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Increasing public awareness of foodborne illnesses, factory farming, and the ecological

footprint of the meat industry, has generated the need for animal-free meat alternatives. In

the last decade, scientists have begun to leverage the knowledge and tools accumulated

in the fields of stem cells and tissue engineering toward the development of cell-based

meat (i.e., clean meat). In tissue engineering, the physical and biochemical features of

the native tissue can be mimicked; cells and biomaterials are integrated under suitable

culture conditions to form mature tissues. More specifically, in skeletal muscle tissue

engineering, a plurality of cell types can be co-cultured on a 3D scaffold to generate

muscle fibers, blood vessels and a dense extracellular matrix (ECM). This review focuses

on tissue engineering of skeletal muscle and the adjustments needed for clean meat

development. We discuss the skeletal muscle structure and composition, and elaborate

on cell types from farm animals that have the potential to recapitulate the muscle ECM,

blood vessels, muscle fibers and fat deposits. We also review relevant biomaterials,

primarily for fabricating scaffolds that can mimic the intramuscular connective tissues, as

well as gene expression studies on the biological pathways that influence meat quality.

Keywords: tissue engineering, skeletal muscle, clean meat, cell-based meat, cultured meat, cellular agriculture,

cell culture

INTRODUCTION

Why Clean Meat?
Clean meat, meat produced from cells cultures, is a prominent alternative for traditional meat,
derived from live animals (Post, 2012; Slade, 2018). This approach gained increasing attention
in public opinion, popular media, animal welfare organizations, the scientific community, and
among investors (Goodwin and Shoulders, 2013; Schneider, 2013; Verbeke et al., 2015; Stephens
et al., 2018b), particularly after the production of the first clean meat prototype (Post, 2014).
Animal-based food products are considered inefficient, as animals consume large amounts of
food throughout their lives, of which up to 97% of the calories are lost for processes regarding
body maintenance and the production of non-edible tissues (Schmidinger, 2012; Flachowsky et al.,
2018; Gaydhane et al., 2018; Sarlio, 2018). When compared to other industries, animal-based
products have a larger environmental footprint compared to plant-based products in terms of soil
and water demand, and greenhouse gas (GHG) emission, with the beef industry imparting the
heaviest environmental impact (Peters et al., 2007; Tuomisto and de Mattos, 2011; Eshel et al.,
2014; Scarborough et al., 2014). According to the report of the Food and Agriculture Organization
of the United Nations, the livestock sector is responsible for 14.5% of GHG emissions, and taps 30%
of Earth’s terrain and 8% of the global freshwater (Steinfeld et al., 2006; Gerber et al., 2013). With
an expected doubling of the global demand for meat by 2050, traditional meat production systems
cannot be considered sustainable.
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Intensive factory farming and poor animal welfare conditions
are common causes of foodborne illnesses such as swine and
avian influenza (Greger, 2007). They also contribute to the
spreading of E.coli, salmonella and campylobacter, which can
be found in meat (Anomaly, 2015). Producing meat in a sterile
and controlled environment could prevent these problems and
improve food safety. In addition, 70–80% of the antibiotics used
in the United States are given to farm animals (Kümmerer,
2003; Elliott, 2015). Overuse of antibiotics induces selection of
antimicrobial resistant (AMR) strains, a major human health
concern (Avesar et al., 2017; Chen et al., 2017; Tang et al.,
2017). Colistin AMR originated in 2015 in pig farms (Reardon,
2017) and was later found in chicken and pig in Vietnam and
South America (Nguyen et al., 2016; Monte et al., 2017). It is
estimated that by 2050, AMR will be responsible for more deaths
than cancer (O’Neill, 2014) and to cost $2.9 trillion annually
to the OECD countries (Friedman et al., 2016). Although
the magnitude of antibiotics use in clean meat production
still requires investigation, it has the potential to be lower
than the current use in the meat industry due to the sterile
culture conditions and the possible use of antibiotic-free media
(Specht et al., 2018).

Ethical concerns regarding factory farms (Verbeke and
Viaene, 2000; Schröder and McEachern, 2004; Herzog, 2016)
and the slaughter of animals is another drive behind clean
meat research (Hopkins and Dacey, 2008; van der Weele and
Driessen, 2013; Sharma et al., 2015). The public and the scientific
community have come to respect farm animals as sentient beings,
with physical and psychological needs (Hughes, 1995; Dawkins,
2006; Duncan, 2006; Webster, 2006; Panskeep and Others, 2012).
The cost of raising a chicken humanely (Broom, 1991; Broom
and Fraser, 2015), similar to that of a pet (Council, 2010), is 2–
3 orders of magnitude higher than the cost of products made
from that animal (United States Department of Agriculture,
2018). In other words, animal-based meat must compromise on
animal interests, due to economic constraints (Webster, 2001;
Lusk and Norwood, 2011). Since the overwhelming majority
of domesticated animals are raised for meat, pushing for the
obsoletism of animal-based meat is essential from an altruistic
stance (Green, 2008; Elder and Fischer, 2017; Broad, 2018).

From a culinary perspective, fine-tuning of meat components
is difficult in live animals, and is achieved by selecting specific
breeds and following complex feeding protocols (Smith et al.,
2009). In clean meat, cells are cultured in-vitro in a customizable
and controlled platform. The simple and precise manipulation
of the cell microenvironment could be used to fine-tune meat

Abbreviations: AMR, Antimicrobial resistance; BAM, Bio-artificial muscle; BSC,

Bovine satellite cells; C/EBP, CCAAT/enhancer-binding protein; EC, Endothelial

cells; ECM, Extracellular matrix; ESC, Embryonic stem cells; FABP4, Fatty acid

binding protein 4; FAP, Fibro/adipogenic precursors; FAS, Fatty acid synthase; FGF,

Fibroblast growth factor; G3P, Glycerol-3-phosphate; GAG, Glycosaminoglycans;

GF, Growth factor; GHG, Greenhouse gas; HA, Hyaluronic acid; hb-EGF,

Heparin-binding EGF-like growth factor; IGF-1, Insulin-like growth factor 1;

IMF, Intramuscular fat; iPSC, Induced pluripotent stem cells; LCFA, Long-chain

fatty acids; LIF, Leukemia inhibitory factor; MSC, Mesenchymal stem cells; PEG,

Polyethylene glycol; PG, Proteoglycan; PLGA, Poly(lactic-co-glycolic acid); PLLA,

Polylactic acid; PPARG, Peroxisome proliferator-activated receptor γ ; SC, Satellite

cells; SVC, Stromal vascular cells; TGF-β, Transforming growth factor beta.

traits. In addition, combinations of cells from different species
may give rise to new and unprecedented flavors. This simple, fast
and intuitive meat manipulation platform can facilitate a new
R&D field of customizable meat products.

