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Humanity is confronted with the grand challenge of how to increase agricultural

production to achieve food security during the 21st century and feed a population that

is expected to grow to 10 billion people. This needs to be done while maintaining

sustainable agricultural systems and simultaneously facing challenges such as a

changing climate, depletion of water resources, and the potential for increased erosion

and loss of productivity due to the occurrence of extreme weather events. Precision

Agriculture emerged out of the advances in the 1980s because of the development of

several key technologies like GPS and satellite imagery. This paper argues that with

the increasing impact of climate change, the next revolution in precision agriculture

and agriculture in general will be driven by Sustainable Precision Agriculture and

Environment (SPAE, similar to the 7 Rs), which could leverage past technologies

combined with Big Data analysis. This new, technology-focused SPAE transitions from

a site-specific management focus to the notion of global sustainability. To accomplish

this transition, we introduced the WebGIS framework as an organizing principle that

connects local, site-specific data generators called smart farms to a regional and global

view of agriculture that can support both the agricultural industry and policymakers

in government. This will help integrate databases located in networks of networks

into a system of systems to achieve the needed SPAE management and connect

field, watershed, national, and worldwide sustainability. Automation and the use of

artificial intelligence (AI), internet of things (IoT), drones, robots, and Big Data serve

as a basis for a global “Digital Twin,” which will contribute to the development of

site-specific conservation and management practices that will increase incomes and

global sustainability of agricultural systems.

Keywords: big data, analytics, remote sensing—GIS, artificial intelligence, precision agriculture, sustainable

agriculture

INTRODUCTION

The 21st century presents formidable challenges to sustainability that humanity will have to
confront. The need to increase agricultural production to ensure food security for a global
population estimated to grow to 9–10 billion people in the coming decades while confronting a
changing climate that threatens sustainability will put pressure on agricultural systems. The
United Nations Secretary-General recently warned the global community that climatic changes
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are occurring at a faster rate than humanity is addressing
them and that humanity will be impacted by sea level rise
and more extreme weather (United Nations, 2018). Recent
reports released by the UN Intergovernmental Panel on Climate
Change support these statements (United Nations, 2018). The
increased occurrence of extreme weather events will increase
the potential for erosion in agricultural systems (Pruski and
Nearing, 2002; SWCS, 2003). Pruski and Nearing (2002) reported
that erosion rates could increase by 1.7% for every 1% increase
in total rainfall due to climate change. Without conservation
practices humanity will not be able to adapt to a changing
climate, as conservation practices will be key tools to maintain
and increase the productivity and sustainability of agricultural
systems (Delgado et al., 2011; Walthall et al., 2012; Spiegal et al.,
2018). Big data analysis will also be one of the key tools that will
contribute to development of sustainable systems.

It is thought that crop production must be increased by
60–100% by the year 2050 to meet the nutritional needs of
a future human population of 9–10 billion. Crop production
systems that yield more food of higher nutritional content are
needed, yet at the same time, they must have a diminished
impact on the environment. Agricultural intensification during
the 20th century was through the substantial use of fertilizer,
pesticides, and irrigation, all at a significant environmental cost.
These technologies were part of the Green Revolution that
helped achieve food security for billions of people. However, the
challenges of the 21st century are different, and soil and water
conservation will be key to achieve food security, and sustainable
precision agriculture and environment (SPAE) will be needed
so that intensive agriculture and a changing climate will not
generate additional impacts that could contribute to accelerating
the pace of a changing climate. As a part of sustainable
agriculture, next-generation cropping systems that couple
biologically-based technologies (plant-beneficial microbes, cover
crops) and precision agriculture (PA) and precision conservation
(PC) need to be developed to decrease fertilizer, pesticide,
and water inputs while increasing conservation effectiveness to
maintain sustainable agriculture at a field level and sustainability
across a watershed. Crop cultivars with enhanced nutritional
content and enhanced tolerance to abiotic (drought, salinity,
heat, etc.) and/or biotic (disease) stresses need to be developed
using advanced breeding and biotechnology approaches. These
enhanced cultivars will no doubt disrupt the status quo of
agricultural business.

Central to SPAE and the rapid development of these cropping
systems is the use of PA and PC in the development and use
of technology with the capacity to manage and disseminate
accurate data and information at all levels of the agricultural
ecosystem. PA (Pierce and Nowak, 1999), PC (Berry et al., 2003,
2005; Delgado and Berry, 2008; Sassenrath and Delgado, 2018)
(Figure 1), and sustainable agriculture “are inextricably linked”
(Berry et al., 2003, 2005; Bongiovanni and Lowenberg-DeBoer,
2004). Sustainable agriculture and PC focus on increasing
conservation effectiveness and stress environmental impact and
sustainability, while PA is often about immediate cost savings at
a specific location by optimizing returns on inputs. This paper
focuses on sustainability at both a site-specific management scale

and a global scale. For that reason, the emphasis is on information
systems and their ability to support a variety of characteristics of
PA, PC, and global sustainability.

