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In today’s global market, some organic farmers must meet regulatory requirements

to demonstrate that their plants and feedstocks are genetically modified organism

(GMO)-free. Many GM plants are engineered to contain a promoter from the plant

virus, Cauliflower mosaic virus (CaMV), in order to facilitate expression of an engineered

target gene. The relative ubiquity of this CaMV 35S promoter (P35S) in GM constructs

means that assays designed to detect GM plants often target the P35S DNA sequence,

but these detection assays can yield false-positives from plants that are infected by

naturally-occurring CaMV or its relatives within the Caulimoviridae. This review places

CaMV infection and these ambiguous GM plant detection assays in context, serving

as a resource for industry professionals, regulatory bodies, and researchers at the

nexus of organic farming and global commerce. We first briefly introduce GM plants

from a regulatory perspective, and then we describe CaMV biology, transmission, and

management practices, highlighting the relatively widespread nature of CaMV infection

in both GM and non-GM crops within the Brassicaceae and Solanaceae families. Finally,

we discuss current knowledge of public food safety related to the consumption of

CaMV-infected produce.
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INTRODUCTION

Organic agriculture, an ecological production management system that serves to promote and
enhance biodiversity, biogeochemical cycles, and soil biological activity, has become increasingly
popular, with global retail sales reaching more than $80 billion (Brantsæter et al., 2017; Mie
et al., 2017). Organic agriculture relies on fertilizers of organic origin, such as compost, and
encourages the use of biological pest control. It allows for the use of natural substances, such as
pyrethrin and rotenone, while prohibiting most synthetic fertilizers and pesticides (some synthetic
substances, such as copper sulfate and elemental sulfur, can be allowed). However, genetically
modified organisms (GMOs) and plant growth regulators are prohibited in organic farming in
regulated markets (Santhoshkumar et al., 2017).

A genetically modified organism (GMO) is any organism with genetic material that has been
altered using genetic engineering techniques, and in the case of GM plants, a new trait is typically

https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org/journals/sustainable-food-systems#editorial-board
https://www.frontiersin.org/journals/sustainable-food-systems#editorial-board
https://www.frontiersin.org/journals/sustainable-food-systems#editorial-board
https://www.frontiersin.org/journals/sustainable-food-systems#editorial-board
https://doi.org/10.3389/fsufs.2020.00021
http://crossmark.crossref.org/dialog/?doi=10.3389/fsufs.2020.00021&domain=pdf&date_stamp=2020-03-31
https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org
https://www.frontiersin.org/journals/sustainable-food-systems#articles
https://creativecommons.org/licenses/by/4.0/
mailto:jbemerson@ucdavis.edu
https://doi.org/10.3389/fsufs.2020.00021
https://www.frontiersin.org/articles/10.3389/fsufs.2020.00021/full
http://loop.frontiersin.org/people/63427/overview


Bak and Emerson Implications of CaMV Infection for Organic Farms

introduced to the plant. GM plants can confer advantages such
as herbicide resistance, disease resistance, stress (e.g., drought)
resistance, and/or insect tolerance (Oliver, 2014), yet GMO use
in commercial crops and feedstocks is becoming regulated in
some countries (Sharples, 1982; Maghari and Ardekani, 2011;
Zhang et al., 2016; Tsatsakis et al., 2017). For example, many
countries in the European Union (EU) have banned or imposed
legislation to regulate GMOs (Davison, 2010; Lau, 2015; Wong
and Chan, 2016). GMO regulation has impacts on international
trade (Krueger and Le Buanec, 2008; Ramessar et al., 2008),
and the popularity of organic foods, along with the tight
regulations surrounding GMOs in some markets, have made
GMO detection technologies essential for product labeling and
traceability. Indeed, many countries have instituted labeling laws
stating that products must be labeled when they contain GMOs
above a certain threshold concentration (Wong and Chan, 2016).
These thresholds can vary—for example, the threshold is 0.9% in
the EU and 5% in Japan, whereas the U.S. has voluntary labeling,
and China has “yes-or-no” labeling (Fu et al., 2015). In the U.S., a
new law has just passed with mandatory labeling for some GMO
products that will be effective in 2020.1

