
Hazard Analysis and Critical Control Points (HACCP) plan,
small-scale and mobile processing facilities are not necessarily
afforded this possibility (Northcutt and Jones, 2004; O’Bryan
et al., 2014; Sanitation Performance Standards Compliance
Guide, 2016; Luján-Rhenals et al., 2017). This water limitation
can be a challenge for ensuring contaminant-free products.
Therefore, the objectives of this review are to explore food
safety concerns within alternative poultry production processing
systems, which can be affected by the source of the water being
utilized and discuss sources of antimicrobials and sanitizers that
may offer potential applications to overcome food safety issues
associated with these systems.

MOBILE POULTRY PROCESSING
SYSTEMS

Due to growing interest in sustainable small-scale poultry
farming there is a need for mobile processing systems due to
the limitations of centralized processing facilities (Ollinger et al.,
2005; Van Loo et al., 2013; O’Bryan et al., 2014). Zezima (2010)
reported a 23% decrease in the number of slaughterhouses from
1992 to 2008 despite the growth of small-scale livestock farmers
in the U.S. To fill this gap in the poultry processing chain, MPPUs
have been used to logistically address geographical limitations of
stationary centralized processing facilities, which can be several
hundred miles away from some small-scale farmers (Ollinger
et al., 2005; O’Bryan et al., 2014). Mobile poultry processing units
can remedy this need and are described in detail in O’Bryan et al.
(2014). Briefly,MPPUs are trailers that can be anywhere from 5 to
11 meters long and generally include kill cones, scalders, pickers,
evisceration tables, and chill tanks. There is typically a trough
for catching blood during the bleed step and after scalding and
picking the birds are eviscerated, rinsed with processing water,
and placed in a chill tank or ice bucket (New Entry Sustainable
Farming Project, 2012; O’Bryan et al., 2014).

There is a wide variation in MPPU designs that are well-
detailed in the New Entry Sustainable Farming Project (2012).
One of the differences includes whether the processing unit is
open (outdoor) or enclosed. While there are practical advantages
to both, from an environmental standpoint, there are concerns
regarding used contaminated processing water overflowing or
splashing onto the ground around open-air systems (New Entry
Sustainable Farming Project, 2012). Further variations include
the decision to capture all solid waste onboard for disposal
offsite, setting up stations on the ground behind the MPPUs
and the equipment on board (New Entry Sustainable Farming
Project, 2012). For instance, scalders can range from a pot of
hot water to motor based rotary scalders (New Entry Sustainable
Farming Project, 2012). For evisceration, a shackle system may
be employed for large throughput MPPUs, while others may opt
for using evisceration tables (New Entry Sustainable Farming
Project, 2012). Each design choice could drastically impact food
safety requirements. For example, while an evisceration tablemay
be more pratical, there is a greater need to sanitize the surface of
the table to prevent contamination compared to if the caracasses
were hanging (Fanatico., 2003a).

Moreover, water usage varies greatly between locations of
these MPPUs. Often water is procured by running a food-grade
lead-free hose directly to each spot where water is needed from
either municipal, well, or ground water sources (New Entry
Sustainable Farming Project, 2012). This means that pressure
can vary depending on the location of the unit and within
the unit itself. Mobile poultry processing units may possess a
booster pump to counteract weak on-site water, but this is not
a requirement for processing (New Entry Sustainable Farming
Project, 2012). Depending on state regulations, MPPUs may
not be required to have backflow devices which prevent used
water from flowing back into the potable water supply (O’Bryan
et al., 2014). Furthermore, it is possible some water is lost
through dissipation into the ground during application around
the unit, which is especially likely for setups that place stations
adjacent to the processing unit (New Entry Sustainable Farming
Project, 2012). When considering these factors, and others such
as manual washing of carcasses and utilizing an ice bucket
instead of a chiller tank with mechanical stirrers, along with the
uniqueness of each MPPU, the assessment of water management
in each system should be independently evaluated compared to
more consistent high-volume water applications associated with
conventional poultry processing systems.

WATER SOURCES AND FOOD SAFETY
CONCERNS IN MOBILE POULTRY
PROCESSING SYSTEMS

An overlying issue for local poultry production and processing
operations is the variation in available water sources and the
potential differences in water quality which could influence food
safety. Information on water sources for MPPUs is limited but,
like large-scale processing facilities, water use during processing
is essential (Micciche et al., 2018a). Unlike large-scale stationary
facilities with access to consistent water treatment facilities, the
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water source(s) for pasture flock production and processing is
much more likely to be variable simply due to their mobile
nature and the geographical differences associated with fresh
water quality (Gwin, 2008). Over 15% of the population of
the United States is not served by public water systems and
instead use private wells, which are exempt from the Safe Water
Drinking Act (Center for Disease Control, 2013). Many of these
wells are dug instead of drilled, which can lead to bacterial
contamination especially if the well is shallow (<10 meters deep)
(Sawyer et al., 2003; Centers for Disease Control Prevention,
2008). The Centers for Disease Control (CDC) recommended
that wells are tested for microbial populations such as coliforms,
along with nitrates (Sawyer et al., 2003; Centers for Disease
Control Prevention, 2008). While Campylobacter and Salmonella
can inhabit the poultry GIT and are typically associated with
food-borne outbreaks, outbreaks of contaminated drinking water
leading to gastroenteritis have also been noted (O’Reilly et al.,
2007; Park et al., 2011). Salmonella particularly has the potential
to survive and express virulence genes in laboratory water
microcosms originating from poultry water as well as fresh water
from rivers and streams (Nutt et al., 2002, 2003).

Ground water sources supply approximately 50% of the
U.S. population of the U.S. but they also can suffer from
contamination by agricultural runoff or industrial waste (Waller,
1994). This effect can be particularly exacerbated if the water
source comes from or is in contact with an open body of water
such as a river or a lake (Waller, 1994; Centers for Disease
Control Prevention, 2008). Gannon et al. (2004) was able to
isolate Salmonella and E. coli O157: H7 from 5% and 17% of
river samples taken across two years from the Little Bow River
(Alberta, Canada). During the summer months, the prevalence
increased to 20 and 30.2% respectively, and it was concluded
these bacterial populations might pose a threat to humans if
this water is used in irrigation or processing of raw vegetables
(Gannon et al., 2004). Certainly, such a risk would also exist
if this type of water source was used for pasture flock poultry
processing. Out of 72 sampling sites on the Little River (South
Georgia, U.S.), 79% were found positive for Salmonella ranging
in population levels anywhere from 2.5 Most Probable Number
(MPN)/L to 36.3 MPN/L (Haley et al., 2009). An additional study
of the region isolated 32 distinct serovars from water sources in
the region across 344 isolates. These represented 15 of the top 20
isolates linked to human cases (Baird-Parker, 1990; Maurer et al.,
2015). In the U.S., 32 incidents of waterborne outbreaks occurred
in drinking water from 2011 to 2012 and numerous other
studies have reported Salmonella and non-Salmonella pathogen
contamination on vegetables due to contaminated irrigation
water (Proctor et al., 2001; Greene et al., 2008; Emch and Waite-
Cusic, 2016).