A New Objective
An engineered tissue is traditionally optimized for biological
functionality, improved post-transplantation viability,
biodegradability and negligible immune response (Lanza
et al., 2011). To reach these goals, quantifiable protocols are
developed, and a rigorous series of experiments are performed
to assess the effect of specific factors on the overall quality of
the tissue. Optimally, experiments are conducted using factorial
designs, in which both main factors and their interactions are
measured (Chen et al., 2011). A similar approach is required for
clean meat optimization, with focus on flavor (taste and aroma),
texture, cost, nutritional value and food safety (Miller et al., 2001;
Edelman et al., 2005; Post and van der Weele, 2014; Listrat et al.,
2016; Gasteratos and Sherman, 2018).

Flavor assessments are a key challenge in clean meat
research. Meat contains thousands of flavor molecules (Pearson
and Dutson, 1994; Shahidi, 2012), including amino acids,
hemoproteins (Nollet, 2012), sulfur and carbonyl compounds
(Calkins and Hodgen, 2007), lipids (Shahidi, 2002; Wood et al.,
2004), short peptides (Claeys et al., 2004), and additional flavor
volatiles (Shahidi et al., 1986; Gorraiz et al., 2002). An additional
hurdle stems from the small size of lab samples; standard
protocols used to analyze meat quality are designed to test
samples ranging from whole animals (Mitchell, 2007) to tens
of grams (Anderson, 2007), which are at least three orders of
magnitude larger than experimental lab samples. Light diffraction
is a fast, inexpensive and non-invasive meat analysis method
(Prieto et al., 2009; Damez and Clerjon, 2013). This technology
is based on a reference database of light diffraction patterns from
meat samples with known composition. The correlation between
a measured sample and the reference database is used to estimate
the sample’s composition with high accuracy. Scaling down this
technology is feasible (Jordan et al., 2009) and could accelerate
clean meat research. However, light diffraction only provides an
estimate of main components, such as fat and collagen content
in the sample. Molecular profiling of lab samples can be obtained
by chromatographic separation, followed by mass spectrometry
identification and quantification (Shahidi, 2012; Trivedi et al.,
2016). A reference database of molecular profiles obtained from
meat samples could be beneficial to interpret and standardize
experimental results (D’Alessandro et al., 2012; Trivedi et al.,
2016; Gilbert-López et al., 2017). While molecular profiling
may be slower and more expensive, it provides quantification
of flavor molecules, and is more suited for developing novel
tissues, which composition may often be outside the scope of the
reference database.

Texture measurements are simpler, and can easily predict
sensory attributes (Luckett et al., 2014). They can be performed
using existing devices (Kramer and Szczesniak, 1973; Pearson
and Dutson, 1994), but may require adaptation of current
protocols or instruments to assess smaller samples in broader
suboptimal ranges. Factors that can influence clean meat texture
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include muscle fiber maturation (Koohmaraie et al., 2002)
and alignment, extracellular matrix (ECM) protein content
and alignment, intramuscular fat (IMF) content (Kramer and
Szczesniak, 1973), and scaffold material and structure. Static
strain can be used to increase myotube and ECM alignment
with the added value of improved muscle maturation (De Deyne,
2000; Edelman et al., 2005; Post, 2012; Heher et al., 2015);
however, the scalability of the process may be difficult. Scalable
alignment can be induced via scaffold design, by generating
aligned fibrous scaffolds or by micropatterning (Choi et al., 2008;
Aviss et al., 2010; Rodriguez and Larkin, 2018).

Cost is probably the key hurdle, as clean meat borrows tools
from the expensive and heavily regulated field of regenerative
medicine, and applies them in the food industry, which has one
of the lowest margins of profit. The main expenditures of clean
meat production are biomaterials and their purity assurance,
human resources, facilities andmeasurement tools. Specht (2019)
estimates that 55–95% of the production cost could be attributed
to media use, and that 99% of the media cost can be attributed
to Growth factors. Her review discusses different scenarios
for cost reduction. While growth factors (GFs) are costly
biomaterials, due to protein purification (Van der Gucht, 2018),
their contribution to tissue engineering is invaluable. Replacing
purified GFs with GF-producing cells is possible, however may
complicate the regulation of GF concentration, as experimental
parameters can influence GF expression levels in these cells.
Two alternative approaches are to produce these molecule at
a lower grade of purification (or without purification), or to
generate inexpensive analogs of these molecules. Customized
bioreactors need to be developed and optimized for clean meat
production, to improve the efficiency of media use, and recycle
main media components (Moritz et al., 2015; Specht et al., 2018;
Stephens et al., 2018a).

CELLS

Meat, or skeletal muscle, contains about 90% muscle fibers, 10%
connective and fat tissues (Listrat et al., 2016) and 0.3% blood
(Warriss and Rhodes, 1977; Nollet, 2012). Skeletal muscle tissues,
aimed for tissue regeneration, can be generated in 3D scaffolds
by co-culturing muscle cells, endothelial cells (ECs) and ECM-
producing supporting cells (Figure 1) (Edelman et al., 2005;
Levenberg et al., 2005; Shandalov et al., 2014; Gholobova et al.,
2015; Egozi et al., 2016), but lack fat and blood components. In
order to recapitulate the fat composition of the native skeletal
muscle tissue, IMF should be generated from adipocytes. As for
blood components, with the exception of fish, the majority of
the hemoproteins in meat stem from myoglobin (on average
1.5% of the protein content of meat) found inside muscle
fibers (Listrat et al., 2016). This means that the production of
“clean blood” might be of low concern, especially since blood
cultures are not established yet for medical purposes. Neural
cells also play a crucial regulatory role in the skeletal muscle,
providing electrical signals that influence tissue homeostasis and
maturation (Langelaan et al., 2011; Post and Hocquette, 2017).
While innervation may be difficult to attain in a scalable and

cost-effective manner, electrical signals may mimic some of the
neural cells essential roles (Langelaan et al., 2010). While current
methods are considered wasteful for clean meat production, it
may be advantageous to explore more energy efficient means
of artificial electrical stimulations. As for the cell source, the
following sections will emphasize the use of bovine cells, as
developing clean beef could be considered as a pragmatic
approach for the initial stages of clean meat production, since
(1) the overwhelming majority of tissue engineering research is
done in mammalian cells, (2) beef is considered an expensive
meat, (3) beef has a larger ecological impact compared to other
conventional meats (Tuomisto and de Mattos, 2011), and (4)
biopsies from larger animals are less invasive. Biomarkers of
major cell types found in bovine muscle have been previously
summarized (Du et al., 2015; Guo et al., 2015). Additional cell
types found in the muscle, their roles and biomarkers were
summarized by Tedesco et al. (2017).

