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Sorghum’s heat and drought tolerance make it, together with upland cotton, one of two

crops produced profitably under dryland conditions in the U.S. Southern High Plains

(SHP). Here, a simulation-based method evaluates management options that increase

median (50th percentile) SHP dryland sorghum yields and estimates those practice’s

yield risk effects. This method generates climate-representative distributions of grain

yields via a crop model driven by weather inputs from 21 SHP weather stations during

2005–2016. Optimal management practices for current SHP climate conditions were

sought by generating yield distributions under 32 management options defined by four

planting dates, four plant densities, and applied or no applied N. The highest median grain

yields resulted from management options with the latest planting date (July 5) and the

lowest plant density (24.7K plants ha−1), while applied N had essentially no yield effect.

Increased yields with later planting dates are consistent with sorghum’s growth cycle and

SHP summer rainfall climatology. Confirming the low plant density yield effect may require

additional field studies, as supporting evidence of higher yields at lower densities from

other SHP field and modeling studies is inconclusive. These crop simulations, however,

suggest late June to early July planting as part of management practices that maximize

yields in dryland SHP sorghum production.

Keywords:managing to climatology, climate-optimal agriculturalmanagement, agricultural riskmanagement, U.S.

southern high plains, DSSAT CERES-sorghum, dryland sorghum production

INTRODUCTION

Over the U.S. Southern High Plains (SHP) sorghum [Sorghum bicolor (L.) Moensch] plays an
important part in un-irrigated “dryland” agricultural production. During 2016–2018 Texas was
the second-ranked U.S. state behind Kansas in planted sorghum acres [NASS (U. S. Department of
Agriculture National Agricultural Statistics Service), 2019], with a major production area located in
the Texas Panhandle-SHP region. Sorghum’s heat and drought tolerance make it well-suited to the
area’s semi-arid summer growing conditions, and its genetic diversity makes the crop potentially
useful as forage, a gluten-free grain source, and in biofuel production (Dahlberg et al., 2011).
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Over the broader southern Ogallala aquifer region it is a major
feed grain and silage source to the area’s confined livestock
operations (Amosson et al., 2014). Although cotton is currently
the main SHP summer crop, sorghum is the leading alternative
for producers in years when dryland cotton fails due to dry
conditions, heat stress, or hail damage. With the ongoing
depletion of the Ogallala aquifer (Sophocleous, 2010; Haacker
et al., 2016; McGuire, 2017) the region’s agricultural economy
may be increasingly dependent on un-irrigated production in
the future. As a result, there is need to explore and define best
dryland management practices for both crops in the region’s
growing environment.

However, natural variation in summer rainfall makes it hard
to identify best management options for SHP dryland crops. In
semi-arid regions un-irrigated yields are largely determined by
the amount and timing of rainfall, which can vary considerably
and unpredictably from year to year. This uncertainty in rainfall
leads to uncertainty in both yields and profits. Although seasonal
precipitation forecasts might allow producers to pro-actively
manage planting by providing advance notice of a wet or dry
growing season, over the central U.S. the prospects for predicting
summer rainfall are limited (Livezey and Timofeyeva, 2008; Peng
et al., 2012). Given the inability to predict seasonal rainfall,
an alternative is to “manage to climatology,” i.e., identify and
adopt crop-specific management practices that are optimal to
a growing region’s current climate conditions. Because rainfall
is the leading driver of variability in dryland yields and
profits, identifying climate-optimal practices and estimating the
associated production risk requires an extensive sampling of
growing season rainfall outcomes, and a way of translating those
outcomes into crop yields. One way to make this connection is
multiple-year field experiments at multiple sites, which might
sample a wide range of seasonal rainfall variability and produce
a corresponding range of yields. But the resources required by
such field experiments would be considerable, particularly when
repeated over a range of management options. Another option is
to use crop models to simulate production over a representative
range of current dryland growing conditions.