More than 80% of engineered genetic constructs in GM plants
are built with the 35S promoter (P35S) from Cauliflower mosaic
virus (CaMV) and/or the NOS terminator (TNOS) derived
from the soil-borne bacterium, Agrobacterium tumefaciens
(Figure 1A). Specifically, as of 2015, P35S and TNOS were used
in 65.7 and 53.49%, respectively, of commercialized GMOs,
with at least one of the two used in 81.4% of these constructs
(Chaouachi et al., 2013; Wu et al., 2014; Fu et al., 2015). Thus,
most GMO detection methods are based on marker sequences
for P35S and TNOS detected through polymerase chain reaction
(PCR) or quantitative PCR (qPCR) (Holden et al., 2010;Wu et al.,
2014; Fraiture et al., 2015). However, it is known that CaMV
infection of non-GM plants can yield false-positive results in
some GMO detection assays, due to the presence of the P35S
region in both the CaMV genome and many GMO constructs
(Figures 1A,B; Wolf et al., 2000; Chaouachi et al., 2008; Becker
and Ulrich, 2018). Although a detailed consideration of A.
tumefaciens infections is beyond the scope of this mini-review,
A. tumefaciens is naturally found in the soil and can infect plants,
so assays designed to detect TNOS can yield false-positive GMO
results too, as described elsewhere (Wolf et al., 2000; Escobar and
Dandekar, 2003; Yang et al., 2013; Nabi et al., 2016; Becker and
Ulrich, 2018).

Here, we synthesize relevant information for navigating
issues related to CaMV infection and false-positive GM plant
detection due to CaMV infection, with particular relevance to
sustainable organic farming and international trade of organic
products in GMO-regulated markets. We outline CaMV biology
and the impacts of CaMV infection on plant health and
yield, recommended management practices for reducing CaMV
infection of crop plants, available detection assays for GM plants
with relevance to CaMV infection, and current knowledge of the
safety of human consumption of CaMV in whole or in part.

1https://www.producer.com/2019/03/gmo-labelling-law-in-u-s-receives-mixed-

reviews/

FIGURE 1 | Schematic representation of (A) a genetically modified (GM) plant

construct and (B) the Cauliflower mosaic virus (CaMV) genome, highlighting

the shared P35S promoter sequence. (A) In a GM plant, a gene conferring a

specific trait (in blue) is inserted, and this transgene is expressed via the 35S

promoter, P35S (in yellow) and the Nos terminator, TNOS (in orange). (B) The

coding sequences of the seven CaMV genes (I-VII) encoding the seven

proteins (Pl-P7) are represented with blue arrows. The CaMV 35S promoter

(P35S) is shown in yellow and the 19S promoter (P19S) is shown in orange.

P35S overlaps with the end of gene VI. Gene IV overlaps with the end of gene

III and the beginning of gene V.

CAULIFLOWER MOSAIC VIRUS (CaMV)
BIOLOGY, PATHOLOGY, AND
TRANSMISSION

Cauliflower mosaic virus (CaMV) belongs to the Caulimoviridae
family of circular, double-stranded DNA viruses. It
predominantly infects members of the Brassicaceae family,
including radish, turnip, canola, mustard, cauliflower, broccoli,
and cabbage. Some CaMV strains (D4 and W260) are also able
to infect Solanaceae species, such as devil’s trumpets (genus
Datura) and tobacco plants (genus Nicotiana) (Scholelz and
Shepherd, 1988). CaMV genetic variants have been described in
different host species with different symptoms, virulence, and
transmission rates (Covey et al., 1990; Al-Kaff and Covey, 1994;
Doumayrou et al., 2013; Yasaka et al., 2014), and recent studies
have identified a high diversity of CaMV genomic sequences
(Farzadfar et al., 2014; Gong and Han, 2017; Becker and Ulrich,
2018; Sukal et al., 2018).