Inherent in both the complexity and accuracy of SPAE is the
need to manage data spatially, which has traditionally been the
realm of Geographic Information Systems (GIS)1 For example,
PA and PC use geospatial data and sensors for crop yield and any
other measurable variable to apply the correct rate of fertilizer,
water, and pesticide; manage drainage and water runoff; reduce
movement of agrochemicals; and use the right management
practices at the field and off-site (Delgado et al., 2018a). Both
PA and PC allow the farmer to treat the production field as
the heterogeneous surface it is (fertility, water, plant pathogens,
slope, surface runoff, drainage, etc., which are all highly variable
throughout the field) instead of as a homogeneous surface as it
was treated in the past. SPAE also manages geospatial data, but
its spatial relationships can be more abstract from the soil level to
the molecular level in order to model more complex biological
systems. In fact, Esri refers to this concept as the “science of
where,” implying that GIS is evolving beyond the traditional
geospatial realm of maps, images, etc. to modeling more complex
relationships (Dolan et al., 2006).

With increased adoption of PA and PC by farmers will
come increased development and marketing of tools for PA
and PC to speed up the adoption of technology. In the
developed world primarily, advanced sensors and systems that
deliver decision support tools directly to the farmer will
be developed, allowing real-time decisions on the delivery
of appropriate rate of inputs (water, fertilizer, pesticide)
(Fulton and Darr, 2018) as the farmer drives the tractor
through the field, implements drainage systems (Shedekar and
Brown, 2018) and/or tries to simultaneously conserve wildlife
(McConnell and Burger, 2018).

The need for PA and PC will only heighten, as, for example,
nutrient losses to the environment impact groundwater and
surface water resources, such as has occurred with the hypoxic
zone in the Gulf of Mexico (Goolsby et al., 2001; Rabalais
et al., 2002a,b) and the hypoxic zone and microcystin levels in
Lake Erie (Smith et al., 2018). The World Health Organization
(2011) has reported that microcystin concentrations above 1.0
µg L−1 in treated drinking water is not safe and is unhealthy
for human consumption and in the USA, the EPA reports that
for children less than 6 years of age the safe level is 0.3 µg L−1
(United States Environmental Protection Agency, 2015). Water
issues will continue to increase in many parts of the world in
the near term, especially if there are legacy effects. New cropping
systems with improvedmanagement practices must be developed
that contribute to environmental sustainability to minimize
negative impacts on air, soil and water. In addition, advanced
crop cultivars must be developed that better use soil nutrient
and water resources, are more resistant to environmental stress
(temperature extremes, drought, flood, plant pathogens), and are
packed with nutrients that are found deficient in populations in

1Applying GIS and remote sensing to landscape genetics and genome

size research. Available online at: https://pdfs.semanticscholar.org/3054/

4c8c85b5bfc7e3f07725329376120473178a.pdf
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FIGURE 1 | The site-specific approach can be expanded to a three- dimensional scale approach that assesses inflows and outflows from fields to watershed and

regional scales [Permission granted by Soil Water Conservation Society for reprint from source: (Berry et al., 2003)].

the developing world (Bouis and Saltzman, 2017). This all must
be done very rapidly as 30 years is not a long time when dealing
with science and adoption of scientific technology. In other
words, SPAE, which aims to preserve ecosystem services, must
work with modern technologies and practices quickly through
the rapid transfer of knowledge from the agricultural lab to
the producer.

Over the past several decades, Information Technology (IT)
has been the disruptive force in industries by driving out
market inefficiencies through automation and better decision
support tools that require the inclusion of both the citizens
and consumers in the process. Like all industries, agriculture
has not been immune to the constant disruptions over the
past century (e.g., introduction of the tractor, PA, PC, and
new governance models for dealing with inelasticity of demand,
etc.). However, recent advances in computing infrastructure,
sensor technology, big data, and advanced algorithms (e.g., Deep
Learning) suggest that a major disruption or paradigm shift
is on the horizon, leading to opportunities for SPAE entering
the mainstream in a smart, advanced system for SPAE. IT also
holds the key for accelerating knowledge transfer from the lab to
the producer.

Eventually, a system based on these new technologies will
be needed for mass transfer of genomic and other genetic
data for the development of these advanced crop cultivars, for
the management of agronomic data, and for the development
of these next-generation production systems. Data generated
from these cropping systems are inherently geospatial in that
crop types and their environmental hardiness obviously vary
regionally by latitude. Agricultural field crop production inputs
and conservation management to achieve sustainable systems

can vary considerably over space and time (Pierce and Nowak,
1999; Berry et al., 2003, 2005; Delgado and Berry, 2008;
Gebbers and Adamchuk, 2010). Therefore, monitoring crop and
environmental performance will highly depend not only on
traditional methods of Earth Observation (EO), but also data
generated in situ (i.e., ground truth).

Hence, geospatial solutions based on imagery from EO at all
scales integrated with sensor networks will increasingly become
critical for the operation of PA systems where resource inputs are
applied at precise geo-specific field locations based on crop need.
Solutions will eventually be needed to allow immediate feedback
from digital farm communities regarding the performance of
these new cropping systems; speeding their development based
on immediate feedback to the labs and other interested parties.
To accomplish this, we describe a “system of systems” approach
to building a scientific network that integrates the scientific and
farming communities, based on a common, global IT platform
(i.e., the cloud).