In a preceding companion paper (Mauget et al., 2019;
hereafter M19) a modeling-based method was demonstrated
that identified climate-optimal practices in SHP dryland cotton
production. Here, this approach is applied to dryland sorghum
production. In this scheme a crop model is used to translate
large samples of growing season weather outcomes into dense
distributions of simulated yield outcomes. As the weather data
inputs to the CERES-Sorghum model used here are limited
here to records during 2005–2016, that data, and the resulting
modeled grain yield distributions, are considered representative
of current SHP summer climate. Optimal management practices
for current climate are sought by repeating simulations over a
range of management options to identify those that maximize
median yield. The densely-sampled yield distributions can be
used to estimate the probability of dryland yield outcomes
under current conditions. Given assumed commodity prices
and production costs, they also might be used to estimate

Abbreviations:WTM, West Texas Mesonet; SHP, Southern high plains.

the probability of profit outcomes. The key component in this
process that makes the estimation of current production risk
possible is the use of 11 years of weather data inputs from 21West
Texas Mesonet (WTM) weather stations (Schroeder et al., 2005).
This broad sampling of seasonal rainfall outcomes generates
231 yields for each management option, which in turn estimate
the climate-driven variation in current SHP dryland sorghum
production. In addition to allowing for estimates of dryland
production risk at high resolution, this process can also generate
similarly resolved yield effect (1Y) distributions resulting from
the choice of one management option over another.

Previous sorghum simulations (Chapman et al., 2000;
Hammer, 2006; Hammer et al., 2014) have explored how genetics
and management might be optimized to different Australian
production environments. The modeling approach followed here
is generally similar to that found in Hammer et al. (2014),
hereafter, H14, but differs in some respects. Whereas, H14
modeled yields from 405 possible genetic variations over 5
environment types, the focus here is on one medium maturity
cultivar grown in the SHP environment. However, both here and
in H14 more than 100 station-years of weather data were used
to generate yield ensembles to estimate yield risk for a range
of management options. In addition, the emphasis in H14 and
the current study is on simulating yield effects due to rainfall
variation, which is the main production-limiting factor in both
Australian and SHP dryland sorghum production.

The following Materials and Methods section describes
the CERES-Sorghum model, its calibration based on SHP
field studies, and the model’s weather data inputs and initial
conditions. That section concludes by outlining the simulation’s
experimental design, and compares CERES-Sorghum yield
statistics vs. recent regional production statistics. The Results
section presents the simulated grain yield distributions of
32 sorghum management options and describes management-
related yield effects. The Summary and Discussion section
summarizes and discusses results, outlines recommendations
for SHP dryland sorghum management, and previews related
future research.

MATERIALS AND METHODS

The CERES-Sorghum Model
CERES-Sorghum (Alagarswamy and Ritchie, 1991; White et al.,
2015) is the sorghum growth module of the Decision Support
System for Agrotechnology Transfer cropping system model
(DSSAT-CSM) (Jones et al., 2003; Hoogenboom et al., 2017). As
described in greater detail in Jones et al. (2003), the DSSAT-
CSM is an integrated collection of software components that
includes a main program, management module, soil module,
weather module, and a soil-plant-atmosphere module. The
model simulates plant growth processes at daily time steps
and requires daily weather inputs. In the version used here
(4.6.1.0) crop-specific growth modules simulate the development
of 45 individual crops. Each crop growth module requires
environmental data, genetic and ecotype parameters, and crop
management parameters as inputs. A more complete description
of the CERES-Sorghum growth module, and its ability to
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reproduce sorghum phenology, yield variation, and management
effects found in field studies can be found in White et al. (2015).