The CaMV genome consists of approximately 8,000 base-
pairs of circular, double-stranded DNA. The genome encodes
seven genes (gene I to gene VII), also called P1 to P7 for
encoded proteins 1-7. CaMV replicates by reverse transcription
(Haas et al., 2002), and its genes are transcribed from two
promoters, the 19S and 35S promoters (Figure 1B), which
are DNA sequences that define where transcription of a gene
(or group of genes) begins. After entry into a plant host
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cell, the CaMV virus particle migrates to the nucleus, where
the viral genome is separated from the viral particle (called
decapsidation). The viral DNA is transcribed via the two
promoters (P19S and P35S) into two long messenger RNAs
(mRNAs), the 19S mRNA that encodes protein P6 and the
35S mRNA that encodes the other six proteins. Translation of
the 19S mRNA results in the production of protein P6, which
aggregates in numerous cytoplasmic virus factories (Harries
et al., 2009; Angel et al., 2013; Rodriguez et al., 2014; Schoelz
et al., 2016; Schoelz and Leisner, 2017), where the translation
of other viral proteins will take place: the movement protein P1
(required for cell-to-cell movement), the helper component P2
(required for aphid transmission), the virus-associated protein
P3, the coat protein P4, and the reverse transcriptase P5. Protein
P7 has never been detected in planta and can be deleted by
mutagenesis without any effect on virus infection or transmission
(Dixon et al., 1986; Wurch et al., 1990).

CaMV is transmitted between host plants by more than
27 aphid species in a non-persistent and non-circulative
manner (Kennedy et al., 1962), meaning that after an aphid
acquires the virus from an infected plant, the virus does
not circulate or replicate within the insect. The virus is
retained for a short period (a few hours) in the aphid stylets
(mouthparts), where CaMV receptor candidates have recently
been identified (Bak et al., 2012, 2013a,b; Martinière et al.,
2013; Webster et al., 2018). The virus can then be released
to initiate a new infection during aphid feeding on healthy
plants. There are no known cases of CaMV transmission
via seeds.

CaMV IN AGRICULTURE AND
MANAGEMENT PRACTICES TO REDUCE
CaMV INFECTION

CaMV is a widespread virus in temperate regions and can cause
significant loss in Brassicaceae crops, especially in cases of co-
infection with other viruses (Shepherd, 1981; Sutic et al., 1999;
Spence et al., 2007; Li et al., 2019). CaMV incidence can easily
exceed 70%, and subsequent yields may be reduced up to 20–
50% (Shepherd, 1981; Sutic et al., 1999). CaMV can affect plant
development, especially in early infections, and the production
of flowers can be blocked. Low seed yields have also been
reported from plants with CaMV infection (Sutic et al., 1999).
The virus can induce a range of systemic symptoms, such as
chlorosis (loss of green leaf color), mosaic (patches of light
and dark green on leaves), vein clearing (abnormal clear or
translucent color of veins), and/or stunting (Figure 2). CaMV
survives in Brassicaceae crop and weed hosts, including wild
radish, turnip weed, canola, mustard, cauliflower, broccoli and
cabbage, and weed hosts are known reservoirs for the virus
outside the growing season (Farzadfar et al., 2005). Although
global GM crop regulations vary widely (see discussion above),
canola is a good example of a common GM crop that can also be
infected by CaMV. It has recently been shown that water stress
can influence CaMV virulence and transmission: under well-
watered conditions, viral load, virulence, and transmission rate

increased, whereas under water deficit, transmission rate, and
virulence decreased (Bergès et al., 2018).