Other sources of fresh water, such as springs, may require
continuous disinfection to prevent microbial buildup. However,
this may not be the case if the mobile processing facility
is located near a city, where municipal water that is often
chlorinated up to 4 ppm could be used for poultry processing
(United States Environmental Protection Agency, 2013). These
concentrations have been shown to be greatly effective against
typical planktonic water contaminants (Dunlop et al., 2002).

As such, the quality and water pressure may vary significantly
and the type of water (well, ground, or municipal water) could
greatly impact the chemical and microbial composition of these
waters. Furthermore, groundwater and well water may have no
additional sanitizers added, unless the farm has added a personal
sanitation system, and the waters are unlikely monitored for
pathogens or spoilage organisms (Gannon et al., 2004). Because
these waters are utilized on farm they may directly impact the
product safety during processing through MPPUs. Food safety
concerns are increased for MPPU not only due to potential for
pathogen contamination from processing water but also during
the processing of organic and pasture flocks.

FOOD SAFETY CONCERNS WITH
FREE-RANGE AND PASTURE FLOCK
PROCESSING

Mobile poultry processing units service small-scale poultry
farms, which includes organic farming and pasture flocks (Berlin
et al., 2009; O’Bryan et al., 2014). This helps meet a gap in
the industry, but higher pathogen counts within free-range or
pasture flocks have been reported in some studies (Table 1)
(Bailey and Cosby, 2005; Trimble et al., 2013). As stated in Kijlstra
et al. (2009) consumer preferences indicates an improvement in
animal welfare is necessary. However, free-range systems may
create or reintroduce risk and discussion regarding food safety
issues within these systems is also important (Kijlstra et al.,
2009). Data regarding the prevalence of pathogens within pasture
or free-range flocks is limited (Kijlstra et al., 2009; Locatelli
et al., 2017). Pathogen prevalence is a concern however, as
their presence may lead to contamination in processing facilities
and on the finished product. Part of this concern is related to
the somewhat vague nature of poultry husbandry management
strategies for pasture flock operations. The only requirement for
farming to qualtify as free-range is that the chickens have access
to the outdoors (Bailey and Cosby, 2005; Van Loo et al., 2012).
For pasture farming, birds are provided routine access to pasture
land which they may be able to graze for at least one third
of their life (Glatz et al., 2005). The reason pasture flock and
free-range birds could have higher concentrations of foodborne
pathogens is due in part to their potential contact with wild birds,
rodents, and insects and other vectors which may carry these
pathogens (Berg, 2001; Hanning et al., 2010). In 2014, the USDA
reported the prevalence rate of Salmonella amongst conventional
poultry processing to be 3.7% (United States Department
of Agriculture., 2016). However, significantly higher rates of
Salmonella prevalence within pasture flocks have been observed
in some studies (Table 1; Bailey and Cosby, 2005; Esteban et al.,
2008; Melendez et al., 2010). Lower rates of Salmonella in free
range flocks but no other foodborne pathogens were reported in
one pre-harvest study conducted in Spain compared to rates in
non-organic conventionally reared poultry (Esteban et al., 2008).
However, high concentrations of Campylobacter have also been
observed but were considered similar enough to the prevalence in
conventionally reared organic chicken (Cui et al., 2005; Hanning
et al., 2010). In an open-aired housing system Campylobacter
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TABLE 1 | Representative Studies of pathogens found in Free Range and Pasture Flocks.

Sample location Type of flock Pathogen of interest Findings-prevalence Citation

Post-Harvest, Carcass Free-range flock Salmonella 31% free range birds positive Bailey and Cosby, 2005

Organic Free- range flock 60% organic, free range birds

Post-Harvest, Carcass Organic Pasture-Flock Campylobacter 75% Hanning et al., 2010

Pre-Harvest, Feces Free-range Flock Campylobacter

Listeria

monocytogenes

Salmonella

70.6%

26.5%

2.9%

Esteban et al., 2008

Pre-Harvest, Environmental Organic Pasture-Flock Salmonella 25% Melendez et al., 2010

Post-Harvest, Carcass Salmonella 50%

Post-Harvest, Ceca Free-range Flock Campylobacter 80% Avrain et al., 2003

Pre-Harvest, Feces Free-range Flock Campylobacter 90.4% Colles et al., 2008

Pre-Harvest, Soil and Feces Pasture Flocks Listeria 15% Locatelli et al., 2017

Pre-Harvest, Feces Week 1

Pre-Harvest, Feces Week 2

Pre-Harvest, Feces Week 3

Pre-Harvest, Feces Week 4

Pre-Harvest, Feces Week 5

Pre-Harvest, Feces Week 6

Open-Air Housing

(Environmentally Controlled

Housing)

Campylobacter 0.0% (5.3%)

32.0% (57.3%)

93.3% (83.3%)

82.0% (76.7%)

40.0% (50.0%)

37.3% (26.0%)

Tangkham et al., 2016

prevalence was found to be higher at the end of a 6 week study
compared to an environmentally regulated control (Tangkham
et al., 2016). Additionally, pasture flock bird carcasses processed
by MPPUs have been shown in some research studies to exhibit
greater prevalence of Campylobacter but not Salmonella when
compared to conventional slaughter facilities (Trimble et al.,
2013). To confront these potential food safety issues additional
sanitizers should be employed to ensure product safety (Carrasco
et al., 2012). Carrasco et al. (2012) reviewed cross-contamination
events within conventional poultry processing. They assert that
if Salmonella, and presumably other pathogens, are present
within the gastrointestinal tract (GIT) of the bird then an
increase of prevalence on the carcass may be observed. This
can lead to direct cross-contamination within the chiller tank
as many carcasses may come into direct contact with each
other or indirect contact through contaminated water in the
tank (Carrasco et al., 2012). Proper sanitation in the wash
solutions and of the equipment, equipment design and control
of ingredients can help mitigate this risk (Carrasco et al., 2012).
However, pathogens and chemical contaminants may still be
present after processing and proper disposal of the wastewater
must also be considered. Large-scale poultry processing plants
often have their own wastewater treatment facilities, but small-
scale and mobile poultry processing units may have to make do
with limited proper disposal sites (Fanatico., 2003a).