Model Calibration
The CERES-Sorghum growth parameters used here were
estimated by Kothari et al. (2019) based on field trials conducted
at Texas A&M University’s AgriLife Research Center at Halfway,
TX. The Halfway sorghum trials were carried out during 2007,
2010, 2012, and 2013 under low, base, and high irrigation rates
(Bordovsky et al., 2013). The trials’s medium-maturity grain
cultivars varied during those years, with the DeKalb variety
DKS 44-20 planted in 2010 and 2012, DKS 37-07 in 2007, and
DKS 49-45 in 2013. The medium-maturity cultivar and ecotype
parameters used here for CERES-Sorghum were calculated based
on a step-wise procedure that adjusted parameters to reproduce
yields and the timing of growth stages in the high irrigation trials.
Model validation was carried out by testing CERES-Sorghum’s
ability to reproduce yields in the low- and base-irrigated trials
using those parameters (Kothari et al., 2019). The comparison of
simulated and observed yields from the validation trials resulted
in an r2 of 0.86 and an index of agreement (d) of 0.96.

Weather Data Inputs and Simulation Initial
Conditions
To allow for the comparison of dryland cotton and sorghum
profit and risk outcomes in subsequent work, the CERES-
Sorghum simulations for each station-year were driven using
the same WTM weather data used to generate the M19 dryland
cotton simulations. As described in M19, the daily weather
inputs from each of Figure 1’s 21 weather stations were derived
by averaging or summing sub-daily WTM data into daily
values, or defining daily maximum and minimum temperatures
based on the WTM’s reported 5min temperature records. The
resulting daily weather inputs include minimum and maximum
temperature at 2.0m, average dew point temperature, total
precipitation, total solar radiation, and 2.0m daily wind run. The
archived 5min WTM data records were subjected to the quality
control (QC) procedures described in Schroeder et al. (2005),
while the daily values calculated here were subjected to additional
QC tests described by Mauget et al. (2017).

The dryland sorghum crop simulations were based on the
same Pullman Silty Clay Loam (Fine, mixed, superactive, thermic
Torrertic Paleustoll) assumed in M19. As in M19, initial soil
moisture values were randomly assigned between 65 and 100%
of field capacity based on the range of 68 spring measurements
made in the USDA’s Bushland, TX weighing lysimeter (Evett
et al., 2015) during 1990, 1992, 1993, and 1997. For each WTM
station-year, the random number generator in both simulations
was initialized with a unique seed defined by the sum of the
simulation year (2005–2016) and the WTM station’s elevation.
Thus, for each year, and at each location, the M19 cotton
simulations and the current sorghum simulations began with
identical initial soil moisture conditions for the same station-
year. This allows simulations conducted here and in M19 for
a given location and year to begin with the same initial soil
moisture conditions under different management options. In
future work comparing dryland cotton and sorghumprofitability,

FIGURE 1 | Locations of the 21 mesonet weather stations used to provide

weather input data for the CERES-Sorghum model during 2005–2016. Star

marks the location of the Texas A&M AgriLife Research Center at Halfway,

Texas.

it also causes cotton and sorghum simulations for the same
station-year to begin with the same initial conditions. Both the
current sorghum simulations and the M19 cotton simulations
began on the same date (Mar. 17) and used the same Priestley-
Taylor evapotranspiration scheme. As in M19, the simulation’s
ambient soil N level was set to the 96 kg ha−1 regional average
estimated from the Bronson et al. (2009) soil N survey.

Dryland Sorghum Simulations
During each year CERES-Sorghum simulations at each Figure 1

WTM location were repeated under 32 management options
(MO) defined by 4 plant densities, 2N applications, and 4
planting dates (Table 1). With the simulation’s 102 cm (40 in.)
row width, plant separations of 2.52, 5.04, 7.56., and 10.08 plants
m−1 along a row result in planting densities of 24.7, 49.4, 74.1,
and 98.8 K plants ha−1 (10, 20, 30, and 40K plants acre−1).
These four values are roughly centered on a 59.3 K plants ha−1

(24.0 K plants acre−1) density estimated to maximize sorghum
yields in past SHP field experiments (Jones and Johnson, 1991). A
common practice in SHP sorghum production is to apply 0.90 kg
(2.0 lb) of N for every 45.5 kg (100.0 lb) of anticipated grain
yield. Assuming a realistic yield goal equal to the 75th percentile
of NASS District 11 grain yields during 2012–2016 (3,358 kg
ha−1), this corresponds to an N application of 66 kg ha−1.
Given the assumed 96 kg ha−1 background soil N level, a second
N treatment applied no fertilizer (0.0 kg ha−1). In simulations
where fertilizer was applied two equal N applications of 33 kg
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TABLE 1 | The 32 management options modeled in the CERES-Sorghum simulations.

ha−1 were applied at planting and 50 days after planting. Based
on a sensitivity study of planting dates depicted in Figure 3b, four
planting dates separated by 10-day intervals were simulated, with
the earliest on June 5th and the latest on July 5th. These dates also
generally span the range of planting dates recommended by SHP
regional extension for sorghum (Trostle et al., 2010).