Stem Cells
Stem cells are a population of progenitor cells, which can
proliferate to increase the cell population, and differentiate to
develop a specialized functionality. Stem cell research is an
established niche in animal science, focused on myogenic and
adipogenic stem cells, crucial for clean meat research (Dodson
et al., 2015). A recent report described a first stable culture
of bovine embryonic stem cells (ESC) (Bogliotti et al., 2018;
Yuan, 2018), which could potentially differentiate into all cell
types required to recapitulate skeletal muscle development (Du
et al., 2010a; Thorsteinsdóttir et al., 2011; Yan et al., 2013;
Chal and Pourquié, 2017), and form a cell bank with an
unaltered and stable karyotype, eliminating further dependence
on animals for cell isolation. Mesenchymal stem cells (MSC) are
another promising candidate, due to their abundance and roles
during muscle development (Du et al., 2010b), and their ability
to differentiate into myocytes, adipocytes, fibroblasts and ECs
(Oswald et al., 2004; Bosnakovski et al., 2005; Huang et al., 2012;
Yan et al., 2013; Jana et al., 2016; Ramírez-Espinosa et al., 2016;
Okamura et al., 2018). During muscle development, the majority
of MSCs commit to the myogenic lineage, generating muscle
fibers and a pool of satellite cells. Other MSCs commit to the
fibro/adipogenic lineages, generating a pool of fibro/adipogenic
progenitor cells (FAPs) (Du et al., 2013). MSCs undergo
senescence in-vitro (Bonab et al., 2006; Wagner et al., 2008),
however, under appropriate culture conditions, certain MSC
subtypes can expand and maintain their differentiation potential
(King and Miller, 2007; Nekanti et al., 2010; Cardoso et al., 2012;
Gottipamula et al., 2016). Induced pluripotent stem cells (iPSC)
can also be considered as a cell source for clean meat production.
iPSC are simple to produce and are extensively studied, making
them valuable for lowering the cost and research needed to
develop stable stem cell lines. They also simplify the cell isolation,
allowing to harvest ubiquitous matured cell types (Keeney et al.,
2012). However, they require gene editing, suffer from low yields,
and may not precisely mimic the behavior primary stem cells
(Roberts et al., 2015; Specht et al., 2018). As such, it is possible
they would complicate clean meat regulatory procedure and
consumer acceptance.
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FIGURE 1 | Cells in the skeletal muscle niche. Blue arrows signify maturation processes. Black, green, and red text next to the arrows signify key biomarkers,

inhibitors and enhancers of the process, respectively. Circular green arrows signify cell proliferation.

Satellite Cells and Myogenesis
Satellite cells (SCs) are adult stem cells, which can be found in
skeletal muscle tissues, and take part in muscle repair (Péault
et al., 2007; Cosgrove et al., 2009; Yin et al., 2013). Methods
for working with SCs extracted from different species have
been summarized by Burton et al. (2000). The paper provides
a table of references sorted by species, and a comparison of
SC characteristics, response to GFs, and isolation, growth, and
differentiation protocols. Bovine satellite cells (BSCs) were used
to create the first clean meat prototype (Post, 2014), and their
growth in bioreactors for clean meat production was recently
assessed (Verbruggen et al., 2018). BSCs can be isolated from
bovine carcasses (Dodson et al., 1987; Frey et al., 1995; Muroya
et al., 2001; Kamanga-Sollo et al., 2004, 2008; Ding et al., 2018),
biopsies (Frey et al., 1995) or fetuses (Bridge et al., 1998; Will
et al., 2015). The muscle tissue is ground and enzymatically
digested using pronase, collagenase II or trypsin. The BSC
fraction is then enriched by a preplating method and can be
further purified by FACS of cells positive for CD56 and CD29,
and negative for CD45 and CD31 (Ding et al., 2018).

SC proliferation and myogenesis can be regulated by the
judicious use of GFs (Figure 1). Addition of LIF (Vitello et al.,
2004; Nicola and Babon, 2015), TGF-β (Vitello et al., 2004;
Kollias and McDermott, 2008) and FGF (Allen and Boxhorn,
1989; Pawlikowski et al., 2017) to the BSC media in 2D

cultures, has been shown to inhibit spontaneous differentiation,
crucial for optimal cell expansion. Addition of LIF (Austin
and Burgess, 1991; Nicola and Babon, 2015), heparin-binding
epidermal growth factor (hb-EGF) (Thornton et al., 2015), TGF-
β (Vitello et al., 2004) and insulin-like growth factor 1 (IGF-
1) (Allen and Boxhorn, 1989; Vitello et al., 2004) can improve
BSC proliferation. In addition to its central role in muscle
development, TGF-β contributes to mature skeletal muscle mass,
and is a key regulator of intramuscular fibrogenesis (Kollias
and McDermott, 2008; Miao et al., 2016). In addition, it was
shown that TGF-β1 suppressed myogenesis in 2D cultures, while
enhancing myogenesis in 3D cultures, rendering it a valuable
regulator of in-vitro muscle tissue development (Krieger et al.,
2018). Myogenesis can be induced by substrate stiffness (Levy-
Mishali et al., 2009; Syverud et al., 2014), IGFs and myogenic
miRNA (Vitello et al., 2004; Yin et al., 2013), or by inhibition
of anti-myogenic GFs produced by nearby cells (Christov et al.,
2007; Yin et al., 2013). Inexpensive analogs for key GFs, or of
additional molecules that can influence their metabolic pathways
[e.g., myogenic miRNA (Ge et al., 2011)], may benefit clean meat
research (Ding et al., 2018).

A detailed list of SC biomarkers, including the lineage
markers, Pax7 and Myf5, was summarized by Yin et al.
(2013). These and additional biomarkers can be used to track
SC differentiation into myotubes (Zammit et al., 2006). The

Frontiers in Sustainable Food Systems | www.frontiersin.org 4 June 2019 | Volume 3 | Article 46

https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org
https://www.frontiersin.org/journals/sustainable-food-systems#articles


Ben-Arye and Levenberg Tissue Engineering for Clean Meat Production

predominant test to quantify SC differentiation is the fusion
index (FI), which is defined as the percentage of nuclei inside
the myotubes from the total number of nuclei in the sample.
FI can be determined by assessing (1) myotube-specific nuclear
staining (myogenin), (2) colocalization of non-specific nuclear
staining (e.g., DAPI) and antibodies that stain proteins abundant
in myotubes (e.g., MYH and desmin), or (3) inexpensive
colorimetric stainings (Veliça and Bunce, 2011). Methods 1 and
2 can also be used to quantify 3D samples, and method 2 also be
used to visualize myotube morphology. It should be noted that
themain role of BSCs is inmuscle repair, and that they are formed
in later stages of muscle development (Du et al., 2015). BSCs
also undergo senescence in-vitro, which might be minimized by
recapitulating the SC niche (Boonen et al., 2009; Cosgrove et al.,
2009; Yin et al., 2013; Roberts et al., 2015; Jana et al., 2016; Cai
et al., 2017; Ding et al., 2018).