DISPOSAL OF WASTEWATER IN MOBILE
POULTRY PROCESSING SYSTEMS

In addition to the food safety issues associated with water
sources used for processing there are potential food safety and
environmental concerns related to water being discharged post

processing in the form of wastewater. Despite state regulations,
it has been noted that wastewaters from MPPUs may be applied
to gardens as fertilizer or discharged onto private property
according to federal regulations (Fanatico, 2003b; Hoppe, 2010;
O’Bryan et al., 2014). Such practices raise concerns due to
the increased biochemical oxygen demands (BOD) of liquid
poultry wastewater, caused by high blood and fat content, and
can be of considerable concern from a food and water safety
standpoint (Kiepper et al., 2008; Turan, 2009). With chicken
blood containing a BOD of over 90,000 mg/L, and consisting
of 8% of the live broiler weight, poultry processing water is
often contaminated with this pollutant (Kiepper et al., 2008).
While this waste water may be high in nutrient value, with
a very high BOD, there will be limited oxygen available (Kim
et al., 2003). This can lead to anaerobic conditions which will
prevent the breakdown of ammonium produced by nitrification
to nitrates (Turan, 2009). While plants can use ammonia as
a nutrient source, high concentrations can be phytotoxic and
decrease the value of the fertilizer (Turan, 2009). Municipal
treated wastewater, which is frequently deposited into bodies
of fresh water or used in agriculture in arid regions, have a
BOD of<20 mg/L (National Research Council, 2003). Therefore,
before application to gardens it is important to minimize the
BOD and pathogen contamination of MPPU waste water. It
does not appear that there are any formal regulations or
requirements detailing how MPPUs should reduce BOD or
microbial contamination prior to application to gardens or
private land. Furthermore, there are significant environmental
concerns with some of these dumping areas (Pellow, 2004). They
may be near bodies of water used for recreational purposes or
sources of drinking water. Even if the water is not disposed
within close proximity of a pond, leeching into the soil and
groundwater sources raises concerns. For instance, to prevent
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source contamination through water backflow, a gap is left
between the fill container and the hose (Gwin, 2008). However,
it is difficult to provide general recommendations to the practice
of dumping wastewater on the ground as the variety of soils
will determine the leaching capability of contaminated water
(Ding et al., 2010). Wastewater may also be discharged into a
municipal sewage system, but this may be costly as rates are
usually much greater for treating water with high organic matter
(Fanatico., 2003a). In an effort to prevent dumping of wastewater
potentially contaminated with human-borne pathogens, as well
as mitigate food safety issues and deliver a safe product, chemical
disinfection methods may need to be employed.

CONVENTIONAL SANITATION
APPROACHES FOR MICROBIAL
DECONTAMINATION IN MPPUS

State laws considering sanitation requirements for MPPUs are
detailed in and verified through the Niche Meat Processor
Assistance Network (2012). The state regulations regarding
MPPUs for the five states that produce the most commercial
broiler chickens (by individual bird numbers) are detailed
in Table 2. Regulations may vary significantly from state to
state. Some states, such as Arkansas, strictly follow the federal
sanitation requirements (9 CFR 416) but in Iowa, custom-
exempt facilities, which anMPPUmay fall under, have individual
sanitation standard operating procedures (SSOP) (Iowa Meat
and Poultry Inspection legislation, Chapter 76) (Niche Meat
Processor Assistance Network, 2012). In Maine, for facilities
that process <1,000 birds annually, hot water is considered an
appropriate sanitation method and ice may not be re-used, which
differs from the USDA regulations that allow ice reuse (9 CFR
416.2 g).

Chemical Sanitation
To prevent microbial contamination during poultry processing
from any source, chlorine-based sanitizers have been traditionally
used due to cost-effectiveness (Northcutt and Jones, 2004).
Microbial contamination, particularly foodborne pathogens
Salmonella and Campylobacter, can be especially concerning as
there have comprised 23,662 and 2,395 of the confirmed cases of
foodborne illness from 2009 to 2015 respectively (Dewey-Mattia
et al., 2018). Salmonella and Campylobacter, primarily acquired
from poultry, results in an estimated $3.6 and $1.9 billion annual
cost to the U.S. (United States Department of Agriculture., 2017).
Because chlorine and peracetic acid (PAA), can be utilized in
organic processing, these sanitizers have the potential for use in
MPPUs to eliminate these pathogens (7 CFR 205.605) (Northcutt
and Jones, 2004; United States Department of Agriculture Food
Safety and Inspection Service., 2010; O’Bryan et al., 2014).
However, chlorine is considered a class 3 health hazard that
could cause serious temporary or moderate residual injury
on brief exposure (United States Department of Agriculture.,
2015). As a consequence, chlorine gas, a common by-product
of sodium hypochlorite and acid, should never exceed 1 ppm
according to Occupational Safety and Health Administrations

(OSHA) Permissible Exposure Limit (PEL) (Occupational Safety
Health Administration., 2017) to prevent lung damage and
chemical burns (Center for Disease Control, 2013). However
chlorine concentrations are often recommended at 50 to 100 ppm
to eliminate Salmonella contamination on processing surfaces
(Casani et al., 2005; Micciche et al., 2018a). In areas with high
organic matter, such as a chiller tank, chloroform as a disinfection
byproduct can be formed which poses additional worker health
concerns (Tsai et al., 1992; Casani et al., 2005). Furthermore,
many stainless steel alloys are susceptible to corrosion in the
presence of high concentrations of chlorine (>5mg/L), and those
alloys that are resistant aremore costly (Avery et al., 1998). Due to
the risk of chemical spills during transport, tight spaces that exist
on closed MPPUs and the potentially non-corrosion resistant
piping, chlorine may not be best suited for sanitization of these
processing units.

The other traditional chemical sanitizer utilized in
conventional poultry processing that is also used in organic
poultry production is PAA (Bauermeister et al., 2008; Micciche
et al., 2018a; National Organic Program, 2018). The antimicrobial
PAA is a synthetic substance approved for organic livestock
production and has been approved by the Food and Drug
Administration for use up to 2,000 ppm (21 CFR 173.370) (Kim
et al., 2017; Micciche et al., 2018a; National Organic Program,
2018). Studies have demonstrated that its acidifying properties
and membrane oxidation capabilities are effective in inhibiting
Salmonella and Campylobacter contamination of poultry
products (Kitis, 2004; Oyarzabal, 2005; Bauermeister et al., 2008;
Mani-Lopez et al., 2012). In the chiller tank 200 ppm PAA,
along with hydrogen peroxide (H2O2), did not impact sensory
characteristics of poultry products (Bauermeister et al., 2008).
Despite its ability to reduce pathogen concentrations without
negatively impacting product quality, PAA is caustic to exposed
skin and respiratory systems of personnel and can be corrosive
to equipment (Casani et al., 2005; Peracetic acid-MSDS, 2013;
Micciche et al., 2018a). Peracetic acid also degrades to water,
oxygen, and acetic acid (Kitis, 2004; Warburton, 2014).

Physical Treatment Methods
Physical treatment methods such as filtration and ultraviolet light
(UV) have also been suggested for food processing wastewater
treatment. Filtration systems are often favored because they can
remove oils, organic compounds, and macrosolutes (Meneses
et al., 2017). Filtration, namely ultrafiltration, can be utilized to
remove pathogens from processing waters, however a buildup
of microorganisms has been shown to significantly reduce the
flow rate (Lo et al., 1996; James et al., 2000; Bohdziewicz and
Sroka, 2005). Saravia et al. (2005) concluded that only large-
scale processing operators would be able to use filtration in a
cost-efficient manner. With an estimated initial cost of $65,000
and variable energy and filter costs, this system is not currently
practical in an MPPU, with processing units ranging in startup
costs of $35,000 to $90,000 (Saravia et al., 2005; New Entry
Sustainable Farming Project, 2012).