As in M19, distributions of dryland sorghum yield were
formed for each of the 32 management options by aggregating
simulated yields from every station’s model runs over the years
2005–2010 and 2012–2016. As the 2011 drought year produced
no dryland upland cotton over the Southern High Plains (Dever
et al., 2012), that year’s simulated sorghum yields were withheld
to maintain consistency with M19. Thus, for each management
option, CERES-Sorghum was run for 11 years with the weather
inputs for each of Figure 1’s 21 WTM stations, which produced
231 grain yield values. For eachMO those values were ranked into
percentiles (e.g., as in Figure 2) to form densely sampled grain
yield distributions.

Comparison of Modeled vs. NASS
Production Yield Percentiles
The Figures 2a,b barplots plot percentiles of recent sorghum
grain yields reported by producers in the U.S. National
Agricultural Statistics Service’s (NASS) Districts 11 and 12. The
NASS Objective Yield Surveys for west Texas sorghum are
based on between 100 and 300 yield reports each year (Lindsay
Drunasky, personal communication), and the Figures 2a,b

percentiles were estimated from yield reports aggregated over
the 2012–2016 cropping years. Figure 2c plots the percentiles
of 2012–2016 CERES-Sorghum simulated grain yields based on
the Kothari et al. (2019) cultivar parameters. Those yields were
generated from the 21 station’s weather inputs during those 5
years over all of the 32 management options, which produced
3,360 simulated yields.

The medians and inter-quartile range (IQR) of District 12
yields (1,681 and 1,116 kg ha−1,) are noticeably less than that
of District 11 (2,239 and 2,107.4 kg ha−1). A tendency for
lower District 12 yields was also found in NASS dryland cotton
yields in M19, which may be due to a combination of sandier
soils, less rainfall and higher evapotranspiration in the more
southern District 12 region. The Figure 2c simulated median

yield (2,838 kg ha−1) is almost 600 kg ha−1 greater than that of
the NASS District 11 median and 1157.1 kg ha−1 greater than the
NASS District 12 median (1,681 kg ha−1). Higher modeled yields
might be attributed to the simulations being based on one soil
type and a range of initial soil moisture conditions higher than
those that SHP sorghum producers might typically plant into.
Figure 2d shows the percentiles of simulated yields aggregated
over the 2005–2010 and 2012–2016 growing seasons and over
all of the 32 management options (7,392 yields). The addition of
the 2005–2010 simulated yields leads to a 522 kg ha−1 increase in
median yield relative to Figure 2c, and an increase of the IQR to
2,672 kg ha−1.

RESULTS

Simulated Grain Yields by Management
Option
Figure 3a’s barplot diagrams show the 32 yield distributions that
result after Figure 2d’s modeled yields have been separated by
management option. A consistent repeating “sawtooth” pattern
in median and 75th yield percentiles shows increased yields
as planting dates are delayed from June 5th to July 5th. Plant
density has a less obvious effect, with yield percentiles for the
same planting data and N application gradually decreasing as
density increases from 24.7 to 98.8 K plants ha−1, e.g., compare
the 75th yield percentiles for MO 4, 12, 20, and 28. An additional
management effect is that of increased yield variability with later
planting dates. For example, the spread between the 75th and
25th yield percentiles for MO 4, i.e., the inter-quartile range
(IQR), is 3,078 kg ha−1. By contrast, the IQR of MO 1—which
differs from MO 4 by only by an earlier June 5 planting date—
is 2,018 kg ha−1. The management option producing the highest
median (4,014 kg ha−1) is MO 4, which plants on July 5th at the
lowest plant density and applies no nitrogen. The lowest median
yield (2,870 kg ha−1) results from MO 29, which plants on the
earliest of the 4 planting dates at the highest plant density and
applies 66 kg ha−1 N.