Fibroblasts and ECM
The ECM, i.e., the acellular part of the tissue that surrounds the
cells, is a key component of all tissues. The skeletal muscle ECM is
responsible for tissue elasticity, generates adhesion points for cell
adherence, provides cells with a 3D environment and regulates
cell proliferation, differentiation, migration, morphology and
alignment via biochemical and biophysical cues (Tse and Engler,
2011; Hausman, 2012; Chaturvedi et al., 2015; Fuoco et al., 2016;
Grzelkowska-Kowalczyk, 2016). The ECM composition and roles
are not constant, but change during the muscle development
in a process called fibrogenesis, in parallel to myogenesis and
adipogenesis (Thorsteinsdóttir et al., 2011; Yan et al., 2013;
Miao et al., 2016). In addition to its biological roles, the ECM
contains nutrients such as proteins (mostly collagens), and
glycosaminoglycans [mostly hyaluronic acid (HA)], and affects
the tissue texture and the overall quality of the meat (Purslow,
2005; Guo et al., 2015; Duffy et al., 2016; Listrat et al., 2016;
Huang et al., 2017).

The ECM is mainly composed of collagen fibers and
proteoglycan (PG) matrix, but also includes glycosaminoglycans
(GAGs) and fibrous proteins such as elastin, fibronectin, and
laminin (Thorsteinsdóttir et al., 2011; Listrat et al., 2016). The
muscle ECM has three ascending layers of connective tissues,
in term of size and wall thickness (Figure 2): the endomysium
that fills the gaps between the muscle fibers, the perimysium
(Passerieux et al., 2006) that compartmentalize bundles of muscle
fibers (fascicles), and the epimysium that envelops the entire
muscle (Purslow, 2010; Brazile et al., 2017). The perimysium
varies in size and can be divided into primary and secondary
perimysium. The primary perimysial layers are smaller, contain
fewer muscle fibers and have thinner walls compared to the
secondary perimysium (54.6–133µm wall thickness in bovine)
(Purslow, 2010). While all layers are mainly composed of
collagens I and III, their relative ratios differ, and other collagen
types can be found interspersed. Collagen IV is an essential
component of the basement membrane and plays a role in
cell-matrix interactions and SC niche (Gillies and Lieber, 2011;
Cai et al., 2017). Age-related changes include an increase in
collagen concentration, and changes in collagen type distribution
and crosslinking (Kragstrup et al., 2011). A thorough review

of the different species of collagens, their biological role and
tissue distribution was published by Kadler et al. (2007). To
a certain extent, mimicking the epimysium, perimysium and
endomysium morphology and mechanical properties can be
achieved by careful scaffold design. The basement membrane
may be difficult to recapitulate prior to cell seeding, as it is
tailored to the myotube structure.

Although most cell types contribute to ECM development
(Guo et al., 2015), a supporting cell type whose main role is
to secrete ECM, is essential. The majority of skeletal muscle
tissue ECM is deposited and remodeled by fibroblasts (Figure 1)
(Kjaer, 2004; Gillies and Lieber, 2011; Mackey et al., 2017).
Fibroblast andmyofibroblasts (Baum andDuffy, 2011) are simple
to isolate and grow, and have a short cell cycle. They were shown
to promote vascularization and muscle development in tissue
engineered constructs (Shandalov et al., 2014; Ciccone, 2015;
Mackey et al., 2017; Krieger et al., 2018), and are considered to
have an important role in clean meat production (Pandurangan
and Kim, 2015). However, isolated fibroblasts are usually not very
well defined, and are often comprised of several subpopulations
with few specific markers (Chapman et al., 2016). In addition,
although fibroblast short cell cycle may be beneficial for scale-up
processes, it may be unfavorable for co-culture, as their relative
concentration is difficult to control. Alternatively, it is possible to
produce the ECM separately, lyophilize it into a powder (Gilbert
et al., 2005), which can then be used to generate scaffolds or
hydrogels for cell seeding. However, such reconstituted ECMs
will be homogenous, which may fail to fill the functional,
geometrical and compartmental roles of the ECM (Gillies and
Lieber, 2011; Huang et al., 2017).

ECs and Vascularization
Muscle tissues are rich in microvascular networks (Figure 2)
(Jain et al., 2005; Guo et al., 2015). These networks are not only
essential to surpass diffusion limitation (Griffith et al., 2005),
which may be improved in-vitro using perfusion bioreactors
(Rouwkema and Khademhosseini, 2016), but are also associated
with the SC niche (Christov et al., 2007) and regulate skeletal
muscle tissue regeneration and maturation through angiocrine
signaling (Figure 1) (Christov et al., 2007; Butler et al., 2010;
Koffler et al., 2011; Rafii et al., 2016). Microvascular networks
also play a key role in generating the conditions required for
adipogenesis (Varzaneh et al., 1994; Cao, 2007, 2013; Du et al.,
2015), and impact the maturation of nearby ECM-secreting cells
(Ciccone, 2015; Landau et al., 2018), which further regulate
muscle regeneration (Forbes and Rosenthal, 2014). ECs can form
these networks under appropriate culture conditions (Lovett
et al., 2009), such as co-culture with mural cells (Sims, 1986;
Allt and Lawrenson, 2001; Bergers and Song, 2005; von Tell
et al., 2006; Rouwkema et al., 2008), fibroblasts (Levenberg et al.,
2005; Kunz-Schughart et al., 2006) or MSCs (Landau et al., 2017;
Perry et al., 2017b; Freiman et al., 2018). Guo et al. (2015)
provide evidence of the role of bovine muscle ECs in ECM
synthesis and remodeling, and discuss their regulatory effect on
myoblasts, SCs and fibro/adipogenic precursors (FAPs). Recent
studies showed that bovine stromal vascular cells (SVC) can be
used to promote both angiogenesis and adipogenesis in-vitro
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FIGURE 2 | Diagram of skeletal muscle tissue, including a magnification of a muscle fascicle.