The best way to minimize CaMV infection is to inhibit
aphid contact with seedlings, which are very susceptible to virus
infection (Jenkinson and Glynne Jones, 1951; Farzadfar et al.,
2005; Shah et al., 2015). Seedbeds can be isolated from aphids
with a barrier of cereals or by growing the seedlings under insect-
proof mesh (Jenkinson and Glynne Jones, 1951; Broadbent, 1957;
Shah et al., 2015). A barrier of cereals may act as a sink for
the viruses and/or as a physical barrier, such that aphids will be
more likely to land on the tall cereals first and lose their virus
contents while probing (Simons, 1957; Toba et al., 1977; Alegbejo
and Uvah, 1986; Difonzo et al., 1996; Fereres, 2000). Still, non-
persistently transmitted viruses are difficult to control, since the
insects only need to feed on the plant briefly to release viruses
(Fereres, 2000; Bak et al., 2019), and pesticides are usually not
an effective solution because aphids can transmit viruses before
the pesticide has an effect (Simons, 1957; Jayasena and Randles,
1985).

CaMV can also be transmitted mechanically by sap
inoculation using contaminated hands and pruning tools
(Yasaka et al., 2014). It has been shown that CaMV can stay for
hours on surfaces such as doors, phones, and gloves, and can be
exchanged by hand-shaking (Jiang et al., 1998; Dancer, 2014),
so disinfecting tools, equipment, and anything that contacts
plants will reduce infection. Though it did not include CaMV,
a study that tested how to prevent propagation of plant viruses,
such as Pepino mosaic virus (PepMV), Potato spindle tuber
viroid (PSTVd), Tomato mosaic virus (ToMV), and Tobacco
mosaic virus (TMV), examined sixteen commercially available
disinfectants and found that 10% bleach is the most effective
solution for preventing viral infection of plants in greenhouse
facilities (Li et al., 2015).

GM PLANT DETECTION METHODS

Many GM plant detection assays target the 35S promoter (P35S)
and/or the terminator NOS (TNOS). Polymerase chain reaction
(PCR) was the first technique applied to GM plant detection, and
it was mainly used as a fast (∼2 h) and low-cost method (Gachet
et al., 1998; Iloh et al., 2018; Grohmann et al., 2019). Real-time
PCR, also known as qPCR, was developed later and became the
preferred technique, providing both qualitative and quantitative
results bymeasuring both the presence and concentration of gene
sequences in a given sample (Akiyama et al., 2009; Holden et al.,
2010; Wu et al., 2014). Both PCR and qPCR have been reviewed
extensively elsewhere (e.g., VanGuilder et al., 2008; Emerson
et al., 2017). In the context of GM plant detection, both are
used to identify specific genetic regions of interest, based on the
hybridization of primers to conserved DNA (or, in some cases,
RNA) regions flanking the genetic sequence to be identified,
followed by the amplification of the sequence of interest by a
polymerase enzyme. In the case of PCR, the result is typically
binary (detection or non-detection) and can be visualized by
gel electrophoresis. More quantitative results can be attained
by qPCR, including the concentration and/or number of copies
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FIGURE 2 | CaMV symptoms on leaves. For each plant type, the left panel shows an uninfected leaf and the right panel shows a leaf from a CaMV-infected plant with

typical symptoms, such as mosaic (mottling, e.g., lighter and/or darker green patches, puckered or curled leaves) or vein clearing (yellow or white veins). Top left:

turnip (Brassica rapa), bottom left: watercress (Nasturtium officinale), right: canola (Brassica napus).

of a specific genetic region, which can be useful if a threshold
allowable concentration has been set by a regulatory agency.

Multiplex qPCR can allow for amplification of several DNA
targets at the same time, e.g., for the simultaneous detection of
multiple GMOmarkers in a single reaction (Akiyama et al., 2009;
Singh et al., 2016; Cottenet et al., 2019). For example, in Cottenet
et al. (2019), the authors developed a new GMO screening
method based on two multiplex real-time PCR reactions,
targeting six major GM markers in one reaction and six other
GM events in another reaction. The method showed a broad
screening capacity, due to the large number of targets, and the
limit of detection ranged from 0.005 and 0.02% (Cottenet et al.,
2019). However, the same fluorophore was used for all markers,
so detection was based on the presence or absence of signal
with no ability to distinguish among the markers. To distinguish
among markers in the same reaction, a high level of multiplexing
can be achieved using qPCR with different fluorophores for each
target; depending on the instrument, up to five distinguishable
targets have been successfully amplified in a single multiplexed
qPCR reaction (Reller et al., 2013; Datukishvili et al., 2015). For
example, we recently developed a multiplex qPCR assay that can
distinguish CaMV infection from GM plants containing P35S
in a single reaction, based on detection of four different targets:
P35S, CaMV gene III, TNOS, and actin (a universal plant gene
used as a positive control for the assay) (Bak and Emerson, 2019).