To show planting date effects over a wider range of dates,
Figure 3b’s yield distribution’s result from the MO 4 option’s
plant density and 0 kg ha−1 applied N rate, but with March
27th to July 29th planting dates. Median simulated yields are
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FIGURE 2 | (a) Sorghum grain yield percentiles of aggregated NASS District 11 yield reports during the 2012–2016 cropping years. (b) As in (a) for NASS District 12

yield reports. (c) Grain yield percentiles of CERES-Sorghum simulations aggregated over 21 locations and 32 management options during 2012–2016 (3,360 yields).

(d) As in (c) for modeled yields aggregated over the 11 years of 2005–2010 and 2012–2016 (7,392 yields).

relatively constant with planting dates before June 7th, increase
to a maximum between June 27th and July 9th, and then decrease
abruptly with later planting dates. Thus, Figure 3a’s “sawtooth”
yield effect with later planting is a consequence of simulated
median yields peaking with late-June to early-July planting dates.
The highest median (4,108 kg ha−1) occurs with a July 1st
planting date.

Figure 4 shows Figure 3a’s yield distributions ordered by
their median yields. Consistent with Figure 3a’s sawtooth yield
pattern, the 16 highest medians occur with either a June 25 or
July 5th planting date. The 16 lowest medians occur with June
5 or June 15 planting dates. The management options producing
the 4 highest median yields plant at the lowest plant density, while
the 4 lowest medians result from options with the highest plant
density. By contrast, there is no clear pattern of median yield
effects associated with the two N levels.

Management-Related Yield Effects
To isolate and compare the contributions of planting date,
planting density, and applied N levels to MO 4 yields, Figure 5
shows yield effect (1Y) distributions associated with selecting
that option over alternate management practices. Yield effects for
each station-year were calculated by subtracting yields resulting
from an alternate practice from MO 4 yields, with the alternate
yields simulated with the same station-year’s initial soil moisture
conditions and daily weather inputs. As yields from both
management options were generated under the same initial and
environmental conditions, the resulting 1Y value estimates a
yield effect due to management. The resulting 1Y distributions
might be used to estimate the probability of yield effects
due to management choices under current climate conditions.
Figure 5a shows the distribution of 231 yield effects resulting
from selecting MO 4 over the management option producing

the lowest median yield, i.e., MO 29. In addition to producing
the highest and lowest median yields, these options also reflect
management extremes, i.e., the latest vs. earliest planting date,
lowest vs. highest plant density, and no vs. 66 kg ha−1 applied N.
As a result, the Figure 5aMO4–MO29 1Y distribution estimates
the range of potential yield effects due to the combined influence
of planting date, planting density, and applied N. The MO 1
management option differs from MO 4 only by planting date,
i.e., earliest vs. latest. Thus, the Figure 5b MO 4–MO 1 1Y

distribution estimates the exclusive yield effects of selecting a July
5th over a June 5th planting date (“PDATE-Only”). Similarly,
Figure 5c’s MO 4–MO 28 distribution shows the yield effects of
plant density only (“PDENS-Only”), as MO 28 differs from MO
4 only in selecting the highest rather than lowest plant density.
Figure 5d’s MO 4–MO 8 “APPN-Only” distribution shows only
fertilization effects, as those options differ only in the levels of
applied N.