Ultraviolet light (UV) has also been utilized to disinfect food
surfaces and liquid beverages (Koutchma, 2008). On pork skin
Salmonella and Escherichia coli were significantly reduced by
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TABLE 2 | State regulations of Mobile Poultry Processing Units.

State Broiler production

(1,000 head)a
Does the state accept federal

exemptionb
Does the state require a

processing licenseb
Does the state have additional

sanitation requirementsb

Georgia 1,367,100 Yes, but encourages USDA inspection Yes No

Alabama 1,070,100 Yes No Periodic Inspection Required

Arkansas 1,009,400 Yes Yes No

North Carolina 818,700 Yes, but processors may not be under

more than one exemption per year

No Yes, NC legislation (106-549.62)

requires specific sanitation

requirements for the location of

processing

Mississippi 739,400 Yes No Yes

aBased on the 2017 values reported by (United States Department of Agriculture., 2018).
bData acquired from Niche Meat Processor Assistance Network (2012).

UV irradiation (Wong et al., 1998). Listeria monocytogenes and
Salmonella were also reduced on poultry carcasses (Wallner-
Pendleton et al., 1994; Kim et al., 2002). However, in the presence
of UV, meat discoloration is observed due to chemical alterations
of myoglobin to metmyoglobin (Hood, 1980; Bertelsen and
Boegh-Soerensen, 1986; Djenane et al., 2001). After brief
exposure, meat was discolored in the presence of UV light
at 254 nm (Hood, 1980). Furthermore, as determined in the
beverage industry, the presence of organic solutes, such as
those observed in processing waters, drastically reduce the
transmission and therefore performance of UV as a sanitizer and
needs to be coupled with an additional chemical sanitizer to be
effective (Koutchma, 2008; Selma et al., 2008).

While conventional sanitation approaches represent different
levels of effectiveness, practical issues such as cost and quality
impact on pasture flock poultry meat products must be
considered as well. Given the variability in water source quality
and the requirements needed to achieve sufficient food safety
mitigation, other options for microbial decontamination should
be examined. Ideally an optimal sanitizer would be cost-efficient,
safe to handle, signficantly reduce pathogen contamination of
product and processing water without damaging the product,
and have the ability to generate water of sufficient quality that
could potentially be reused in processing. To acomplish these
ideals several sanitizers may need to be employed in the form
of a multiple hurdle approach (Mendoza et al., 2004; Ricke
et al., 2005). In the following sections potential alternatives
to conventional methodologies for decontamination of pasture
flock poultry processing water and meat product safety are
discussed.

ALTERNATIVE ACIDIFIERS USED IN
POULTRY PRODUCTION

Organic acids include short chain fatty acids (SCFAs) that
contain two to five carbon chains such as propionic acid, butyric
acid, and lactic acid (Cherrington et al., 1991; Ricke, 2003). In
addition to SCFAs, organic acids also entail medium chain fatty
acids (MCFAs) which are 6 to 12 carbons in length, and long
chain fatty acids (LCFAs ≥ 13C) (Beermann et al., 2003). Short
chain fatty acids are produced in the gastrointestinal tract (GIT)

of chickens and humans and have been extensively studied as
potential poultry GIT modifiers for pre-harvest intervention as
animal feed additives (Cherrington et al., 1991; Ricke, 2003; Van
Immerseel et al., 2006; Dittoe et al., 2018a). These fatty acids
have also been utilized as sanitizers, although less information
is available from the literature. They are on the list of allowed
substances for organic livestock production, presumably due
to the possibility of their being generated through microbial
fermentation (21 CFR 205.605) (National Organic Program,
2018). Organic acids, in general, are all GRAS certified except
mandelic acid (Tamblyn and Conner, 1997; Center for Food
Safety Applied Nutrition, 2018).

Most of the research conducted with organic acid applications
has involved conventionally processed poultry. When Salmonella
was attached to the skin, concentrations up to and exceeding 4%
of SCFAs were required to generate 2 log reductions (Tamblyn
and Conner, 1997). However, acetic acid concentrations of 0.6%
utilized in an air injection system reduced Salmonella incidence
to 8% on broiler carcasses compared to 96% in the control
(Dickens and Whittemore, 1994). In scalder water the D52 value
of Salmonella Typhimurium decreased from 29.05min to 3.56
and 1.30min when 0.1 and 0.2% of acetic acid was added
respectively (Okrend et al., 1986). In Izat et al., (1989), 1% acetic
acid did not reduce the incidence of Salmonella on carcasses
vs. the control. Compared to controls, lactic acid significantly
reduced the presence of experimentally inoculated Salmonella on
chicken carcasses in the chiller to below the level of detection on
12/12 samples (0.5% lactic acid) and 11/12 samples (1.0% lactic
acid) (Izat et al., 1989). While this indicates lactic acid has the
potential to be used in poultry processing, employment at these
concentrations led to discoloration in the abdominal region of
the carcass (Woolthuis and Smulders, 1985; Izat et al., 1989).
Lactic acid treatment does have merit in non-poultry processing.
For example, on beef carcasses, 2% lactic and acetic acid also
reduced E. coli and Salmonella significantly compared to the
control (Hardin et al., 1995). Lactic acid also demonstrated a
significantly more pronounced antimicrobial activity against E.
coli compared to acetic acid across multiple different cuts of the
beef carcass (Hardin et al., 1995).

Other organic acids such as medium chain fatty acids
(MCFAs) and long chain fatty acids (LCFAs) also possess
antimicrobial properties (Kabara et al., 1972; Greenway and
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Dyke, 1979). Linoleic acid was shown to not only be inhibitory
to Staphylococcus aureus, but its inhibitory effects were more
pronounced on penicillin resistance strains (Greenway andDyke,
1979). This implies the plasmid conferring resistance to penicillin
alters the cellular membrane, allowing for linolenic acid to be
more effective in cellular membrane disruption (Greenway and
Dyke, 1979). This likely occurred in the uptake of the acid into the
membrane of cells causing changes in permeability (Greenway
and Dyke, 1979). Lauric and myristic acids inhibit Clostridium
perfringens at concentrations of 0.1 to 0.2 mg/ml (Skrivanová
et al., 2006). However, the lipopolysaccharide layer of Gram-
negative bacteria has been shown to elicit resistance against
MCFAs and LCFAs by preventing the fatty acids from crossing
the cell membrane (Sheu and Freese, 1973; Cherrington et al.,
1991; Dittoe et al., 2018a). Citric acid, another organic acid, has
been shown to inhibit C. perfringens at a concentration of 4
mg/ml and has antimicrobial properties against Gram-negative
bacteria (Skrivanová et al., 2006; Over et al., 2009; DoleŽalová
et al., 2010). In broth culture, 5-log reductions of both E. coli
and S. Typhimurium were observed after 24 h incubation with
0.75% of citric acid (Over et al., 2009). After 24 h, using a chicken
meat model system, 3% citric acid was effective in reducing
E. coli and S. Typhimurium when vacuum infused into the meat
(Over et al., 2009). DoleŽalová et al. (2010) also tested 10%
concentrations of citric acid on chilled chicken products and
observed an extension of shelf life and reduction in microbial
populations, but noted this concentration generates unacceptable
sensory characteristics. These results demonstrate that there is
potential to utilize organic acids as sanitizers in the poultry
processing operations, but further research is needed to ensure
product quality and efficacy across a spectrum of pathogens.

