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Despite recent advances in remote sensing, one of the major constraints that still

remains is collecting the ground data needed to calibrate and validate remote sensing

algorithms at large spatial and temporal scales. This is particularly challenging when

mapping continuous variables such as yield, where calibration data often do not exist

at the field-scale and are difficult to obtain through visual interpretation of high-resolution

imagery. While crop cut estimates of crop yield are widely used to calibrate satellite yield

estimation models, these data are time and cost intensive to collect. In this study, we

examine the ability of self-reported yield estimates, which are much faster and easier to

collect at large scales, to train satellite yield estimation models. We assess the accuracy

of self-reported yield data and identify whether it is possible to increase self-reported

accuracy by providing more information to farmers about the study design and potential

benefits. Our results showed that farmers’ self-reported crop yields were not accurate,

and that self-reported crop yields led to inaccurate satellite yield estimation models when

used for calibration. We also found that providing more information to farmers about

the study design and benefits of satellite yield estimation did not improve self-reported

accuracy. These results suggest that even though self-reported yield estimates may

be a faster and lower cost way to collect field-level yield estimates, they likely are not

an adequate data source to train satellite yield prediction models and should be used

with caution.

Keywords: crop yield, self-reported, smallholder system, high-resolution satellite, agriculture

INTRODUCTION

There is a long history in remote sensing of mapping agricultural characteristics. For example, at
regional and global scales, satellite data have been used to map the extent of croplands (Waldner
et al., 2016), crop management practices (Bégu et al., 2018), biomass and yield (Lobell et al., 2015;
Jain et al., 2016), crop phenology (Duncan et al., 2015), and crop stress (Kannan et al., 2017; Paliwal
et al., 2019). Recent advancements in remote sensing, including cloud computing, the increased use
of machine learning, and finer spatial, temporal, and spectral resolution data have only increased
what is possible to map over the last decade (Ma et al., 2019). However, despite all of these
advancements, one of the major constraints that still remains is collecting the ground data needed
to calibrate and validate remote sensing algorithms at large spatial and temporal scales (Pe’eri et al.,
2013). This is particularly challenging for continuous variables, such as yield and biomass, which
typically require on-the-ground estimation compared to categorical variables, which can sometimes
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be identified remotely through visual inspection of higher-
resolution imagery, such as Google Earth (Azzari et al., 2017).
Identifying ways to easily collect such ground data could further
revolutionize the ability to use satellite data to map agricultural
characteristics at large spatial and temporal scales.

In particular, mapping crop yield using satellite data has
historically been a data-intensive process. Using satellite data
to map yields has been particularly challenging in smallholder
systems, where farm sizes are typically<2 ha (Lowder et al., 2016)
andmanagement practices are heterogeneous across neighboring
fields (Jain et al., 2013). In these systems, it is also challenging
to obtain reliable agricultural data from existing data sources
to calibrate and validate remote sensing algorithms. Previous
studies have used a wide range of calibration data to estimate
yield in smallholder systems, including crop model simulations
(Burke and Lobell, 2017; Jain et al., 2017; Jin et al., 2019) and
field-level crop cut data (Jain et al., 2016). In particular, the gold
standard for yield estimation is collecting crop cut data, where
portions of the crop are harvested at the end of the growing
season, and the grains are removed and weighed in field (CSO,
2007). Such data have been shown to result in the highest yield
prediction accuracies when used for calibration of remote sensing
products at the field scale in smallholder systems (Jain et al., 2016,
2019). Yet, collecting such crop cut data is very time and resource
intensive, constraining the scale at which remote sensing models
that are trained using these data can be applied.