In Figure 5a, the median MO 4–MO 29 yield effect is 798 kg
ha−1. However, 80 of the 231 1Y values are negative, with
values as large as −2,818 kg ha−1. Thus, even though Figure 3a’s
MO 4 median yield is 1,144 kg ha−1 greater than the MO 29
median, these simulations estimate a 34.6% probability that
MO 4 would produce smaller yields in any given year under
current SHP summer climate conditions. In Figures 5b,c the
median PDATE-Only (421 kg ha−1) yield effect is less than
that of the median PDENS-Only effect (515 kg ha−1), but the
IQR of the former (2,610 kg ha1) is almost 9 times larger than
that of the latter (293 kg ha−1). As a result, the simulations
show considerably more yield variability in planting date effects
than in planting density effects. The Figure 5b PDATE-Only
distribution’s range and IQR are similar to that of Figure 5a,
which shows that the variability of MO 4–MO 29 yield effects
is mainly a planting date effect. This also shows that the 34.6%
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FIGURE 3 | (a) Percentiles of simulated grain yields for Table 1’s 32 management options, each aggregated over the 21 station’s simulations during the 11 years of

2005–2010 and 2012–2016 (231 yields). (b) Percentiles of simulated grain yields for MO 4 plant density and applied N, for March 27th to July 29th planting dates at 4

day intervals.

probability of negative MO 4–MO 29 yield effects is due mainly
to earlier planting dates, as the PDATE-Only distribution’s
median and wide dispersion leads to a 41.6% probability of
a negative yield effect. However, given the roughly equivalent
PDATE-Only and PDENS-Only median yield effects, planting
date and planting density make roughly equal contributions in
determining the location of the MO 4–MO 29 1Y distribution.
In Figure 5d, applied N yield effects are minor, with a median

1Y of 4 kg ha−1 and 90% of effects occurring between −34 and
59 kg ha−1.

SUMMARY AND DISCUSSION

Of the 32 simulated sorghum management options (Table 1)
the highest median grain yield was produced by the option that
planted on the latest planting date (July 5th), at the lowest plant
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FIGURE 4 | As in Figure 3a, with each management option’s yield distribution plotted in order from the highest to the lowest median grain yield.

FIGURE 5 | (a) Distribution of yield effect (1Y ) values resulting from subtracting grain yields generated via the MO 29 management option from the yield generated via

the MO 4 option using the same station-year’s weather data. (b) As in (a) for 1Y values generated by subtracting MO 1 from MO 4 yields. (c) As in (a) for 1Y values

generated by subtracting MO 28 from MO 4 yields. (d) As in (a) for 1Y values generated by subtracting MO 8 from MO 4 yields.

density (24.7 K plants ha−1), and applied no nitrogen (MO 4). As
in the M19 dryland cotton simulations, applied N had negligible
yield effects that might be attributed to the background soil N

content assumed in both studies. Although this 96 kg ha−1 level
is consistent with estimates of average SHP N levels (Bronson
et al., 2009), it is high relative to the needs of sorghum for realistic
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dryland grain yields in the region. Thus, an additional 66 kg ha−1

N application had minor effects on grain yields, which, given the
input costs of applied N, would likely lead to reduced profits.
Under production conditions this highlights the need for soil N
testing before planting, as residual SHP soil N levels may be high
enough to support dryland sorghum production.

The clearest management effect found was increased median
yields as planting is delayed from June 5th to July 5th (Figure 3a).
Over a wider range of planting dates the CERES-Sorghum
simulations show that, under 2005–2016 SHP climate conditions,
median yields are maximized with late-June to early July planting
dates (Figure 3b). This yield effect is interpreted here as a
consequence of, in effect, synchronizing a dryland sorghum
crop’s high-water demand growth phase to an SHP fall wet
period. Figure 6 shows running 15-day rainfall totals averaged
over Figure 1’s 21 WTM stations during 2005–2016, with error
bars marking ± 2σ uncertainty in the means. Following the
growth cycle of a medium maturity sorghum cultivar (Gerik
et al., 2003), the figure’s crop development timeline marks a July
5 planting date, emergence after 7 days, and 3 consecutive 33-
day periods of vegetative growth, reproductive growth, and grain
filling. The May to September summer growing season coincides
with the region’s annual wet period, which is interrupted by
relatively dry conditions during late July and early August.
Wet conditions return in early Fall, with the wettest 15-day
periods during 2005–2016 occurring during the first 2 weeks
of September. Sorghum is most sensitive to water stress during
the period between panicle initiation and flowering (Jones and
Johnson, 1991; Gerik et al., 2003), which defines its reproductive
growth stage. Late June to early July planting dates allow the SHP
region’s early September wet period to coincide with the crop’s
boot stage, which occurs during the latter portion of reproductive
growth when the crop’s water requirements are greatest (Gerik
et al., 2003). As noted by Trostle et al. (2010), mid-summer
planting dates also allow for higher soil moisture accumulation
during the region’s May–June wet period.