(Ma et al., 2018), which can be explained by the heterogeneity
of the SVC (Wittmann et al., 2015), meaning cell sorting is
essential for scale-up. While the most characterized bovine ECs
are the bovine aortic endothelial cells (Jaffe, 2012), their biological
role may not be optimal for muscle regeneration. Bovine
skeletal muscle microvascular endothelial cells are commercially
available, and were shown to generate vascular networks in
3D constructs in-vitro with lumen-like structures (Yang et al.,
2001). While vascularization has an important role in tissue
development, culturedmeat of lower cell pluralitymay be simpler
to produce without them, as blood vessels may not be an essential
component of meat taste or texture.

Adipocytes and IMF
IMF accounts for about 80% of the muscle fat, while the
other 20% is found inside myofibers; its amount and fatty acid
composition have a crucial role in meat quality, affecting meat
juiciness, flavor, tenderness and nutritional value (Wood et al.,
2008; Hocquette et al., 2010; Hudson et al., 2015). IMF is created
via adipogenesis, in which stem cells differentiate into adipocytes,
and lipogenesis, in which triglycerides are accumulated inside
the adipocytes (Figure 1). Adipogenesis commences with MSCs
or fibrogenic/adipogenic progenitor (FAP) cells commitment to
the adipogenic lineage, which is regulated by Zfp423 (Huang
et al., 2012). The resulting preadipocytes can further differentiate
into adipocytes in a process regulated by transcription factors
from the CCAAT/enhancer-binding protein (C/EBP) family,

and by the receptor they induce, i.e., peroxisome proliferator-
activated receptor gamma (PPARG) (Huang et al., 2012; Du
et al., 2015). Adipogenesis can be induced using a cocktail of
adipogenic-inducing agents, anti-diabetic drugs (Troglitazone
and Rosiglitazone), or commercial adipogenic differentiation
kits (Grant et al., 2008; Lengi and Corl, 2010; Cardoso et al.,
2012; Huang et al., 2012; Ma et al., 2018). However, the
use of such chemicals may render the tissue unsuitable for
consumption. Mehta et al. (2019) provides a detail protocol
for bovine adipogenesis aimed for clean meat production. This
publication includes a detail isolation and culture protocol of
the SVC, and an efficient fatty acid-mediated protocols for
adipogenesis in 2D plates and 3D alginate-based scaffolds.
SC and fibroblast differentiation into adipocytes was also
demonstrated in-vitro (Hocquette et al., 2010). In the lipogenesis
metabolic pathway, triglycerides are synthesized from long-
chain fatty acids (LCFAs) and glycerol-3-phosphate (G3P)
(Hocquette et al., 2010). Functional proteins, such as fatty
acid synthase (FAS), fatty acid binding protein 4 (FABP4)
and PPARG, promote adipocyte maturation and may be
used as lipogenesis markers (Moseti et al., 2016). Simple
protocols for tracking adipogenesis and lipogenesis include,
quantitative colorimetric oil red O staining (Kraus et al., 2016),
fluorometric Nile red staining, FABP4 immunolabeling (Eom
et al., 2018), qPCR of PPARG and FABP4, flow cytometry,
or one of many commercially available adipogenesis assay kits
(Aldridge et al., 2013).
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Generating IMF in-vitro may require intensive research, as
current adipose tissue engineering research focuses on fat outside
the muscle (Hong et al., 2005; Gomillion and Burg, 2006;
Brett et al., 2017) and uses human and mouse models, which
protocols are inefficient for ruminant animals (Laliotis et al.,
2010; Ma et al., 2018). Research on adipose tissue vascularization
using matured ECs and MSCs, revealed a synergetic effect
between angiogenesis and adipogenesis (Kang et al., 2009;
Wittmann et al., 2015; Volz et al., 2016). The edible HA, a
major component of the ECM (Qazi et al., 2015), has been
used to generate scaffolds that induced adipogenesis in-vitro
(Halbleib et al., 2003). Hausman (2012) discussed the effect
of the ECM on adipogenesis in farm animals, suggesting that
laminin, collagen V and VI are key ECM components in
intramuscular adipogenesis.

Research on IMF is extensive in farm animals, such as bovine
(Harper and Pethick, 2004; Takenouchi et al., 2004; Taniguchi
et al., 2008; Du et al., 2010b; Romao et al., 2011; Cardoso et al.,
2012; Huang et al., 2012; Hudson et al., 2015; Guan et al., 2017;
Ma et al., 2018), porcine (Hausman and Poulos, 2004; Zhang
et al., 2014; Chen et al., 2018; Won et al., 2018), sheep (Dodson
et al., 1997; Tong et al., 2008; Zhou et al., 2017; Pan et al., 2018)
and chicken (Qiu et al., 2017; Wang et al., 2017a; Cui et al.,
2018; Fu et al., 2018), and have brought to the development
of a wealth of isolation, growth, characterization and
differentiation protocols.

BIOMATERIALS AND SCAFFOLDING

Biopolymers, growth factors, enzymes, and numerous analytical
molecules, are extensively used for cell culture and tissue
engineering. For clean meat production, these molecules should
be derived from inexpensive, animal-free sources. Transgenic
plants can be used for cost-effective (Xu et al., 2016), mass
production of biomaterials such as collagen (Shoseyov et al.,
2013; Shoseyov and Stein, 2017), elastin (Conley et al.,
2009), trypsin (Woodard et al., 2003), growth factors and
antibodies (Sack et al., 2015; Snell et al., 2015; Xu et al.,
2016). Werkmeister and Ramshaw (2012) surveyed recombinant
proteins used as tissue engineering scaffolds, including their
source, cost and scalability. Wang et al. (2017b) discuss
a range of platforms for recombinant collagen production
and their challenges, including collagen I and III. The
paper claims that current platforms are costly, and generate
collagen without the correct post-translational modifications,
limiting their biological functionality. However, the human
collagen I produced in plants by the Shoseyov lab, proved
sufficiently similar to native collagen by the author, and
was flagged as an inexpensive, scalable production system.
In addition, the paper argues that in-vitro cell-free synthesis
might be an inexpensive, highly controlled platform for
protein synthesis.

In order to promote tissue development, the plurality of
cell types need to be co-cultured inside a 3D scaffold that
mimics their natural environment. The scaffold can be composed
of either a hydrogel, a macroporous, sponge-like biomaterial

or their combination. While the macroporous biomaterial
can provide the macrostructure and mechanical support, the
hydrogel can provide cells an elastic 3D microenvironment. To
some extent, scaffolds should recapitulate the different layers
of the skeletal muscle connective tissue. The macroporous
biomaterial should recapitulate the mechanical properties of
the perimysium, the hardened connective tissue that surrounds
the fascicles, while the hydrogel inside the pores should mimic
the endomysium.