An alternative field-level dataset that could be used to train
remote sensing algorithms is self-reported yield data. Such data
are much faster and easier to collect than crop cut yield data, and
still provide the real-world, field-level yield data needed to train
satellite yield prediction algorithms. However, there are concerns
regarding the reliability of self-reported data (Baumeister et al.,
2007), with previous studies finding that farmers’ estimations of
yield are highly subjective and can be misleading (Carletto et al.,
2015). This is because farmers may over- or under-estimate their
yields due to intentional and unintentional reasons, including
recall bias, a tendency to average productivity over several
seasons or fields, and the desire to influence perceived status
within a given community (Gourlay et al., 2019; Wahab, 2019).
Several studies have used self-reported data to calibrate satellite
yield estimation models, and these studies have found that such
data led to reduced yield prediction accuracies compared to other
types of calibration datasets, including crop cut data (Wahab,
2019).

Identifying ways to increase self-reported accuracy could be
extremely beneficial for collecting high-quality, low cost ground
data that could be used to calibrate and validate remote sensing
algorithms at large spatial and temporal scales. Previous studies
have suggested that involving farmers as stakeholders in the
research process may be one way to increase self-reported
accuracies (Beza et al., 2017). The use of citizen science is
one such example where involving farmers has been shown
to successfully improve the accuracies of self-reported data
(van Etten et al., 2019). In this study, we assess whether
providing farmers with more information about the study
design and potential study benefits may lead to improved self-
reported accuracies. Doing so may help increase the accuracy of

self-reported yield data, which may then be used to develop more
accurate remote sensing yield estimation models. It is important
to note that our intervention only examined the impact of sharing
more information about study design with farmers at the end
of the growing season, and our results may not apply to other
modes of information sharing. We conducted this study in a
smallholder wheat farming system with small field sizes (< 0.3
ha) in northeastern India. Specifically, our study aims to answer
the following questions:

1. Does increasing the amount of information provided to
farmers about the study design and benefits increase self-
reported accuracy?

2. How accurate are the self-report yield data from farmers, and
what are the drivers of self-reported accuracy?

3. How well can self-reported data be used to calibrate remote
sensing models that estimate yield?

MATERIALS AND METHODS

Study Area
The study was conducted in Arrah district, Bihar, India (25.47◦N,
84.52◦E) in 2015 (Figure 1). Specifically, we focused on an 8 ×

16 km2 region where we had access to high-resolution SkySat
Imagery from the company Planet (https://www.planet.com/),
and we collected ground data from 10 villages distributed across
the study area. This region is dominated by smallholder farms
(< 0.3 ha), which encompass over 80% of the land area (Jain
et al., 2016). The primary cropping seasons in this region are
the monsoon (kharif ) season when most farmers plant rice, and
the winter (rabi) season when most farmers plant wheat. Our
study focused on the winter cropping season, which spans early
November to mid-April (Jain et al., 2016). While most farmers
harvest wheat in early to mid-April, sowing dates vary widely
across the study region, with some farmers planting as early
as mid-November and other farmers planting as late as early
January. Previous work has shown that sowing date is strongly
associated with wheat yields across this region, with later sowing
dates associated with reduced yields due to the negative impacts
of end of season heat stress on grain filling (Ortiz-Monasterio
et al., 1994; Asseng et al., 2015; Jain et al., 2016).

DATA

Social Survey Data
We conducted social surveys with 115 farmers across the study
region. To identify these farmers, we selected 115 households
at random throughout the study area, and interviewed the head
of farming for each household. These farmers were interviewed
at two time points, once in February 2015 and once in April
2015. In the first survey, we asked farmers about their wheat
management practices, including wheat variety, wheat sowing
date, and irrigation access for each of the agricultural plots in
which they planted wheat during the 2014–15 winter growing
season. To collect self-reported yield information, we conducted
an additional survey after wheat was harvested at the end of April
2015. All farmers were interviewed within 3 weeks of harvesting
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FIGURE 1 | Study area, a region in Arrah district in Bihar, India.

their wheat crop. In this post-harvest survey, we specifically
asked farmers questions only about the largest plot in which they
planted wheat in 2014–15. We also traveled with each farmer
to this field and collected GPS points at the center of the field
and at the four corners of the field. All surveys were conducted
using paper forms and field enumerators. Consent was obtained
following an approved IRB protocol (eProtocol 30648, Stanford
University). The specific variables that were collected during both
social surveys are detailed in Table S1.