HISTORICAL CHALLENGES IN
AGRICULTURAL TECHNOLOGY
ADOPTION FOR PA

Although PA has been around since the 1980s, the adoption of
the technology has been slow. Schimmelphfenning (2016) reports
that PA technology, for example, was used on about 30–50%
of U.S. corn and soybean acres in 2012. Van der Wal (2019)
suggests that the reason for poor adoption is due to the “growing
complexity of adoption in the use of information technology”
and the fact that “incomes in agriculture are generally low
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and young generations seek their prosperity in cities,” implying
that those with technical prowess are heading to the cities for
hi-tech jobs that pay better. PA also tends to be expensive
(Shama, 2017), which is reflected in the fact that it is mostly
implemented on larger farms (Schimmelphfenning, 2016) which
can afford the complex and changing technology. However, low-
tech precision agriculture/precision conservation approaches
have been implemented by farmers in Sub-Saharan Africa,
contributing to improved yields, incomes and conservation
(Jenrich, 2011). There are numerous reasons for the low
adoption rates and the next few sections offer several common
explanations. However, there are opportunities for leveraging
existing technological trends.

Poor Adoption of Decision Support Tools
While the agricultural sector has a long tradition of relying on
best practices rooted in science, the industry hasn’t always been
an early adopter of decision support tools or extension services
that resulted in speeding up the adoption of new precision
agricultural practices (Rose et al., 2016). Ribaudo et al. (2011a)
reported in a national study that 65 percent of the cropland
studied (109 million acres) needed best practices for nitrogen
management. There are several reasons for limited adoption
including culture in the producer community, skills, current
information management processes, etc. Perhaps the biggest
reason, until recently, has been the limitations of both the
technologies and agricultural systemsmodels used to support PA,
much less PC and SPAE (Antle et al., 2017). Specifically, Antle
et al. (2017) states that “many advances in data, information
and communication technology of the past decade have not
been fully exploited. . . [because of the] underinvestment in
agricultural research, particularly in non-proprietary public good
research, and in research aiming to improve the well-being of
poor, smallholder farm households in the developing world.”
While user-centered design techniques in the IT industry will
improve adoption, an active area of research exists to more
quantitatively understand positive adoption of new practices
(Kuehne et al., 2017).

That being said, technology adoption challenges in the IT
industry are well understood and noted by Moore (1991)
who discusses the diffusion of innovation through groups
of technologists, early adopters who see the possibilities of
innovation, pragmatists who resist change until an economic
benefit is defined, the late majority adopters who require low
risk and high reliability, and the laggards. By utilizing targeted
messaging, Silicon Valley and other tech centers’ success over the
past few decades in disrupting markets is often attributed to the
model cited in Moore (1991), which ironically had its roots in the
study of farming practice adoption (Beal and Bohlen, 1957).

Limitations of Earth Observation Data
in Agriculture
From a practical point of view, these historical technical
limitations in the past have ranged from lack of standards,
non-scalable systems, cost of sensors, and limited support
from governments around the use of EO in agriculture
or remotely sensed data that focused on climate change

observations as opposed to agriculture. Although there was
early adoption in agriculture in the US through programs
like AgRISTARS and LACIE in the 1970s/80s (Pinter
et al., 2003), the Landsat series, for example, primarily
focused on moderate spatial resolution (i.e., 30 × 30m),
which while good for crop monitoring at the macro
level, was too course for PA. Luccio (2014) suggests that
“. . . farm management decisions, such as weed detection
and management, require imagery with a spatial resolution
in the order of centimeters and, for emergent situations
(such as to monitor nutrient stress and disease), a temporal
resolution of <24 h.”

Likewise, these moderate resolution satellites, which were
primarily designed for answering scientific questions, haven’t
always focused on the appropriate spectral bands (e.g., red edge
band) for agriculture or frequency of data acquisition to make
it easy to monitor crop growth during the growing season.
Yet, because of the global coverage, these satellite networks
have been recognized as the original generators of big data
and represented a compromise or trade-off between spatial
resolution and storage capacity. In recent years, commercial
satellites, such as those from DigitalGlobe, which serve a variety
of markets beyond agriculture have promised to fill the gaps
made from the public-sponsored platforms. However, the cost
and complexity of using these data have been limiting factors
at the producer level for all but the large farm operations who
can justify data costs. As a result much of the use of remote
sensing data has come in the past from aerial platforms and
now from drones carrying small sensors focused on frequent
observations over the growing season. Although at a limited
coverage area, the cost of entry can be considered high for
smaller farms operations in the US and, especially in the
developing world creating a logistics problem of sensor and
data exchange.

Poor Communication Infrastructure
In addition to the difficulty arising from a variety of remote
sensing data from multiple sensors, the lack of a comprehensive
backbone for high-bandwidth transmission of data to remote
farm areas has limited the ability of the exchange of data between
the farm and value-added services. In theUS broadband adoption
promises to solve this problem with bandwidth at the megabyte
level, but small farm operations in low-income countries will
have to rely on alternative architectures that utilize local sensor
networks. Tyler and Griffin (2016) argues that “The realization
of ‘Big Data’s’ value will not happen until [the data transfer
bandwidth] barrier is overcome.” On the surface, PA looks to
not be a big generator of data for upload. Tyler and Griffin
(2016) suggests otherwise for just corn alone, where for each
plant generating 0.5 k bytes, the 88.9 million acres in 2015 would
generate 1.3 petabytes of data, not including the notorious big
data generator from aerial drones. Upload bandwidth will clearly
be needed.