Polymers that degrade during the tissue culture period
can be applied, however, disposal methods of the degraded
molecule or their continued presence must be taken into
account. The degradation kinetics of such polymers can be
tuned using enzymes or by incorporating weak points inside the
polymer structure (Keeney et al., 2012). Traditionally, scaffolds
are designed to degrade into safe biomolecules which can be
assimilated into the patient’s metabolic pathways. For clean
meat purposes, scaffolds should be composed of biopolymers
designed to degrade into molecules with favorable organoleptic
properties. This could be achieved by judicious polymer
selection, monomer chemistry, and chemical modification of
the scaffold. Shit and Shah (2014) provide a thorough list of
edible polymers, including hydrocolloids, polypeptides, lipids,
synthetic polymers and composite polymers. The paper discusses
their molecular functionality, composition and mechanical
properties, but does not elaborate on their possible applications
in tissue engineering. Comprehensive reviews of the role
of biomaterials in human skeletal muscle tissue engineering
have been published, with emphasis on polymers used for
scaffold fabrication (Keeney et al., 2012; Qazi et al., 2015).
The concepts behind their fabrication and design, with the
proper selection of flavor-enhancing biomaterials, can be
used to generate novel hydrogels and scaffolds for clean
meat purposes.

Scaffolds
Macroporous scaffolds are sponge-like, 3D biomaterials that
define the dimensions of the tissue and provide it with
mechanical support. These scaffolds constitute a large portion
of the final product, which would be commonly defined as a
hybrid cell-based meat. As such, the development of novel meat-
like macroporous scaffolds, with consideration to their flavor,
nutritional value and texture is required. For example, depending
on their synthesis procedure, algae-based scaffolds may contain
flavor molecules that could be beneficial for clean fish but
undesirable for clean beef production (Sarkar and Choudhury,
2017; Grahl et al., 2018).

Macroporous scaffolds vary mainly in their architecture,
which is governed by fabrication techniques (Loh and
Choong, 2013), and in their molecular composition. They
are often generated from edible materials, such as proteins,
polysaccharides, native ECM and decellularized plants (Daamen
et al., 2003; Loh and Choong, 2013; Courtenay et al., 2018;
Hickey et al., 2018). Plant protein-based scaffolds are an
appealing candidate for clean meat, due to their nutritional
value, low cost and cytocompatibility (Reddy and Yang, 2011;
Chien et al., 2013; Huang et al., 2018). Scaffold architecture
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can be defined by pore size distribution, porosity, and pore
interconnectivity. Higher scaffold porosity can improve nutrient
flow, ECM deposition, cell viability, cell adhesion and cell
proliferation (Zeltinger et al., 2001). Rational combination
of the scaffold architecture, composition, coating and filler
hydrogel, gives rise to mechanical cues that regulate cell
behavior. Scaffolds can be further arranged using anisotropic
architecture, anisotropic materials or surface patterning, which
can improve both scaffold texture and myotube alignment and
maturation (Woerdeman et al., 2005; Beier et al., 2009; Qazi
et al., 2015; Wolf et al., 2015; Jana et al., 2016; Cai et al., 2017;
Oguz et al., 2018).

Specific cell types require different cell niches, and will
thus better thrive on scaffolds bearing properties identical to
their native niches (Zeltinger et al., 2001). While fibroblasts
and myoblasts may be indifferent, to some extent, to the pore
size, the optimal pore size for other cell types may vary with
the experiment design, scaffold composition and cell source
(Levy-Mishali et al., 2009; Loh and Choong, 2013). Engineered
vascularized skeletal muscle tissues, comprised of muscle cells,
fibroblasts and ECs were reported to develop inside PLLA-PLGA
scaffolds with a pore size of 200–600µm (Shandalov et al., 2015;
Perry et al., 2017b). The optimal pore size for vascularization
of monocultures on a porous PEG scaffold, was shown to be
160–270µm (Loh and Choong, 2013). Reports of pore size
for adipogenesis include 6–70µm for murine ESCs (Loh and
Choong, 2013), 100–300µm for rat MSCs (Neubauer et al.,
2005), 135–633µm for rat preadipocytes (Patrick et al., 1999),
400µm or 50–340µm for human preadipocytes (Von Heimburg
et al., 2003; Hemmrich et al., 2005) and 200–400µm for human
MSCs (Hong et al., 2005). Further study on the effect of pore size
on bovine intramuscular adipogenesis is still necessary.

The mechanical cues sensed by cells growing on a scaffold, are
generated by complex interactions involving the macroporous
biomaterial, the hydrogel or liquid inside the scaffold pores, and
the cells themselves (Levy-Mishali et al., 2009; Purslow, 2010).
While mimicking the elastic properties of fat tissues (∼2kPa
in humans) can promote adipogenesis (Rowlands et al., 2008;
Young et al., 2013; Ghasemi-Mobarakeh et al., 2015), mimicking
the elastic properties of skeletal muscles (∼10kPa) can promote
myoblast fusion, and MSC differentiation to the muscle lineage
(Discher et al., 2005; Engler et al., 2006; Rowlands et al., 2008;
Lesman et al., 2011; Lapin et al., 2013; Loh and Choong, 2013;
Ghasemi-Mobarakeh et al., 2015; Qazi et al., 2015; Perry et al.,
2017b). Generating an intricate scaffold with several spatially
organized cell niches, and a set of large pores for media perfusion,
can mimic natural microenvironments found in the skeletal
muscle and further modulate cell localization and differentiation
(Zeltinger et al., 2001; Reilly and Engler, 2010; Park et al., 2011;
Tse and Engler, 2011; Loh and Choong, 2013).

Hydrogels
Hydrogels are ubiquitous in the field of tissue engineering, as
they can mimic the 3D environment of the ECM. As such,
they are designed with the consideration of their mechanical
properties, cytocompatibility, mass transport and degradation
kinetics (Drury and Mooney, 2003; Redaelli et al., 2017).

Hydrogels can be used as a soft scaffold, as a source material for
macroporous scaffolds, or as an ECM-like biomaterial that fills
voids of the macroporous scaffolds (Drury and Mooney, 2003;
Yegappan et al., 2018). For the latter, hydrogel polymerization
must occur after cell seeding, using a cell-compatible solution and
protocol (Drury and Mooney, 2003; Redaelli et al., 2017). The
gelation kinetics and technique must be scalable, and allow for
homogenous gelation throughout the construct (Ruel-Gariépy
and Leroux, 2004; Redaelli et al., 2017).

Hydrogels can be used to produce bio-artificial muscles
(BAMs)—strips of engineered skeletal muscle tissues. These
constructs can be produced by seeding satellite cells inside a
gel, anchored from both sides to mimic tension exerted by
tendons (Post, 2012). Like macroporous scaffolds, the anchor
points define the dimensions of the tissue and provide it with
mechanical support. Over time, the gel shrinks and tension
builds up in the BAM, which promotes myotube fusion and
protein synthesis (Post and van der Weele, 2014). Gholobova
et al. (2015) optimized BAM vascularization, showing fibrin gel
is sufficient to form vascularized BAMs. Post (2014) generated
circular muscle strips inside collagen/matrigel around hubs of
agarose gel. Ten thousand of these strips were required to
produce an 85-gram burger.