To identify whether providing additional information to
farmers improved self-reported accuracies, we conducted an
experiment during our April 2015 survey. Farmers were divided
into two groups, group 1 (n = 53) and group 2 (n = 62), and
each group was provided different levels of information about
the study design and potential benefits of the study. To group
1, we provided detailed information about our study objectives,
described how the self-reported yield data would be used in

conjunction with satellite imagery to map yields, and discussed
the benefits of accurate satellite yield models to farmers in the
region. We also showed farmers in this group a picture of what
can be seen using the high-resolution SkySat imagery. However,
to group 2, we provided a simpler study description that did
not discuss in detail how satellite yield estimation is done, did
not include a picture of what can be seen using high-resolution
SkySat data, and provided less detail about the potential benefits
of our study. We read the respective paragraph (Table S2) to
each farmer depending on whether he/she belonged in group
1 or group 2 at the start of the survey, and then we asked
farmers from both groups the same set of questions. Our main
variable of interest was self-reported yield, and we asked farmers
to report the yield of the specific field that we visited in the
unit with which they were most comfortable. Farmers reported
yield in local weight units (quintal, mand, or kg) and local
area units (katha, bhiga, or acre). We converted all self-reported
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estimates to consistent units across farmers, kilograms/hectare
(kg/ha), using known conversion values for local weight and
area units.

Satellite Data
Since we were interested in identifying whether providing
more information to farmers resulted in improved self-reported
accuracies, we required a dataset that represented the “true” yield
for each of the farmer’s fields. To represent true yield, we obtained
a yield map that was produced using SkySat satellite data in a
previous study (Jain et al., 2016). This yield map was calibrated
using crop cut yield data (detailed in section crop cut data), and
the yield map obtained an R² of 0.33 when validated using crop
cut data.While this accuracymay seemmoderate, it is in line with
other studies that have estimated field-level yields of complex
smallholder farming systems (Burke and Lobell, 2017; Jain et al.,
2019). An overview ofmethods used to produce this satellite yield
map is provided below, andmore details can be found in Jain et al.
(2016).

Satellite yield estimates from Jain et al. (2016) were produced
using a total of six cloud free images of SkySat satellite imagery
acquired on February 18, March 11, March 22, March 23, March
28, and April 6 in 2015. SkySat satellites collect optical multi-
spectral imagery at 2-m resolution, and include the blue (0.450–
0.515 nm), green (0.515–0.595 nm), red (0.605–0.695 nm), and
near infra-red (0.740–0.900 nm) bands. One scene, the March 11
image, was manually geo-referenced using point locations from
Google Earth imagery in ArcGIS software. Automated image
to image registration from ENVI Software was then used to
geo-reference all other images. For each image date, Jain et al.
(2016) calculated the green chlorophyll vegetation index (GCVI;
Equation 1), as previous studies have shown that GCVI has a
linear relationship with wheat leaf area index (Nguy-Robertson
et al., 2014). The correlation between GCVI across all dates was
then examined, and the March 23 image was removed from
all analyses since it was highly correlated with the March 22
image (R > 0.95).

GCVI = (NIR/Green) − 1 (1)

Jain et al. (2016) then used crop cut data (detailed in section
crop cut data) to train satellite yield estimation models using a
linear regression (Equation 2). This was done by extracting the
mean GCVI value for each image date for each field polygon
for which they had crop cut data, and the authors then applied
the beta coefficients from this model to every pixel in the SkySat
imagery to obtain yield estimates for the entire study region.
GCVI1 through GCVI5 represent each individual GCVI image
date. More details about satellite image preprocessing and yield
estimation can be found in Jain et al. (2016).