Siloed Data Management
Given the variety of data and limitations of bandwidth in many
farming communities, it’s not surprising that data management
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has also been an issue. First, the public remote sensing platforms,
whose data generation capabilities have led to data archives at
the exabyte (i.e., 1018 bytes) and above levels, have resulted in
driving the public sector to invest into large data systems in
order to serve a wide scientific community. These systems, while
good at disseminating data, still require extensive and complex
knowledge of a variety of satellites and sensors, file formats,
meta data standards, physics, etc. (Blumenfeld, 2019). In short,
it still does require considerable expertise to gain any significant
agricultural benefits from these systems.

Second, commercial satellite, aerial, and drone-based data
systems, while somewhat easier to use, are still fragmented due
to competing interests. In the end, the variety of data formats,
velocity of data coming off of a variety of platforms, and volume
of data generated have led to a fragmented and siloed data
management infrastructure for agriculture. In other words, this is
a Big Data problem, which is formally defined as a combination
of a variety of data, the velocity of data and/or the volume of data.

Given the inherently spatial nature of agriculture and remotely
sensed data, GIS offered the opportunity to minimize data siloes
by providing spatial context (i.e., maps) around data. This has
led to a proliferation of GIS systems that span topic areas well
beyond remotely sensed data, yet has led to additional silos of
geospatial information.

Immature Applications of Analytics and AI
While data silos are not inherently a problem per se, techniques
including those from analytics, AI andMachine Learning, require
that the data be readily accessible, coherent, and consistent
before these algorithms can provide any value. Certainly,
first-generation solutions like the world wide web and data
warehouses have gone a long way in connecting these data siloes,
but they fell short in addressing the computational capacity
necessary for analytic techniques. These challenges made it
difficult to apply analytic techniques comprehensively such as
yield forecasting and all the other advanced techniques tried in
the scientific literature.

The problem is further exacerbated when considering SPAE
and modeling. In PA, applications focus on connection of inputs
to needs in order to determine the action based on a spatial
area. That is, while there is some modeling going on, it’s
relatively simple in that a precision map shows exactly where
to apply the fertilizer, water, etc. SA, which places emphasis
on complex interactions between biological systems, tends to
have more complex models that are crafted carefully by the
scientific field. Consider the Denitrification and Decomposition
(DNDC) model used in the simulation of carbon and nitrogen
biogeochemistry through complex interactions of soil, crop
growth/decomposition, etc. to predict, among other things,
nitrate leaching and C/N greenhouse gas emissions (Salas, 2010;
University of New Hampshire, 2012). Whereas initial PA efforts
may not be as focused on assessing greenhouse emissions from
agriculture, this more complicated model or analytic technique
is an example of one that could contribute to achieving the
objectives of SPAE and, as such, requires a strong source of
“regional databases. . . for mapping and potentially monitoring

management practices. . . for compliance, verification, or tracking
sustainability” (Salas, 2010).

Another recent example is the COMET-Farm system web-
based tool developed by Paustian et al. (2018) to do full
greenhouse gas assessments for CO2, CH4, and N2O from
all major on-farm emission sources as well as assessments of
soil carbon sequestration. This web-based tool can assess GHG
emissions from perennial crops, pasture, range and agroforestry
systems, as well as emissions from livestock and on-farm energy
use (Paustian et al., 2018). This tool can be used to assess
PC practices. The user could upload a custom soil map that
can specify sub-field map units, allowing the user to define
spatially explicit management zones (Paustian et al., 2018). An
application could be added in the future to assess the effects
of PA and PC on GHG emissions (Paustian et al., 2018). Saleh
and Osei (2018) reported that the Comprehensive Economic
Environmental Optimization Tool (CEEOT) and the more
user-friendly Nutrient Tracking Tool (NTT) can be used at a
watershed level to assess the optimal conservation practices,
using a PC approach to maximize the benefit from each dollar
of conservation practice investment. They reported that by
using spatial distributions of field attributes such as soil type,
topography, and soil chemical and physical properties, PC can
be applied to reduce the uncertainty of where to apply a
given practice to increase conservation effectiveness and thus
sustainability (Saleh and Osei, 2018).

Regional databases are equally as critical for building accurate
machine-learning algorithms. In the geospatial world, early
applications of AI focused on classification of imagery such
as Landsat (Campbell et al., 1989), which led to applications
mostly around macroeconomic crop forecasting, as is done by
the United States Department of Agriculture’s (USDA) National
Agricultural Statistics Service. Figure 2 illustrates the problem
through the classifications of cropland (yellow), forest (green),
and roadways (gray) in the left picture, where even a casual
inspection shows misclassification of the entire farm in the
polygon. When taken at a national or global level, these
classification error rates may well be within statistical tolerances
for macroeconomic problems, but clearly fertilizing the road or
farm buildings would not be acceptable in the left picture. The
picture to the right on higher resolution data (NAIP) from a
recent use of machine learning in the cloud shows drastically
improved classification (Tayyebi, 2019) due to not only higher
spatial resolution data but also significant computational capacity
in today’s cloud environment.

In either case, Campbell et al. (1994) and Short et al. (1995)
recognized early that regional databases needed to be developed
as a mechanism for providing training data to machine-learning
algorithms, which capture local knowledge from different
individuals or organizations (e.g., farmers). In other words,
these classification techniques rely heavily on supervised learning
where training datasets consisting of known classification labels
associated with spectral properties (i.e., spectral signature) are
presented to the algorithms, which generalize or learn.