Inorganic acids also offer potential as acidifiers. For example,
sodium bisulfate has been evaluated for use in poultry processing.
The dry solid acid is advantageous for transport and is GRAS
certified with use in a wide range of food and beverages (21 CFR
582.1095) (Calvo et al., 2010; Kassem et al., 2012; United States
Department of Agriculture., 2015; Jones-Hamilton., 2018).
Sodium bisulfate is also considered natural according to the
International Association of Natural Product Producers (IANPP)
and the FDA (Kim et al., 2018). Through degradation into sulfate,
hydrogen, and sodium, SBS acidifies water without adding
potentially toxic compounds to the product or producing off-
flavors (Sun et al., 2008). It has also been considered a safer choice
by the Environmental Protection Agency (EPA) for use as an
antimicrobial and processing aid (United States Environmental
Protection Agency, 2018). The sanitizing effects of SBS have
been demonstrated against Salmonella and Listeria. On apples,
60 ppm PAA was supplemented with 1% SBS to reduce Listeria
innocua counts over 5 logs for up to seven days of storage (Kim
et al., 2018). This same effect was observed up to 14 days when
3% SBS was utilized (Kim et al., 2018). Using a spray of 10%
SBS, Yabin et al. (1997) reduced S. Typhimurium on chicken
carcasses by 2.4-log CFU. A 2-log CFU reduction of artificially
inoculated Salmonella Enteritidis on poultry drumsticks was
observed using 1% SBS (Dittoe et al., 2018b) and Micciche et al.
(2018b) reported complete reductions of 8 log CFU/100mL of
inoculated Salmonella Typhimurium in poultry processing reuse
water microcosms.

AmplonTM is another inorganic acidifier that has potential
use in poultry processing (Zoetis, 2018). Consisting of inorganic
buffering salts and H2SO4, AmplonTMis USDA approved as an
antimicrobial and processing aid (FSIS 7120.1) and is GRAS (Kim
et al., 2017; Center for Food Safety Applied Nutrition, 2018;
Zoetis, 2018). Scott et al. (2015) inoculated chicken wings with
Salmonella and found that a 20s dip with AmplonTMadjusted to a
pH of 1.1 reduced Salmonella concentrations by 1.6 log CFU/mL
after a 24 h storage time. This reduction was not statistically
different from a 20s dip with 700 ppm PAA and was shown
to outperform cetylpyridinium chloride as an antimicrobial
against Salmonella on the carcass (Scott et al., 2015). Using
AmplonTMor PAA in a pilot poultry processing plant yielded
detectable reductions of Campylobacter both in the post-chiller
and as a spray (Kim et al., 2017). However, PAA was able to
reduce aerobic plate counts in this study while no reductions were
found with AmplonTM(Kim et al., 2017). Based on microbiome
analysis, the AmplonTMspray but not the post-chiller dip was
found to significantly reduce levels of Proteobacteria but not
Firmicutes (Kim et al., 2017). While further research must be
performed, inorganic acids, along with other acidifiers, either
alone or combined seem promising as alternative sanitizers that
may be utilized in mobile poultry processing units. However,
research needs to be conducted specifically on their application
in pasture flock poultry processing operations.

BACTERIOCINS

Bacteriocins are produced by microorganisms to inhibit similar
bacterial strains and often function by using specific cell-surface
receptors (Bruno and Montville, 1993; Sirsat et al., 2009). While
one bacteriocin (Nisin) is currently considered GRAS, and the
others are generally considered natural due to their historical
use since ancient times, they are not currently approved for use
in organic livestock production (Cleveland et al., 2001; Joerger,
2003; National Organic Program, 2018; United States Food Drug
Administration, 2018). Bacteriocins generated by Gram-positive
organisms are typically lower in molecular weight than those
generated by Gram-negative organisms (Sirsat et al., 2009; Yang
et al., 2014). Bacteriocins are heterogeneous and can consist of
short peptide chains (<50 amino acids) to peptides possessing
molecular weights up to 90,000 Daltons (Joerger, 2003).

Colicins, produced by E. coli, were the first extensively studied
group of bacteriocins and were documented in 1925 by Gratia
(Gratia, 1925; Cascales et al., 2007; Sirsat et al., 2009). Their
mode of inhibition functions by preventing cell wall synthesis or
ribonuclease activity (Cleveland et al., 2001; Cascales et al., 2007).
Colicin, and bacteriocins in general, have a very narrow range of
effectiveness (Cascales et al., 2007). For instance, S. Paratyphi B
strains were found to be sensitive to colicin B by Fredericq (1953),
unlike S. Typhimurium which was resistant (Fredericq, 1953;
Atkinson, 1970; Graham and Stocker, 1977). However, further
studies have found that it is not colicin B that S. Paratyphi B is
sensitive to but rather colicin M which is produced in tandem
with colicin B (Graham and Stocker, 1977). This narrow range
can be advantageous as it can preserve microbial populations that
are not harmful or pathogenic and may in fact be potentially
beneficial such as starter cultures in fermented meat products,
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but still target specific pathogens. If poultry meats derived from
pasture flock birds are to be further processed into some type of
fermented final retail product, such as in the form of sausages,
this selectivity could be advantageous for ensuring food safety
from pathogens such as Listeria monocytogenes which can occur
in poultry including pasture flock raised birds (Milillo et al., 2012;
Ricke et al., 2013; Rothrock Jr et al., 2017).