In order to recapitulate muscle ECM, hydrogels for cleanmeat
should be made from pre-synthesized ECM, polysaccharides or
fibrous proteins. Hydrogels commonly used for skeletal muscle
tissue engineering are comprised of biopolymers such as fibrin,
collagen, or polysaccharides such as HA, alginate, agarose and
chitosan (Drury and Mooney, 2003; Shit and Shah, 2014; Qazi
et al., 2015; Wolf et al., 2015).

Fibrin is a naturally occurring fibrous protein that forms
blood clots in injury sites. It is biologically designed to be a
temporary scaffold for de-novo tissue regeneration in-vivo, which
can degrade over days in cell media (Jockenhoevel et al., 2001;
van Hinsbergh et al., 2001). As such, it is commonly used as
a hydrogel for muscle tissue engineering (Koning et al., 2009).
Fibrin gel is generated under the thrombin-mediated enzymatic
cleavage of fibrinogen, which can be expressed in CHO cells
(Harrysson and Lövgren, 2012; Hirashima et al., 2016).

Collagen and HA are naturally found in the muscle ECM.
As such, they can be used to mimic some of the biochemical
and biophysical properties of the native ECM, and are also
susceptible to remodeling and degradation by the cells, crucial
for cell migration and ECM maturation (Drury and Mooney,
2003). Collagen is often used in tissue engineering, as it is the
most abundant protein in the body. The fibrous collagens I
and III are abundant in the muscle ECM. They serve structural
roles in the tissues, as anchoring points for cell adhesion, and
facilitate cell migration and tissue development (Sweeney et al.,
2008; Fuoco et al., 2016). However, collagen generates planar
structures in the ECM (Purslow, 2014), and due to their high
tensile strength, collagen hydrogels are mostly used to generate
mechanically stable, cell adhesive, macroporous scaffolds (Drury
andMooney, 2003; Kadler et al., 2007). A collagen-fibrin mixture
can be used as a hydrogel formuscle regeneration, which has been
shown to promote cell proliferation and myotube differentiation
(Beier et al., 2009).
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HA is a simple GAG ubiquitous in the body and in
the muscle ECM. It participates in wound healing and can
regulate cell behavior, such as adipogenesis, angiogenesis and
tissue organization (Colwell et al., 2003; Halbleib et al., 2003;
Allison and Grande-Allen, 2006; Davidenko et al., 2010; Chang
et al., 2013). HA hydrogels are cell-compatible, show favorable
viscoelastic properties, have high water retention, and can be
synthesized in animal-free platforms (Sze et al., 2016). HA-
collagen composites show improved mechanical and biological
properties, and can be used for adipogenesis scaffolding (Drury
and Mooney, 2003; Allison and Grande-Allen, 2006; Davidenko
et al., 2010; Chang et al., 2013).

Alginate is an inexpensive seaweed-based polysaccharide
which forms hydrogels in the presence of Ca+2. It is composed
of two monomers, one of which interacts with Ca+2, making
crosslink degree highly tunable (Drury and Mooney, 2003).
Since alginate is cell-inert, it is routinely functionalized with
RGD peptides that provide anchoring points for cell attachment.
Tuning the monomer ratio and RGD concentration can improve
myoblast proliferation and differentiation (Rowley and Mooney,
2002). Alginate hydrogels were recently used as a scaffold for
bovine adipogenesis (Mehta et al., 2019) While alginate cannot
be remodeled or degraded by cells, degradation kinetics can be
controlled by modifying its structure (Drury and Mooney, 2003).
Alginate-HA composites can improve the regenerative properties
of the alginate gel, while providing improved gelation compared
to HA alone (Oerther et al., 1999).

Chitosan is an edible glucoseamine polymer, used in skeletal
muscle tissue engineering (Qazi et al., 2015; Wolf et al.,
2015). It is commonly derived from animals, however, can
also be produced from mushrooms (Mesa Ospina et al., 2015).
Chitosan provide similar structure to GAGs, and can provide
antibacterial properties (Fedorovich et al., 2007), however
like alginate, it requires chemical modification to facilitate
cell adhesion and biodegradability (Huang et al., 2017). Jana
et al. (2013) used chitosan scaffolds to generate uniaxial
scaffolds with tuned stiffness, resulting in long (500µm) and
thick (50µm) mouse myotubes that express MHC. Chitosan
biopolymers could also be used to optimize the gel’s mechanical
properties (Enrione et al., 2013).

GENE EXPRESSION

Gene expression tools are often used to study metabolic
pathways in farm animals, particularly of IMF. These works
are highly valuable for clean meat research, as they are not
aimed for regenerative medicine, but rather focus on meat
traits, such as marbling (Lee et al., 2010; Sadkowski et al.,
2014; Chen et al., 2015; Hudson et al., 2015; Meadus et al.,
2018), myogenesis (Wang et al., 2005, 2015; Lee et al., 2014;
Dai et al., 2016), and sensory qualities (Bernard et al., 2007;
Hocquette et al., 2007; Bongiorni et al., 2016; Tizioto et al., 2016).
Research on correlations between gene expression and meat
quality has been recently summarized in several publications.
Linde (2018) published a table (table 2.5) of bovine genes
and their corresponding meat traits. Guo and Dalrymple

(2017) elaborated on genes which correlate with adipogenesis,
lipogenesis, fatty acid composition, meat tenderness, and the
connection between ECM and IMF. Picard et al. (2015)
elaborated on proteomics, transcriptomic and metabolomics
works conducted in bovine, chicken, and porcine. The paper
provides a list of biomarkers for beef tenderness and gene
clusters with their corresponding pork qualities. It should be
noted that most of these works are performed in meat from
whole animals, and that the data found in such complicated
biological systems may include additional pathways which
are irrelevant for clean meat research. In addition, most of
these studies are comparative, with the aim of finding novel
genes. As such, key genes with similar levels of expression are
left unreported.