In the 1990s, NASA recognized the need to develop a
network of distributed, end-to-end satellite processing centers,
called Regional Application Centers, in order to leverage local
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FIGURE 2 | Coarse classification (left) vs. recent AI classification methods (right) (Tayyebi, 2019).

knowledge in the building of training datasets for localized
machine-learning implementations. Implemented around the
world in countries with no interconnectivity at the time
(i.e., the internet), NASA deployed low-cost, high-performance
technology to acquire data directly from the satellites with direct
broadcast capability and perform all the necessary processing
routines including machine learning, in order to produce spatial
information products for not only NASA but also the local
and international governments (Campbell et al., 1994; Davis
et al., 1994; Short and Dickens, 1995). Because the mission areas
ranged from hurricane forecasting to early applications of PA,
the network of regional data centers demonstrated a coexistence
between science goals and operation mission effectiveness that
resulted in, for example, an “early warning [that] allowed the
movement of over 200,000 people [in Bangladesh] to higher
elevation thereby avoiding certain drowning due to flooding”
(Campbell et al., 1994).

The Paradigm Shift: Digital Agriculture
Research and industry could solve many of these problems
given the inherent nature of PA as a simple business solution
of minimizing input costs through big data management in
order to maximize yield and profits in a commodity-based
industry. In a recent Bloomberg article (Noel, 2019) argues
that companies like Bayer can acquire data from the farm,
process it with analytics, and sell it back to the producers. With
advances in the cloud where computational power and storage
are relatively inexpensive, companies will probably move into a
new era of selling information products by coalescing many of
the aforementioned data sources, thereby reducing siloes and the
knowledge complexity of operating the variety of data generators.

However, SPAE is different due to its focus on more
environmentally friendly techniques and reliance on natural
farming practices that require a level of complexity beyond
simple input/outcome optimizations. Not only are the techniques
less scientifically understood, but the potential improvements in
yield may not generate the economic benefits required to justify
the increased complexity and costs in the short run, such as
the aforementioned analytic complexity for SPAE alone. With

that said, recent advances in PC to increase SPAE has shown
that there is potential for some quick profits when conservation
practices use these new technologies. For example, Thompson
and Sudduth (2018) reported that using PA tools offers an
advantage in both designing and utilizing terracing and contour
farming approaches to conservation management by reducing
terrace layout time by 50%, contributing to savings in time and
money. Thompson and Sudduth (2018) also reported that using
PA will contribute to economic sustainability of these systems by
using fieldmachines that utilize GPS guidance and automatic row
or section control.

New opportunities may also be possible if ecosystem markets
are developed where nitrogen, carbon, or even reduction of GHG
can be traded in market systems, providing additional income
to farmers due to implementation of conservation practices
(Ribaudo et al., 2005, 2011a,b; Delgado et al., 2008, 2010; Paustian
et al., 2018; Saleh and Osei, 2018). Paustian et al. (2018) reported
that GHG mitigation, carbon storage, and water filtration, for
example, could potentially be appreciated and monetized, but it
will then bring greater complexity to the decision-making and
management choices of farmers and ranchers; it will also require
tools and technologies that have not previously been available to
agricultural producers. Delgado et al. (2008, 2010) reported that
a GIS nitrogen trading tool could potentially assess the spatial
effects of implementation of conservation practices on reductions
in nitrate leaching and direct and indirect GHG emissions that
could be traded in air and water quality markets. Saleh and Osei
(2018) reported that we could use spatial tools to assess the effects
of conservation practices and how PC could be used to generate
credits for water quality markets and to specify, for example,
if the credits will be for sediment load reduction or nitrogen
or phosphorus reduction. Saleh and Osei (2018) reported that
by using PC there will be a reduction in the “margin of safety”
credit adjustments necessary for water quality trades, improving
the water quality trading options for farmers. As suggested in
Campbell et al. (1994) around Distributed AI techniques for
automated cooperative systems, we propose that by using AI and
the new SPAE approach and technology there will be greater
opportunities to make SPAE generate income in these trading
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FIGURE 3 | Locations (A,B) where the 4 Rs alone would not reduce the

off-site transport of nutrients and a 7 Rs approach would contribute to

reducing off-site transport of nutrients (Images from NRCS showing

development of ephemeral gullies).

systems for farmers and ranchers, and increase field, watershed,
national, and global conservation.

The rest of this paper argues that big data analytics is
at the core of combining precision and sustainability into
an earlier notion of Sustainable Agriculture (Berry et al.,
2003, 2005; Bongiovanni and Lowenberg-DeBoer, 2004; Delgado
and Berry, 2008). Berry et al. (2003) reported that precision
conservation will be needed to maintain the productivity of
intensive agricultural systems and global sustainability. Berry
et al. (2003) also reported that precision conservation has the
potential to integrate conservation practices at a site-specific field
level with off-site conservation practices, which would contribute
to watershed sustainability. To support this argument, we will
focus on both farm management and a geoinformatics cloud
framework as a step toward global agricultural sustainability.