Nisin is one bacteriocin that exhibits a broader range (Campos
et al., 2011). It, like many other bacteriocins, is produced by
lactic acid bacteria (LAB) (Joerger, 2003; Campos et al., 2006).
Nisin is generally regarded as safe (GRAS) and it is not on the
prohibited list of non-synthetic substances in organic livestock
production (7 CFR 205.604). However, it is not included on the
list of allowed substances for use in processing of foods labeled
as “organic” because it is considered “synthetic” as it can be
genetically engineered and produced using methodologies that
do not comply with organic standards (United States Department
of Agriculture., 1995; National Organic Program, 2018). Nisin
is produced by the Gram-positive bacteria Lactobacillus lactis
and has been proven to be effective against the Gram-positive
pathogen Listeria monocytogenes on cheese, sausage, and fish
(Davies et al., 1997; Nykänen et al., 2000; Geornaras et al.,
2006; Abdollahzadeh et al., 2014). Nisin disrupts the cytoplasmic
membrane and destroys the membrane electrostatic potential
causing cell death (Ruhr and Sahl, 1985). Geornaras et al. (2006),
applied 5000 international units of nisin/mL to entire smoked
sausages by immersion for 2min before vacuum packing and
storing at 10◦C for 48 days. Reductions of L. monocytogenes were
observed at levels of 2 to 3 log CFU/cm2, which were originally
inoculated with 3 to 4 log CFU/cm2. In turkey processing,
2.5 mg/L of nisin reduced Listeria populations by 1 log after
addition to scalder water (Mahadeo and Tatini, 1994). A 3-log
reduction of Salmonella was observed on the 5.12 cm2 pieces of
chicken skin after 72 h when treated with 100µg/mL nisin in
combination with 5.0mM EDTA and 0.5% Tween 80 (Natrajan
and Sheldon, 2000). However, these supplemental chemicals
appeared to be necessary to achieve significant log reductions
of Gram-negative pathogens with nisin (Stevens et al., 1991;
Sirsat et al., 2009). A 3.2 to 6.9 log reduction of Salmonella was
observed when treated with 50 mg/mL of nisin and 20 mg/ml of
EDTA. However, <1 log reductions were observed when treated
with the same concentration of nisin without supplementation
of EDTA, which suggests a potential synergistic application
(Stevens et al., 1991). The antimicrobial activity of nisin appears
to be neutralized when in the presence of 25mM magnesium
or 100mM sodium or potassium (Elliason and Tatini, 1999).
Therefore, the supplementation of the chelating agent, EDTA,
may be necessary to allow for antimicrobial activity (Elliason and
Tatini, 1999).

Other bacteriocins have been identified for Salmonella and
Campylobacter inhibition. Lactobacillus plantarum KLDS1.0391
produces Plantaricin MG which has been shown to damage the
cytoplasmic membrane of Salmonella by utilizing the proton
motive force of the microorganism’s ion gradient (Gong et al.,
2010a). This bacteriocin also produced a zone of inhibition of
16mm in agar well diffusion test using S. Typhimurium and a
96.8% reduction using a concentration of 0.5mg bacteriocin/mL

(Gong et al., 2010b). Bacteriocins generated from Bacillus
circulans and Paenibacillus polymyxa reduced Campylobacter
populations below 2 log CFU/g of chicken cecal counts compared
to 6 log CFU populations/g of cecal contents in the control birds
(Cole et al., 2006). Furthermore, the bacteriocin produced by
Paenibacillus polymyxa was shown to reduce several different
strains of Campylobacter in chicken feces below 2 log CFU/g
compared to 6 to 8 log in the control flock (Stern et al., 2005).
Neither of these has currently been approved as GRAS (FDA,
2018).

However, there are also several disadvantages and limitations
with bacteriocins. Nisin is currently the only GRAS certified
bacteriocin, and as with most bacteriocins, the spectrum of
activity is narrow (Riley and Wertz, 2002). Furthermore, there
is a high cost associated with commercial production as these
peptides must be acquired from cultured bacteria and purified
without damaging the structure (Bradshaw, 2003). This is
coupled with the low yield that traditional purification methods
provide and loss of activity due to chemical and physical changes
that can occur at various processing steps (Jung et al., 1992;
Schillinger et al., 1996; Carolissen-Mackay et al., 1997; Davidson
et al., 2005; Fahim et al., 2016). Currently the cost likely
renders them unsuitable for cost-effective use within MPPUs.
Additionally, bacteriocin activity declines over time due to
degradation of the compound in food systems as interactions
with lipids, proteins, and proteolytic enzymes can rapidly destroy
the molecule, requiring constant application of the sanitizer
(Bradshaw, 2003; Mahapatra et al., 2005). These disadvantages
could greatly impact their effectiveness in water applications
during processing for small-scale production systems such as
MPPUs when organic loads increase over time. Some of these
limitations may be overcome with further development and
refinement of bacteriocin properties.

One promising avenue is the use of Nano formulations
to encapsulate the bacteriocins (Fahim et al., 2016). While
Nano formulations are synthetic, their use in encapsulation
of natural product may be approved for application in
pasture flock production. However, this must be verified.
By integrating approved nanotechnology properties with
bacteriocins, protection from degradation and effective delivery
can be achieved (Farokhzad and Langer, 2009). For instance,
the antimicrobial activity of BLS P40, produced by Bacillus
licheniformis, was maintained for 30 days compared to 20
days for the non-encapsulated version (Teixeira et al., 2008).
Nisin loaded onto chitosan-based nanoparticles also had four
times lower the minimum inhibitory concentration than that
of free nisin (Zohri et al., 2010). However, as Fahim et al.
(2016) documented, this technique needs to be optimized as
several studies found that the non-encapsulated bacteriocin
was comparable or even more effective than the encapsulated
version.

BOTANICALS

Another option for sources of sanitizers for water application
during alternative poultry processing are the various compounds
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originating from a wide range of plants. Plant-derived products,
or botanicals, have been utilized in food for centuries for flavor
enhancement and extension of shelf life (Billing and Sherman,
1998; Smid and Gorris, 1999; Cutter, 2000; Draughon, 2004;
Ricke et al., 2005). In 2012, over 1,600 botanicals were marketed
as dietary supplements for human consumption and many
are organic and generally regarded as safe by the FDA (Food
Processing Staff., 2012; Diaz-Sanchez et al., 2015; Center for
Food Safety Applied Nutrition, 2018; National Organic Program,
2018). The four major classifications of botanicals are: (1) herbs,
such as flowering plants, (2) botanicals, which are parts of a
plant such as the bark and roots, (3) essential oils, which are
volatile plant compounds, and (4) oleoresins, such as balsam
(Windisch and Kroismayr, 2006; Bajpai et al., 2012). Essential
oils, including eugenol, thymol, and cinnamaldehyde, are some
of the more frequently examined series of compounds for
screening and characterization of their antimicrobial properties.
Essential oils are slightly soluble in water, usually have a perceived
pleasant odor or taste, and can be extracted using distillation and
maceration techniques (Kelkar et al., 2006; Shannon et al., 2011;
Calo et al., 2015).

These compounds have been explored for both preharvest
and postharvest applications in poultry. In their comprehensive
review, Diaz-Sanchez et al. (2015) discussed the application of
botanicals to poultry feed and subsequent antimicrobial activities
upon administration to birds and thus will not be discussed
in the current review. Less information is available regarding
plant-based derivative use in poultry processing. Chouliara
et al. (2007) reported a 1 to 5 log CFU/g reductions of
aerobic microbial populations using oregano oil and modified
atmosphere packaging (MAP) for the extension of shelf-life of
chicken breast. This study demonstrated that the introduction
of oregano oil drastically reduced microbial populations. For
instance, after nine days MAP retained 6.1 log CFU/g of aerobic
microorganisms, but when 0.1 and 1% oregano oil were added,
these populations were reduced to 5.77 and 2.75, respectively.
The shelf life storage was also extended by approximately 3
days when the 0.1% oregano oil was combined with any of
the packaging conditions. Plate assays also demonstrated that
1 and 2% concentrations of both oregano and rosemary oil
were effective in inhibiting Staphylococcus aureus and Salmonella
Typhimurium, and rosemary was also effective against Listeria
monocytogenes and Escherichia coliO157:H7 (Morsy et al., 2014).
(Friedman et al., 2002) also found over 27 essential oils and
12 other botanical compounds exhibiting some level of efficacy
against Campylobacter jejuni, S. Typhimurium, L. monocytogenes
and E. coli.