Given the increasing number and diversity of GMOs
developed and the number of molecular biology technologies
available in addition to PCR and qPCR, many different GMO
detection methods have been developed (Broeders et al., 2012;
Fraiture et al., 2015; Demeke and Dobnik, 2018) (for more

information, see Supplementary Table 1 and references therein).
Databases of GMO sequences and detection assays have also
been compiled, facilitating the identification of an appropriate
detection method or the development of a new technique for
a given need (Dong et al., 2008; Petrillo et al., 2015; Wilkes
et al., 2017). To date, there is no international standardized
GMO or CaMV detection method, but PCR and qPCR (most
commonly targeting P35S and/or TNOS) are still the most
commonly used (Grohmann et al., 2019). From a regulatory
standpoint, detection thresholds are typically evoked for various
requirements. For example, in the European Union, detection
of >0.9% GMO content requires a GMO label, but for specific
GMOs that are not allowed in the EU under any circumstances,
GMO contents must be 0%, which, practically speaking, means
below the limit of detection of the assay (Davison, 2010). Thus,
for regulatory purposes, the chosen GMOdetectionmethodmust
be sensitive enough to detect a GMO at the required threshold
concentration(s), and qPCR is the most widely used method that
provides this quantitative information.

CaMV AND FOOD SAFETY

Public concerns exist regarding whether plant viruses can infect
humans, and a number of studies have attempted to answer this
question (Bawa and Anilakumar, 2012; Rastogi Verma, 2013;
Wunderlich and Gatto, 2015). Although a definitive, universal
answer is not possible, here we point to existing literature for
insights. Numerous viruses infect plants and are consumed
through various types of fresh food and food products (Balique
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et al., 2015), and twowidespread plant viruses (Peppermildmottle
virus, PMMoV, and tobacco mosaic virus, TMV) are the most
comprehensively studied, in terms of their effects on human
consumption. To the extent that human consumption of CaMV
has been studied, we will first present results specific to CaMV,
and then we will consider human consumption of PMMoV
and TMV.

CaMV commonly and widely infects crucifers, also known as
cole crops (cabbage, kale, cauliflower, broccoli, andmustard), and
it has been reported that 10% of the cabbages and cauliflowers
on sale in supermarkets are infected with CaMV (Raafat El–
Gewely, 2001). In an epidemiological study of cauliflower in
England, it was shown that 50% of the plants were infected with
CaMV (Gong and Han, 2017), yet no ill effects or evidence of
human pathogenicity have been found resulting from CaMV-
infected plants (Hull et al., 2000). In terms of consumption of
parts of CaMV, e.g., the P35S promoter in GM plants, some
concerns have been raised, but to our knowledge, there are no
scientific publications that have demonstrated a safety risk of
eating CaMV, P35S, or any CaMV genetic sequences. In fact,
many plants already contain sequences from members of the
Caulimoviridae in their genomes as endogenous viral elements
(EVEs), including commonly consumed crops, such as Vitis
vinifera (grape), Oryza sativa (rice), and a variety of Citrus
species (e.g., Citrus clementina, clementines) (Bertsch et al., 2009;
Geering et al., 2014), meaning that we have been consuming parts
of viruses in our food for centuries.