Although first freeze dates restrict how late SHP sorghum can
be planted, late-June to early July planting dates are consistent
with the latest dates (June 25–July 5) recommended by regional
extension (Barber and Trostle, 2007) for medium maturity grain
sorghum similar to that modeled here. Figure 6’s barplot shows
the percentiles of first freeze dates for the 21 WTM stations
during 2005–2016, where first freeze is defined as the first fall day
when daily minimum temperature falls below −2.2◦C (28.0◦F).
The earliest of the 252 first freeze dates is October 6, with
50% of the dates occurring before Nov 10. Regional extension
(Trostle et al., 2010) recommends that planting dates should
allow for physiological grain maturity to occur 2–3 weeks before
first freeze. An October 19 maturity date with a 3 week buffer
period would require a first freeze later than November 9, which
is 1 day before the November 10 median date for 2005–2016.
Thus, there is a ∼50% probability that the requirements for that
buffer period would be met with a medium maturity cultivar
planted on July 5. Increasing that probability might be achieved
with late June planting, and/or a more rapidly maturing cultivar.
However, a practice of late-planting sorghum may not be best
for more northern SHP locations with earlier freeze dates. In

the SORKAM simulations of Baumhardt et al. (2005), which
were driven by long-term weather data from a UDSA-ARS
research site at Bushland, TX (35◦ 11′N, 102◦ 5′ W), freezing
fall temperatures prevented sorghum planted on June 25 from
reaching physiological maturity. It should also be noted that late
June or early July planting in the CERES-Sorghum simulations
did not result in unconditionally increased yields. In a yield effect
analysis that calculated differences in yield outcomes resulting
from planting on July 5 and June 5, in 41.6% of the simulations
June 5 planting produced higher yields (Figure 5b). Thus, under
current climate conditions the estimated probability of early July
planting leading to higher yields is 58.4%, only slightly better than
that of an evenly-weighted coin flip.

The effect of the 32 management options on median yield
(Figure 4) show that the 4 options with the highest median
yields plant at a 24.7 K plants ha−1 density. However, there
is little supporting evidence that a density that low would

maximize yields in other SHP field and modeling studies, and
an optimal density for dryland conditions in uncertain. Based
on field trials, Jones and Johnson (1991) estimated that dryland
SHP sorghum yields would be maximized with a 59.3 K plants
ha−1 density, with densities between 39.5 and 83.9 K plants
ha−1 producing yield reductions of <5%. But although 24.7 K
plants ha−1 density is less than half that estimated to maximize
yields in the Jones and Johnson (1991) field experiments, those
trials were conducted over a 3-year (1986–1988) period with
above average growing season rainfall during each year. As a
result, their optimal plant density may not be representative
of SHP summer climate conditions and dryland sorghum
production. By contrast, the CERES-Sorghum simulations here
were based on a more represent range of summer rainfall
variability. However, CERES-Sorghum validation tests (White
et al., 2015) have showed that the model did not perform
well in attempts to reproduce population effects found in the
Jones and Johnson (1991) experiments. As a result, whether
the simulated optimal planting rate found here reflects actual
dryland production conditions is open to question. In an
irrigated field experiment conducted at Halfway, Texas (Trostle
and Barber, 2008), nine seeding rates were tested that produced
plant populations between 54.8 and 202.0 K plants ha1, but no
clear general trend between seeding rate and grain sorghum
yields was found. Based on dryland SORKAM simulations that
tested the effects of planting date, plant population (30.0, 60.0,
and 120.0 K plants ha−1), row spacing, and cultivar maturity,
Baumhardt et al. (2005) found that the highest simulated plant
population decreased panicle seed number, seed mass, and tiller
number. Given lower yields with higher plant populations, they
recommended either 30.0 or 60.0 K plants ha−1 densities of
early or medium maturing cultivars to achieve higher SHP
dryland sorghum yields. These densities are generally consistent
with current SHP extension guidelines for dryland production
(Trostle et al., 2010), which recommend plant populations
between 34.6 and 69.2 K plants ha−1.