Non-poultry water sanitizer applications have also been
documented that may offer potential approaches for alternative
poultry processing water-based amendments. For example, in
the produce industry, carrots were found to have similar
microbial populations when treated with chlorine, oregano, or
a combination of oregano and thyme (Gutierrez et al., 2009).
Significant alterations of sensory characteristics using these
compounds were also not observed (Gutierrez et al., 2009).
Additionally, a 2-log reduction of E. coli was detected on lettuce
and baby carrots when a 0.1% thymine oil wash was applied

(Singh et al., 2002). Further reductions were also observed when
additional washes containing ozone or chlorine dioxide were
applied (Singh et al., 2002). Essential oils such as oregano oil
can be emulsified and nanoemulsions have been shown even
at low concentrations (0.05%) to decrease L. monocytogenes, S.
Typhimurium, and E. coli O157:H7 on lettuce by 3.44, 2.31, and
3.05 log CFU/g, respectively (Bhargava et al., 2015). These effects
improved to 3.57, 3.26, and 3.35 log CFU/g, respectively, when
the concentration doubled (Bhargava et al., 2015).

While the use of botanicals for poultry production is still in its
initial phases, the potential to use organic and natural products
to reduce pathogenic microorganisms in poultry processing
is certainly of noted interest (Ernst, 2015). However, one
significant drawback is the potential for off-odors or flavors
that can be generated when using sufficient quantities of these
botanicals (Calo et al., 2015; Ernst, 2015). For instance, despite
its antimicrobial properties, 1% oregano oil used in packaging
renders the product inedible (Chouliara et al., 2007). However,
this disadvantage may be a benefit for the alternative poultry
processing industry under certain circumstances where unique
branding strategies are being pursued for gaining marketing
competiveness. For instance, thyme oil was found to improve
the sensory characteristics of organically aqua-cultured seabass
(Kostaki et al., 2009). With many botanicals sold on the organic
and natural market, they have the potential to be marketed
as natural antimicrobials (Calo et al., 2015; Diaz-Sanchez
et al., 2015; Ernst, 2015). Alterations of flavor would not be
attractive for large-scale conventional poultry processing where
meat product sensory consistency and uniformity is considered
critical. However, provided the flavor is palatable, small-scale
facilities that process only a few hundred to a few thousands of
birds a year have the opportunity tomarket their product as being
perceived unique by promoting the botanical generated flavor as
a readily identifiable local product. In short, the ability to generate
unique flavors and other sensory properties offer economic
attractiveness as brand identification for the development of
niche markets but would depend on consumer receptiveness to
such products.

BACTERIOPHAGE ADMINISTRATION

The use of bacteriophages for treatment both in the medical
field and in reducing foodborne pathogens has been controversial
(Loc-Carrillo and Abedon, 2011). Phages or bacteriophages are
viruses that have a protein coat and enclose a nucleic acid (Shors,
2001). They can exist as virulent or lytic phages, which replicate
within the bacterial host and lyse the cell, or temperate phages
which insert themselves, as a prophage, into the host genome
(Shors, 2001). When the host cell is stressed these prophages
can become active, initiate replication, and ultimately lead to
cell death (Shors, 2001). The therapeutic potential for phages is
believed to be initially considered in 1917 by d’Herelle when he
observed lytic phages attacking Bacillus spp. (Summers, 1999;
Greer, 2005). This began the idea of phage therapy, which
involves the addition of bacteriophages that specifically target
species of bacteria.
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Phages have been found to be ubiquitous in commercial
poultry products, and therefore they represent a potential
indigenous intervention that can be used in the alternative
poultry industry without introducing a foreign entity into
the product, which in turn may alleviate consumer concerns
(Atterbury et al., 2003a; Greer, 2005). There is a precedent for
this perception based on studies in live poultry production. Phage
therapy has been used as an alternative to antibiotics in broiler
chickens to reduce E. coli, Salmonella, and Campylobacter as
well as improve body weight (Higgins et al., 2002; Goode et al.,
2003; Huff et al., 2005). These studies supported the consensus
opinion that phage treatment represented a promising alternative
to reducing pathogens in broilers as well as improve overall bird
growth. A further attraction would be their administration to live
pasture flock birds prior to entering processing at an MPPU to
reduce pathogen loads before evisceration.

Certainly, there is potential for more direct bacteriophage
application against carcass foodborne pathogen contamination
in the processing of pasture flock birds as well. However, much
of the research thus far has been conducted with conventionally
produced poultry products. Several studies have investigated
the use of phages to eliminate bacteria on the chicken carcass
post-harvest (Greer, 2005). After 24 h storage at 4◦C, <1 log
CFU reductions were observed in Campylobacter counts on
artificially inoculated chicken skin that was inoculated with
Bacteriophage φ2 107 PFU/mL (Atterbury et al., 2003b). (Goode
et al., 2003), reported similar results. By using C. jejuni typing
phage 12673 at 109 to 1010 CFU/mL, they detected a 2 log
CFU reduction of Campylobacter when 104 CFU were inoculated
onto broiler carcass skin (Goode et al., 2003). No S. Enteritidis
was recovered by Goode et al. (2003) when 1 log CFU/cm2 of
S. Enteritidis were inoculated onto the broiler skin, and either
P22 or 29C phage was used. Furthermore, using chicken breast
as a medium, Spricigo et al. (2013) observed 2.2 and 0.9 log
CFU/g reductions of S. Typhimurium and S. Enteritidis using
phage therapy. The Salmonella inoculated chicken breasts were
immersed in a solution for 5min containing 109 PFU/mL of three
bacteriophages (UAB_Phi 20, UAB_Phi78, and UAB_Phi87) with
a multiplicity of infection, or ratio of phage to bacteria, of
1,000 (Spricigo et al., 2013). Similar studies will be needed to
elucidate if and where phage therapy would best be implemented
in alternative poultry processing operations.