Part of the PA concept to increase the efficiency of fertilizers
has been the use of a 4 Rs approach to reduce nutrient losses
from farming systems (the right product, at the right rate, at
the right time, and at the right place (Roberts, 2007). However,
Delgado (2016) reported that the 4 Rs are not enough and gave
examples where significant losses of nutrients and soil could
occur without precision conservation (Figure 3). The concept
of agricultural sustainability using a precision conservation
approach in agriculture presented by Berry et al. (2003) will
contribute to reduced off-site impacts across a watershed by using
these new technologies to improve the design of conservation
practices and increase the efficiencies of conservation practices
such as field buffers, sediment traps, denitrification traps, and
riparian buffers to minimize the losses of nutrients from the
field and across a watershed. Cox (2005) reported that the Berry
et al. (2003) PC concept could also be described using a 4 Rs

approach, by applying the right conservation practice, at the
right place, at the right time, and at the right scale (the 4 Rs of
conservation). Delgado (2016) combined these 4 Rs of precision
farming with the 4 Rs of precision conservation to create the 7 Rs
for nutrient management and conservation, which are applying
the right product (1), the right rate (2) and the right method
of fertilizer application (3), the right conservation practice (4)
placed at the right place (5) and right scale (6), with the right time
of application of fertilizer and establishment of the conservation
practice (7).We propose that we could use new Big Data analytics
to combine precision agriculture and precision conservation
(Berry et al., 2003, 2005; Bongiovanni and Lowenberg-DeBoer,
2004; Delgado and Berry, 2008) to achieve SPAE. This is similar
to the 7 Rs approach described by Delgado (2016) and Sassenrath
and Delgado (2018).

MODERN FARM MANAGEMENT

With the emergence of commercial viability of PA over the past
few decades, today’s developed world farmer is moving from a
grower and distributor of produce to a modern day data scientist
who must utilize analytic techniques to both collect the right data
at the right time, but also apply advanced information products to
increase yield. Acting in the role of an early adopter of technology
(Moore, 1991), today’s farmer will have to quickly learn how
these new technologies can be used to help make decisions about
how to increase profits by increasing yields or implementing
precision management and conservation practices that could
produce sustainability benefits that could potentially be traded
in ecosystem service markets. The use of this new technology for
SPAE will be dominated in the future by analytic techniques and
AI to help provide solutions to complex problems and decisions.

Today’s “early majority” farmer is increasingly aware of
the role of cost externalities as they relate to input costs
and will act as the bridge from the early adopter technology
community. For example, whether it is organic farms that must
deal with cross-species contamination from neighboring farms
or the increased externalities from management practices that
contribute to emissions of GHG or losses of agrochemicals
that could impact water quality, or weather impacts on erosion
and loss of productivity, farming must increasingly deal with
long-term factors that may not show up immediately in
increased yield profits but that will contribute to reduced
yields if they remain unchecked. Using precision conservation
to increase the sustainability of agricultural systems will
contribute to adaptation to a changing climate and maintaining
long-term productivity. In other words, sustainability in
agriculture is increasingly becoming a necessary component of
today’s agricultural practices. Organizations like USDA’s Natural
Resources Conservation Service (NRCS) have long known that
conservation programs are methods for removing the cost
burden of externalities, but with decreased public sector budgets,
this is becoming more difficult as external costs increase.

Managing nutrients at a farm level is very important since
losses of reactive nitrogen at this level significantly impact the
environment via emissions of nitrous oxide, ammonia emissions,
nitrate leaching losses, and off-site transport of surface losses
of nitrogen (Smith et al., 1997; U.S. Environmental Protection
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Agency, 2010). Nitrogen losses significantly impact terrestrial
resources, water bodies, and the atmosphere (Hutchinson et al.,
1982; Legg and Meisinger, 1982; Cowling et al., 2002; Rabalais
et al., 2002a,b; Galloway et al., 2008; Dubrovsky et al., 2010). It
has been documented that these losses contribute to significant
impacts such as impacts on species composition and the
functioning of terrestrial, freshwater, and marine ecosystems,
among others (Matson et al., 1997; Vitousek et al., 1997). Reactive
nitrogen could also negatively impact human health (Follett
et al., 2010). In addition to significant environmental impacts,
these losses can also have negative economic impacts. Ribaudo
et al. (2011a) reported that the cost of removing agriculture’s
contribution to nitrate loadings in drinking water in the USA is
about $1.7 billion per year.

Fortunately, organizations like USDA’s NRCS and
private consultants have been increasing the use of these
new technologies that contribute to implementation of
conservation practices on the ground to achieve precision
conservation. Precision conservation is increasingly being
embraced by agencies such as NRCS and the private sector in
a new revolutionary approach that is increasing conservation
effectiveness (USDA-NRCS, 2017). Some of the USDA ARS’
voluntary conservation programs such as the Environmental
Quality Incentives Program (EQIP) can be used to implement
precision conservation (USDA-NRCS, USDA-NRCS). There are
several examples of private sector and non-profit organization
implementation of precision conservation to increase
sustainability (Buman, 2016a,b; Hammes, 2016; Heartland
Science Technology Group, 2017; Chesapeake Conservancy,
2018; Illinois Sustainable Ag Partnership, 2018).

There is a revolution going on in the agricultural landscape,
making it possible to move agricultural science from on-site
research facilities directly to the farm. Farmers are no longer
passive recipients of information but are rather actively involved
in the science and development of new crop production systems
that can either be yield neutral or possibly improve yield. Over
the long run, this paradigm shift could reduce the need for
public subsidies for external costs, as they would be an automatic
byproduct of agricultural best practices.