Still, we review some of the CaMV- and 35S promoter-specific
concerns here for context. Sequence overlap exists between
P35S and the coding sequences of one CaMV gene, gene VI,
also known as P6 (Figure 1), indicating the potential for virus
protein expression in humans (Podevin and Du Jardin, 2012).
Another concern is the horizontal gene transfer risk with DNA
recombination that can potentially occur between P35S and
human genes, along with the potential for P35S to facilitate
expression of human genes (Chiter et al., 2000; Morel and Tepfer,
2000; Nielsen and Townsend, 2004; Paparini and Romano-Spica,
2006; Bawa and Anilakumar, 2012). In two studies that have
attempted to address these concerns, no evidence was observed
for the activity of the P35S promoter in mammalian cells (Vlasák
et al., 2003; Paparini and Romano-Spica, 2006). In terms of the
potential for viruses to recombine with and acquire genes from
transgenic plants (i.e., horizontal gene transfer from transgenic
plants to a virus), earlier studies of CaMVhave demonstrated that
this is possible (Schoelz and Wintermantel, 1993; Wintermantel
and Schoelz, 1996), but only under very specific conditions, such
as strong selection pressure in the laboratory (Wintermantel and
Schoelz, 1996).

PMMoV is a widespread plant virus that infects pepper and
is found in numerous products containing chilis and peppers
(sauce, spicy powder, etc.). For example, PMMoV was found in
57% of 28 pepper-based foods found in supermarkets (Colson
et al., 2010). Colson et al. found that humans who consumed
PMMoV presented a specific immune response to the virus,
including fever and abdominal pain symptoms (Colson et al.,
2010). This observation may not be the infection of human
cells by the virus itself, but rather viral RNA interfering with

the function of human RNA. Tobacco mosaic virus (TMV) is
often present in smoked tobacco and, therefore, it is resistant to
manufacturing processes (Smith, 1957; Wetter, 1975; Wahyuni
et al., 2008). A study found that TMV was viable in 53% of the
cigarettes of six different brands (Balique et al., 2012). In addition,
45% of the saliva from 12 smokers, compared to 0% of the
saliva from 15 non-smokers, tested positive for TMV RNA (Liu
et al., 2013). Another study found that exposure to TMV-infected
tobacco products can induce an immune response to TMV in
humans; specifically, using an ELISA assay, the authors found
anti-TMV antibodies in tobacco smokers (Kamthan et al., 2016).
Nevertheless, there was no direct evidence of viral infection
in any of these studies, and the symptoms described seem to
be an indirect response to the viruses. The extent to which
these results for PMMoV and TMV are relevant to CaMV is
largely unknown (for example, both PMMoV and TMV have
RNA genomes, whereas CaMV is a DNA virus), but these cases
demonstrate the potential for some minor symptoms associated
with an autoimmune response to plant viruses in some cases. In
general, plant viruses are not considered to present pathogenicity
to humans (Balique et al., 2015).

CONCLUSIONS

In parallel with the development of new GMOs in agriculture,
organic farming is increasing (Shi-ming and Sauerborn, 2006;
Kamthan et al., 2016). As a result of these farming trends
and, in some countries, regulation of GMOs, international
trade can necessitate quantification of the GMO content of a
given product. Thus, numerous GMO detection methods are
emerging (Kamle et al., 2017; Salisu et al., 2017; Umesha and
Manukumar, 2018), but the potential for crop infection with
CaMV can lead to false-positive results in the most commonly
used GMO detection assays, due to the use of a CaMV-
derived P35S promoter in many GM constructs (Lipp et al.,
1999; Becker and Ulrich, 2018; Lübeck, 2019). This potential
for false-positive GMO detection is particularly relevant for
organic farmers trying to meet regulatory requirements for non-
GM plants in a sustainable international market. Here we have
provided information about GMO detection assays and how
to disambiguate GMO detection from CaMV infection (e.g.,
by considering detection targets in the CaMV genome outside
the P35S region, such as gene III), management practices to
minimize CaMV infection (e.g., planting tall cereals around
Brassicaceae crops and adding protective aphid-proof netting
around seedlings), and our current understanding of the food
safety risk associated with CaMV infection (CaMV is not
currently known to pose a risk to humans, but specific studies
related to CaMV impacts on human health are limited).
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