Crop cut yield (kg/ha)∼ β0 + β1GCVI1 + β2GCVI2

+ β3GCVI3 + β4GCVI4 + β5GCVI5 + ε (2)

Crop Cut Data
For this study, we also had access to the crop cut data that
were used to calibrate and validate the satellite yield estimation

model described in section satellite data from Jain et al. (2016).
Specifically, crop cut data were collected from 64 farmers during
April 2015, in the same year of our social survey. Unfortunately,
these 64 farmers were different from the 115 farmers for which
we collected self-reported data, and therefore we were unable
to compare crop cut yield estimates with self-reported yield
estimates directly. To collect crop cut data, the field team visited
each farmer’s field at the time of crop harvest and selected three
2 × 1 m2 subplots at random from each farmer’s field. Within
each of these subplots, the team harvested the crop, removed the
grain, and then weighed the grain in field to estimate yields. In
addition, they collected five GPS points for each of these fields:
one at the center of the field and four in each corner of the field.
These GPS points were then used to create polygons that spatially
linked the crop cut information with the satellite data. The field
team also asked these 64 farmers to complete a short social survey
at the time of harvest, which included information about sowing
date and wheat variety. More details about the crop cut data can
be found in Jain et al. (2016).

METHODS

We conducted several different analyses to answer the three main
questions outlined in this study, which we detail below.

Identifying Whether Providing Information
Improves Self-Reported Accuracy
To answer our first question, we compared self-reported yield
estimates for each of the 115 fields considered in our study with
satellite yield estimates produced using crop cut data from Jain
et al. (2016). In order to do this, we first georeferenced each
of the 115 fields using the GPS data that we collected for each
plot (detailed in section social survey data). Georeferencing was
done by overlaying all GPS points on the March 11 SkySat image
in ArcGIS. We then examined GPS points collected for each
individual field one at a time, and drew a polygon around the
visible field boundaries of the field that overlapped most of the
GPS points. If the GPS points did not clearly overlap with one
field, we did not draw a field polygon for this field. In total, we
were able to create polygons for 101 fields out of the 115 fields
originally surveyed (50 fields were for group 1, and 51 fields were
for group 2). For each of these polygons, we extracted the mean
yield estimated by satellite data using the raster package in R
project software. Before doing any additional analyses, we also
removed any self-reported yield estimates that were unrealistic.
Specifically, we removed any self-reported yield values that were
<1,000 kg/ha and >6,000 kg/ha, since these were the minimum
and maximum yield values that we observed in our crop cut
dataset for the region, which is considered the gold standard
of yield estimation. This reduced our sample size to 74 fields
(33 fields were in group 1, and 41 fields were in group 2. We
conducted the power analysis to check the accuracy of our sample
size using the pwr package in R project software. When using a
“medium” effect sizes (0.5) as defined in previous study (Cohen,
1992), we found that the power of our experiment is 99% after
removing extreme self-reported yield values (33 fields in group 1,
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and 41 fields in group 2). However, with a “small” effect size (0.2),
we found the power our experiment is 41%. These 74 data points
were used for all subsequent analyses in the paper.

We obtained a measure of self-reported accuracy, which
we termed “self-report discrepancy,” by subtracting the self-
reported yield from the mean satellite yield for each polygon. To
test whether this accuracy value differed based on the amount
of information given to farmers about the study design, we
conducted a t test with self-reported accuracy as our dependent
variable and group (group 1 vs. group 2) as the independent
variable (Table S4—Summary statistics).

Assessing Self-Reported Accuracy and Its
Drivers
Next, we summarized overall self-reported accuracy across all
farmers using our metric of self-reported accuracy described
in section Identifying whether providing information improves
self-reported accuracy. We also assessed the accuracy of self-
reported yield estimates by identifying whether these estimates
could capture the known relationship between sowing date
and wheat yields. Specifically, we were interested in identifying
whether there was a significant and negative relationship between
sowing date and self-reported yield. To quantify whether this
relationship exists, we used a linear regression model (Equation
3) and assessed model fit using R2 and whether the beta
coefficient on sowing date (β1) was significant and negative.

Self-reported yield (kg/ha)∼ β0 + β1sowing date+ ε (3)

As a comparison, we also assessed whether this known
relationship between sowing date and wheat yield could be
detected using crop cut estimates of yield for the 64 fields for
which we had crop cut data. To do this, we also used Equation
3, but replaced self-reported yield with crop cut yield as the
dependent variable.