There may also be a precedent for further development for
alternative poultry retail products as phages have been shown
to be effective in other non-poultry retail foods. In 2006,
the Food and Drug Administration approved ListShieldTM, a
bacteriophage cocktail for the reduction of Listeria on meat and
poultry products during processing (Sulakvelidze, 2011; Ricke
et al., 2012). Spricigo et al. (2013), observed reductions of S.
Typhimurium and S. Enteritidis on pig skin, <4 and 2 log
CFU/cm2, lettuce, 3.9 and 2.2 log CFU/g, and eggs, 0.9 log
CFU/cm2 (Pao et al., 2004). In the agricultural field phages
applied to mustard and broccoli seeds suppressed Salmonella
growth by 1.37 and 1.50 log CFU. In the dairy industry, the use
of phages significantly decreased the numbers of S. Enteritidis
(Modi et al., 2001). When inoculated with 104 CFU/mL, which
is unlikely to be encountered under the typical conditions of

commercial cheese production, the control group retained 103

CFU/g after 99 days of storage compared to the 108 PFU/mL SJ2
phage inoculated cheese which retained only 50 CFU/g (Modi
et al., 2001; Greer, 2005). Furthermore, Abuladze et al., 2008,
E. coli O157:H7 reported that contaminated hard surfaces (glass
coverslips and gypsum boards) that were treated with different
levels (1010, 109, and 108 PFU/ml) of phage for 5min resulted in
reductions of 85 to 100%. This was performed by inoculating 1
× 107 CFU/mL to the hard surface and, after drying, 100 ul of
the cocktail of ECML-4, ECML-117, and ECML-134 was applied
(Abuladze et al., 2008). This effect may apply to stainless-steel
surfaces of poultry processing equipment. Abuladze et al. (2008)
also tested tomato, broccoli, ground beef, and spinach samples
using the cocktail above and E. coli O157:H7 and reported
reductions ranging from 94 to 100%.

Indeed, there are several advantages to utilizing
bacteriophages, especially in alternative poultry processing
water where there is limited availability of antimicrobials. Due
to their low toxicity, specific host range, and the lack of toxic by-
products, large quantities of phages could be added to processing
waters with less risk to workers than traditional sanitizers
(Kutter et al., 2010; Loc-Carrillo and Abedon, 2011). For these
reasons phages also have comparatively lower environmental
impacts compared to chemical sanitizers and antibiotics (Ding
and He, 2010). Due to their size, they can also be used in
combination with filtration systems allowing them to pass
through and continue their administration in a reuse water
system. This concept is further promoted by the idea of only
having to apply the phage treatment once, as the phages can
replicate provided their target host-pathogen remains present
(Capparelli et al., 2010). Water, especially a chiller tank is an
ideal vehicle for pathogen-phage interaction, as it allows the
phage to have maximum contact between it and the target
pathogen due to the diffusion of the phage throughout the water
(Sutherland et al., 2004). However, perhaps one of the most
potentially beneficial properties of phages is their ability to clear
biofilms (Sutherland et al., 2004). While the diversity of biofilms
and phages is extensive, it is known that some phages possess
polysaccharases or polysaccharide lyases which can degrade
capsules and exo-polysaccharide matrices (Hughes et al., 1998;
Kimura and Itoh, 2003).

Furthermore, many biofilms have water filled channels which
allow phages easy access to bacterial cells (Wood et al., 2000).
Doolittle et al. (1996) demonstrated that T4 phage infected E.
coli host cells would readily attach to an E. coli-based biofilm
and the phage would spread throughout the biofilm independent
of the exo-mucosal layer. This effect can be beneficial for the
food industry as traditional sanitizers are less efficacious against
biofilms than planktonic bacteria (Scher et al., 2005; Deborde and
Von Gunten, 2008).

While further research is needed to elucidate the value of
phage therapy in alternative poultry processing waters, there is
potential for their use as alternative sanitizers. However, there are
some drawbacks. For instance, isolation of phages can be difficult
to achieve and depending on the approach, costly (Clokie and
Kropinski, 2009). This cost can occur when characterizing the
phage as morphology, protein profiles, mechanism of infection,
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and genome-characterization beyond full genome sequencing
is often necessary (Krylov, 2001; Clokie and Kropinski, 2009).
Furthermore, due to their narrow host range, a cocktail of
multiple phages in high concentrations would be needed to
effectively eliminate the pathogens of interest from the food
product (Goodridge, 2010; Kutateladze and Adamia, 2010; Ricke
et al., 2012).

Moreover, of the literature currently available, most papers
dealing with phages in food borne settings have only investigated
artificial inocula of bacteria and usually at bacterial population
levels (3 to 5 log CFU) that are unlikely to occur in the industry
(Greer, 1988, 2005). Also, despite the highly selective nature
of phages and the inability to directly impact eukaryotic cells,
consumers could equate bacteriophages to human pathogen
associated viruses (Shors, 2001; Sklar and Joerger, 2001; Greer,
2005). However as Górski et al. (2018) points out, phage therapy
has been recently gaining more attention in public media outlets,
which potentially, in time, will reduce any public resistance to its
use in food or indeed medical settings. These factors mean that
further investigation and awareness of phage therapy is needed
before its full potential in the food industry can be implemented.

CONCLUSIONS

Mobile Poultry Processing Units should meet food quality
standards and ensure a product that is safe for human
consumption. However, these units face other challenges that
are not as prominent in conventional poultry systems. Water
use in units MPPUs varies in quality and may introduce
microorganisms, and even pathogens, to the processing system
as many of the water sources are not regulated and may not be
routinely monitored for microbial contamination. Furthermore,
there is some evidence that organic and pasture flock poultry can
have higher counts of foodborne pathogens, such as Salmonella
and Campylobacter. In conventional systems chlorine, UV,
filtration, and or peracetic acid may be utilized either as primary
means of sanitation or generation of processing reuse water.
However, the physical treatment systems involving UV or
filtration are not easily scalable and thus cost-inefficient for small
scale MPPUs. Conventional chemical sanitizers are not always
user friendly when applied by inexperienced personnel and could
produce by-products that can be a concern for worker safety. A
potential solution is to consider alternative more user-friendly
sanitizers that could be added to their local sources of water
during processing that would be acceptable for the classification
of their retail product as a naturally produced and processedmeat
source.

There are several potential candidates, and all have advantages
and drawbacks. Certain chemicals may be applicable, but
regulatory constraints and practical application must be
considered. Bacteriocins and bacteriophages are biological in
origin but may not always be acceptable from a regulatory
standpoint. In some cases, they may be too species or even
strain-specific for broad spectrum use to reduce general bacterial
loads. Organic acids offer a much more broad-spectrum efficacy
but may be caustic for routine use in certain applications.
Botanicals appear to be promising, but considerably more
chemical characterization and mechanism research will need
to be done before these can be commercially marketed for
wide-scale application. Also, the sensory impact will need to
be considered before implementation of specific botanical
compounds.

Due to the limitations inherent with any antimicrobial
along with the challenges unique to pasture flock processing
designing overall sanitation strategies that offer some flexibility
to meet individual geographical location requirements may
be necessary in the form of a multiple hurdle application.
For example, it is anticipated that realistic multiple hurdle
applications involving combinations of different antimicrobials
will need to be explored to optimize efficacy by taking
advantage of different mechanistic properties of different
antimicrobials. It may be that a broad-spectrum acidifier in
larger quantities could be employed in the water source for
reducing general bacterial loads prior to use in the MPPU
followed by applying lesser quantities of more microbial target
specific sanitizers in the various MPPU processing stages.
This, in turn, would hopefully generate alternative processing
aids that will allow MPPUs to meet quality standards and
ensure consumer safety but be both economical and practical.
A risk assessment detailing how effective these interventions
would be at each processing step within small processing
units, would generate vital information to ensure consumer
safety.
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