Determining an SHP dryland sorghum planting density that
maximizes yield may require additional field studies of density
effects, but conducted with lower densities more consistent with
dryland production. Or, CERES-Sorghum could be modified
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FIGURE 6 | Black trace marks the average of running 15-day rainfall totals over Figure 1’s 21 WTM stations during each year of 2005–2016 (n = 252). Gray error

bars mark ± 2σ uncertainty in the means. Barplot shows the percentiles of first hard freeze dates (daily Tmin < −2.2◦C) for each of the 252 station-years. Crop

development timeline marks growth phases for a medium maturity sorghum cultivar planted on July 5.

to allow it to independently reproduce planting density effects
found in the field. By contrast, the yield maximizing effect of
late planting dates seen here is consistent with SHP summer
rainfall climatology and sorghum’s growth cycle. Mid-summer
planting might also allow for longer periods of spring and early
summer soil moisture accumulation. Thus, Figure 3b’s late-June
and early July increase in median yields is likely a consequence
of the model’s ability to translate soil moisture into yield. There
is less need to confirm this management effect in the field, as the
CERES-Sorghum growth parameters were validated based on the
model’s ability to reproduce the yield response to applied water
in irrigated field studies (Kothari et al., 2019).

The results here and in M19 demonstrate a simulation-based
method for identifying climate-optimized dryland management
practices and estimating climate-related risk. This approach is
based on the availability of a large sample of a growing region’s
seasonal weather outcomes, which were provided in both studies
by West Texas mesonet station data (Schroeder et al., 2005)
during 2005–2016. In growing regions where mesonet data is
unavailable, weather generators might be used to simulate a
dense meteorological network based on weather data from an
existing lower resolution network (Wilks, 1999). Given large
samples of observed or simulated seasonal weather data, a
calibrated crop model is used to convert those weather outcomes
into similarly sampled yield distributions. Best management
practices for current climate can be sought by running the model
over a range of management practices that are optimal under
specific production goals. The best practices here were those
that maximized median yields, but management options that
minimize profit risk could also be identified. But, as noted above,
model responses to management options should be verified
against the results of field experiments. As shown in M19
and here, optimal practices for different dryland crops may be
adaptations to different environmental factors. In M19 the mid-
May planting dates that increased total growing degree days and
maximized median cotton lint yields were basically a response to
the SHP region’s cool growing conditions. The CERES-Sorghum
simulations here show that early July planting dates increase

median sorghum yields by causing a crop’s peak water-demand
period to coincide with an early fall wet period. But in both cases,
the dense yield distributions generated by this approach can be
used to estimate the probability of dryland yield outcomes under
a region’s current climate conditions.

Yield variability is a leading driver of economic risk in semi-
arid dryland agriculture, but variation in commodity prices
and input costs also plays a role. In a final profit analysis,
not conducted here but the goal of future work, the dense
simulated yield distributions for dryland cotton and sorghumwill
be translated into corresponding profit distributions based on
farm budgets appropriate to each crop. Given the resulting profit
distributions, economic risk for each crop, e.g., the probability
of operating costs exceeding yield revenues under specified
commodity prices and input costs, can be calculated. In addition,
the sensitivity of net returns to variation in commodity prices
and input costs can be estimated. Given the leading influence
of planting date found here and in M19, the effects of planting
date on profit risk can be calculated. Also, the profitability of
dryland cotton and sorghum under varying commodity prices
can be compared.
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