As suggested in Wolfert et al. (2017) (Figure 4), the key to the
modern farm is the application of big data to the development of
a smart farm and smart soil and water conservation (Sassenrath
and Delgado, 2018). The smart farm and smart soil and water
conservation conceptual frameworks focus on the cyber-physical
management cycle built around a cloud-based infrastructure that
manages all farm operations. Where bandwidth is plenty (i.e.,
due to rural broadband), then the farmer operates as a data
collector transmitting to the cloud for spatially-based analytic
techniques that tell the farmer what to do and when based on
looking at the macro variables across the farm landscape (e.g.,
weather input prediction).

For agriculture in the developed world, Unmanned Aerial
Vehicles (UAV) and Unmanned Ground Vehicles (UGV)
armed with hyper-spectral and other sensor types generate
significant amounts of data that can be processed remotely
enabling a variety of advanced analytic techniques that can
drive the application of inputs automatically. Computer visions

FIGURE 4 | The smart farm conceptual framework (Wolfert et al., 2017). ©The

Authors. Published by Elsevier Ltd. This is an open access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

techniques are increasingly being used on applications like
weed vs. crop detection (Lin et al., 2017), planting, irrigation,
pruning, harvesting, and plant disease detection/identification
(Ampatzidis et al., 2017), leading to the potential for further
automation and minimizing of labor input costs.

Where bandwidth is limited, especially in the developing
world, computation must be pushed to the edge where
information products are produced in situ and only small
data volume information products are exchanged between the
cloud and farmer if at all. Referred to as edge computing,
this “distributed computing paradigm. . . .brings computer data
storage closer to the location where it is needed” (Edge Wiki)2

and is possible to the drastic drops in price/performance for
hardware. In the context of agriculture, this means that machine
learning algorithms that are developed in the cloud can be pushed
to the edge for farm operations.

A powerful example of this model can be found in
Microsoft’s FarmBeats program (Vasisht et al., 2017). Rather
than wait for governments or private industry to invest in
connectivity programs like rural broadband, FarmBeats “piggy
backs” off of T.V. whitespaces3, which are frequencies allocated
to broadcasting service but not locally used, especially in rural
areas. FarmBeats deploys a field sensor array to collect variables
(e.g., soil moisture) where the machine learning is used to
impute or predict data points from sensor nodes and brief
fly overs from UAVs. By building on inexpensive and reliable

2Edge computing Wiki. https://en.wikipedia.org/wiki/Edge_computing
3Adoption of computer based information systems: The case of dairy farmers in

Canterbury, NZ, and Florida, Uruguay. Available online at: https://mentor.ieee.

org/802.22/dcn/19/22-19-0013-00-0000-tutorial-on-whitespaces.pdf
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hardware, FarmBeats addresses the “late majority’s” market
need for simplicity and low risk, thereby facilitating technology
adoption (Moore, 1991). As a result, FarmBeats has already been
deployed internationally in countries like India, New Zealand,
and Kenya, resulting in a reported 30% reduction in water
consumption (Sims, 2019).

Based on trends in farm operations and management, farms
are becoming the new Big Data generator that complements
much of the EO data that has been gathered to date. With
these advances architecturally in farm management, the modern
farm can resemble the notion of “Digital Twins”, which is the
confluence of IoT, AI, and big data. [Digital Twin Wiki]4 defines
a digital twin as “a digital replica of a living or non-living
physical entity” that is used “to create living digital simulation
models that update and change as their physical counterparts
change.” In terms of agriculture and farm management, digital
twins means that “farm operations would no longer require
physical proximity, which allows for remote monitoring, control
and coordination of farm operations” (Verdouw and Kruize,
2015). From a SPAE perspective, simulation models like the
aforementioned DNDC, COMET-Farm, CEEOT, and/or the
NTT models are among some of the available tools that could
be used to form the basis of ensuring the least impact on
environment without driving up costs.

A GEOINFORMATICS SUSTAINABLE
AGRICULTURE FRAMEWORK

Regardless of the approaches, clearly today’s farms are quickly
becoming data generators that when stitched together spatially
provide a higher resolution view into the agricultural industry,
which ultimately will provide a more precise view of not only
global food security but overall environmental sustainability.
Governments currently have to rely heavily on EO data to
estimate crop yield as it relates to food security and market
predictions, which is an indirect indicator of sustainability
more from an economic than environmental perspective. This
has certainly been the goal of USDA’s Global Agricultural
& Disaster Assessment System (GADAS), which uses satellite
imagery “to assist in. . . agricultural estimates of global crop
conditions” (Frantz, n.d.).

GADAS represents a first-generation system that potentially
forms the foundation for a broader public/private partnership of
connecting farm data generators to an interconnected framework
for sustainability. Or namely, it brings together a variety of
spatial data via a GIS to illustrate impacts of weather, water,
crop conditions, land use, etc. to give a global assessment of
agriculture (Figure 5). In fact, the US Federal government is
starting to recognize the need for governance of geospatial data
from a comprehensive point-of-view. Through the Geospatial
Data Act (GDA), the intent of the act is to “coordinate and work
in partnership with other Federal agencies, agencies of State,
tribal, and local governments, institutions of higher education,
and the private sector to efficiently and cost-effectively collect,
integrate, maintain, disseminate, and preserve geospatial data,

4Digital TwinWiki. Available online at: https://en.wikipedia.org/wiki/Digital_twin

building upon existing non-Federal geospatial data to the extent
possible” (URISA, 2018). In other words, the GDA provides a
governance framework for bringing together billions of dollars
of investment in geospatial data from a variety of environmental
and military mission areas.