Gene expression can be measured on three levels of
complexity using qRNA, microarrays and RNA sequencing
(RNA-seq). qRNA quantifies several genes of interest and can be
used to monitor the expression of key biomarkers when a deep
understanding of the system is not required. Ramírez-Espinosa
et al. (2016) provide a list of PCR primers designed to assess
bovine myogenesis, adipogenesis and stemness. Microarrays
quantify 101-106 known RNA transcripts, and can be used to
obtain an overview of gene expression patterns in muscle and fat
(Wang et al., 2005; Tan et al., 2006). Genome-wide microarrays,
which were used to profile gene expression in fat and muscle, are
commercially available from Affymetrix and Agilent for bovine
(Lee et al., 2010; Cassar-Malek et al., 2017; Hayashi et al., 2018;
Liu et al., 2018), ovine (Liu et al., 2015; González-Calvo et al.,
2017), porcine (Fontanesi et al., 2011; González-Prendes et al.,
2017a,b) and chicken (Du et al., 2017; Zahoor et al., 2017;
Chang et al., 2018) samples, however may be too expensive and
provide an overwhelming volume of data for routine sample
assessment. Additional commercial products for porcine samples
were summarized by Pena et al. (2014), including microarrays
specific for muscle. A customized bovine muscle/fat microarray
with 9.6K probes was developed in 2005 (Lehnert et al., 2005). As
with the genome-wide microarrays, it was mainly used to detect
correlations between muscle traits and relevant biomarkers
(Wang et al., 2005, 2009; Lehnert et al., 2007), but was also used
to track transcriptomic changes during bovine adipogenesis in-
vitro (Tan et al., 2006). However, this microarray was developed
from a 2-year-old muscle and subcutaneous adipose tissue,
and therefore, may miss specific genes expressed only in early
developmental stages. RNA-seq is another genomic technique
which quantifies the entire transcriptome de novo. Since this
label-free technique requires minimal knowledge of the species
at hand, it is advantageous for preliminary research of new
exotic species or unknown RNA transcripts. Using this approach
Sun et al. (2016) discovered a long non-coding RNA molecule
that promotes myogenesis in bovine muscle by upregulating
IGF-II expression. However RNA-seq is expensive, requires
tedious analysis, and is less accurate for miRNA quantification
(Horodyska et al., 2018), making it less pragmatic for clean meat
research of extensively studied species (Reverter et al., 2006;
Wickramasinghe et al., 2014).

miRNA, short RNA molecules that inhibit genes with
complementary mRNA, play a crucial role in the regulation of
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TABLE 1 | Additional reading materials.

Subject Comments Title References

Tissue Engineering Vascularized muscle tissues Engineering vascularized skeletal muscle tissue Levenberg et al., 2005

Clean Meat Tissue engineering Principles of tissue engineering for food Post and van der Weele, 2014

Production and manufacturing Opportunities for applying biomedical production and

manufacturing methods to the development of the clean

meat industry

Specht et al., 2018

Consumer acceptance Consumer acceptance of cultured meat: A systematic review Bryant and Barnett, 2018

Meat Structure and composition How muscle structure and composition influence meat and

flesh quality

Listrat et al., 2016

Flavor (book) Flavor of meat and meat products Shahidi, 2012

Developmental Muscle development in farm animals Fetal programming in meat production Du et al., 2015

Myogenic stem cells SC—extended review Satellite cells and the muscle stem cell niche Yin et al., 2013

SC protocols for different animals Methods for animal satellite cell culture under a variety of

conditions

Burton et al., 2000

Additional myogenic stem cells found

in humans

Stem and progenitor Cells in skeletal muscle development,

maintenance, and therapy

Péault et al., 2007

IMF IMF in farm animals Intramuscular fat content in meat-producing animals:

development, genetic and nutritional control, and

identification of putative markers

Hocquette et al., 2010

Adipogenesis protocols for clean

meat

Adipogenesis from Bovine Precursors Mehta et al., 2019

ECs Vasculogenesis Molecular regulation of vessel maturation Jain, 2003

Vascularization in tissue engineering Vascularization—the conduit to viable engineered tissues Kaully et al., 2009

Cell types and their potential in

Vasculogenesis

Co-culture systems for Vasculogenesis Perry et al., 2017a

Angiocrine factors Instructive role of the vascular niche in promoting tumor

growth and tissue repair by angiocrine factors

Butler et al., 2010

ECM Short review on fibrogenesis in

farm-animals

Invited review: mesenchymal progenitor cells in intramuscular

connective tissue development

Miao et al., 2016

Longer review, focuses on humans The importance of extracellular matrix in skeletal muscle

development and function

Grzelkowska-Kowalczyk, 2016

Effect on meat quality Intramuscular connective tissue and its role in meat quality Purslow, 2005

Muscle derived fibroblasts Skeletal muscle fibroblasts in health and disease Chapman et al., 2016

Gene Expression Transcriptomics and meat quality Transcriptomics of meat quality Guo and Dalrymple, 2017

Biomaterials Scaffolding Biomaterials based strategies for skeletal muscle tissue

engineering: existing technologies and future trends

Qazi et al., 2015

Tissue Engineering: Focus on the Musculoskeletal System Keeney et al., 2012

muscle tissue development, including myogenesis (Wang et al.,
2015; Dai et al., 2016; Zhang et al., 2017; Sadkowski et al., 2018)
and adipogenesis (Yan et al., 2013). Several naturally occurring
miRNA molecules have been shown to regulate myogenesis
and adipogenesis in farm animals, including regulation of
PPARG and C/EBPα expression (Romao et al., 2011) and lipid
metabolism (Wilfred et al., 2007).

Protein expression can be measured using mass spectrometry.
This can reveal novel biomarkers, such as tenderness and
hypertrophy biomarkers (Picard et al., 2015), and provide
a more reliable quantification of biological pathways (Poleti
et al., 2018), especially regarding ECM deposition and post-
translational modification (Chen et al., 2019), as compared to
RNA measurements. Several reviews were published regarding
proteomics and farm animals skeletal muscle research, discussing
biomarkers and metabolic pathways, which are related to
myogenesis, hypertrophy and meat traits, including flavor,

tenderness, color, water holding capacity and pH (Picard et al.,
2010, 2011; Bendixen et al., 2011; Veiseth-Kent et al., 2018).

CONCLUSION

Tissue engineering is a promising platform for creation of
meat in a controlled, animal-free environment. It requires a
shift in optimization parameters, with greater emphasis on
inexpensive, animal-free biomaterials, efficient expansion of
farm animal cells, tissue engineering of intramuscular fat, and
analysis methods focusing on nutritional value and organoleptic
properties. Implementation of tools and knowledge from the
fields of food engineering and meat science will help develop
novel research opportunities, such as tissue engineering of
intramuscular fat or the generation of novel flavor-enhancing
scaffolds. Clean meat scaffolds should be generated from
edible biomaterials and designed to mimic the connective
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tissues of the muscle. Finally, multicellular seeding of muscle
cells, fibroblasts, ECs and adipocytes inside such scaffolds
can yield engineered muscle tissues with meat-like properties.
Additional recommended reading materials can be found
in Table 1.
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