Jack Dangermond from Esri established the vision for
a geospatial infrastructure so that “users can easily and
inexpensively access an immense wealth of geographic
information on almost any subject. . . [leveraging] cloud
computing resources to perform analysis and mapping”
(Dangermond, 2018). Technologically, this means providing a
platform for connecting existing GIS systems together into a
new architectural pattern referred to as WebGIS. The WebGIS
pattern supports multiple implementation patterns from the
on Farm, edge-oriented architecture presented in the previous
section to a “system of systems” spread across the private and
public sector.

From an agricultural perspective, WebGIS provides a
framework for reducing past siloes not only across the
public sector agencies, but also between the public sector
and agricultural industry. USDA’s Agricultural Research Service
(ARS) has taken a lead in breaking down these silos by
leveraging WebGIS. Although in its early stages, the Agricultural
Collaborative Research Outcome System (AgCROS) illustrates
the vision of collaboration by providing a single platform for
the dissemination of new agricultural scientific discoveries and
techniques (Delgado et al., 2018b). AgCROS was built based on
individual ARS national research projects. These projects studied
areas such as greenhouse gas emissions, soil health, genomics,
cover crops, renewable energy, antibiotic resistance, nutrient use
and nutrition (Del Grosso et al., 2013; Delgado et al., 2016;
Delgado et al., 2018b).

Sustaining the Earth’s Watersheds, Agricultural Research Data
System (STEWARDS) started the ARS multilocation national
natural resource projects. STEWARDS used what is now called
WebGIS, but each location had its ownmeasurement vocabulary,
so location cross comparison was not possible (Steiner et al.,
2009). STEWARDS did introduce a measurement methods
catalog which is a very important component in any of these
systems. The Greenhouse gas Reduction through Agricultural
Carbon Enhancement network (GRACEnet) was the first project
to show true collaboration among scientists (Del Grosso et al.,
2013). GRACEnet, also used a WebGIS. GRACEnet showed
that through collaboration among the scientists, a way to build
up a common vocabulary of measurements for greenhouse gas
emissions. This has been key in building systems around each of
these individual projects since for ARS. GIS provided a way to
relate all this data based on location. The addition of metadata
for public discovery and measurement methods now allow the
individual location data to be combined to look at trends across
ARS research locations. The next steps for AgCROS will be
adding imagery, real time sensors, and electronic field collection
to allow more data to be added with the goal of allowing the
machine learning techniques discussed above to be realized.
More importantly, it promotes the integration of agricultural
knowledge using the WebGIS pattern in order to promote
collaboration across government, industry and academia. In
other words, it is the mechanism for speeding up the adoption of
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FIGURE 5 | The Global Agricultural and Disaster Assessment System (GADAS) is a GIS system that provides data about global crop conditions based on satellite

imagery and remotely sensed data [USDA-FAS].

new crop production techniques to the smart farm, which can in
turn deliver higher quality data back to the scientific community
for enabling sound science. In effect, these aforementioned
systems along with a smart farm network suggest that WebGIS
could, in fact, become the Digital Twin for the Globe. In this way,
such a system would facilitate the transparency of environmental
costs and reduce cost externalities based on real-data from
monitoring systems down to the farm/producer, thereby enabling
more data-driven policy making.

CONCLUSION

Precision Agriculture emerged out of the 1980s because of the
development of several key technologies as a way to improve
margin through cost management of inputs while improving
yield. Development of precision-conservation practices started
in the early 2000s. New technologies like GPS, satellite imagery,
and new methods of genetic modification in the green revolution
have represented a disruption in agriculture not seen since the
introduction of the first successful commercial tractor in the
early 1900s and the green revolution that occurred between
1950 and the late 1960s. With the increasing impact of climate
change, this paper has argued that the next revolution in
precision agriculture will be driven by SPAE which could
leverage past technologies combined with Big Data analysis.
Among other positive impacts, SPAE will contribute to increased
yields and profits, increased adaptation to a changing climate,
increased sustainability of agricultural systems, and increased
sustainability outside of the field and across watersheds, reducing
nutrient transport across watersheds and contributing to
global sustainability.

While the traditional definition of sustainable agriculture
focused on incorporating new practices that deal with ecosystem
services, this new, technology-focused sustainable agriculture
transitions from a site-specific management focus to the notion
of global sustainability. To accomplish this transition, we
introduced the WebGIS framework as an organizing principle
that connects local, site-specific data generators called smart
farms to a regional and global view of agriculture that can support
both the agriculture industry and policy makers in government.

Automation and the use of AI, IoT, drones, robots, and Big
Data serve as a basis for “Digital Twins,” which could allow
for simulations of new ideas that can be tested virtually to
determine environmental impact before implementation in the
real world. In other words, constructing new practices in the
virtual world will reduce the time to deploy new practices that
lead to better environmental outcomes. If we are to feed 10 billion
people by 2100 while preserving our environment, the next green
revolution must incorporate the virtual world.
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