Finally, to understand which factors may be significantly
associated with self-reported accuracy, we ran a multiple linear
regression. We were interested in identifying which socio-
economic, management, and yield variables may be associated
with whether a farmer is more likely to under or over-report
yields on his/her field. For this analysis, we used Equation 4.

Self-reported accuracy (kg/ha)∼ β0 + β1Irrigation+ β2Age+

β3Education+ β4Plot Area+ β5Plot Yield+ β6Fertilizer

+ β7Wealth Index+ ε (4)

Details about each of the independent variables considered in
this model can be found in Table S3.

Assessing the Ability of Self-Reported Data
to Calibrate Satellite Yield Models
To assess how well self-reported data could be used to calibrate
satellite yield estimation models, we estimated wheat yields using
SkySat imagery and using self-reported data for calibration.
Specifically we used the same Skysat imagery that was used
to develop the satellite yield estimation models in Jain et al.
(2016; details provided in section Satellite data). We ran a linear

regression model where we regressed self-reported yields (kg/ha)
on GCVI for each image date (Equation 5), where GCVI1 to
GCVI5 represent the GCVI value for each field and each satellite
image date.

Self-reported yield (kg/ha)∼ β0 + β1GCVI1 + β2GCVI2

+ β3GCVI3 + β4GCVI4 + β5GCVI5 + ε (5)

The beta coefficients from this linear model were then applied
to each pixel in our SkySat imagery to estimate yield across the
entire study region.

We conducted two analyses to validate the satellite yield
estimation model that was calibrated using self-reported data.
First, for the 64 crop cut polygons, we compared our satellite
estimated yield with crop cut yield since crop cuts are considered
to be the gold standard for estimating yields in field. Second, we
assessed whether satellite yield estimates were able to capture the
known relationship between later sowing date and lower wheat
yields for the 74 fields from our self-reported survey, and the
64 fields from the crop cut survey. As a comparison, we also
assessed whether we could detect this known relationship using
the satellite yield estimates produced in Jain et al. (2016), which
were calibrated using crop cut yield data. To do this analysis,
we used a linear regression model (Equation 3, with satellite
estimated yield replacing self-reported yield as the dependent
variable) and assessed model fit using R2 and whether the beta
coefficient on sowing date (β1) was significant and negative.

RESULTS

Identifying Whether Providing Information
Improves Self-Reported Accuracy
We found that providing detailed information about the study
design and benefits did not significantly impact self-reported
accuracy. The t-test result showed that there was no significant
difference in self-reported accuracy based on whether farmers
were in group 1 or group 2 (p= 0.51).

Assessing Self-Reported Accuracy and Its
Drivers
Since there was no difference in self-reported accuracy between
farmers who were in group 1 vs. group 2, we used data from all
farmers together for all subsequent analyses. When assessing the
self-reported accuracy of yield across all farmers, our results show
that 73% of farmers in the region under-reported their yields
(Figure 2). On average we found that farmers under-reported
their yields by −568 kg/ha. We also compared average self-
reported yields in our study region with those of crop cuts to see
whether we similarly found underreporting of yields using crop
cuts instead of satellite data for yield comparison. We find that
the average yield for self-reported data is 2,082 and 2,713 kg/ha
for crop cut data in study region.

We next examined whether self-reported yield data were
able to capture the known relationship between late sowing
and reduced wheat yields (Figure 3). We find that the self-
reported yield estimates were unable to capture this relationship
(Figure 3A), however the crop cut yield estimates were able to
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FIGURE 2 | Boxplot showing the accuracy of self-reported yield data when

compared to satellite yield estimates of yield for the same field. Bolded line

represents the median value, edges of the box represents the 25 and 75%

percentile, and the whiskers represent +/– 1.5 of the interquartile range.

capture this relationship (Figure 3B). This is represented by a
very low R2 when using self-reported yield estimates (R2 = 0.003)
and an insignificant beta coefficient on sowing date in our linear
regression (p = 0.8). Crop cut estimates of yield, on the other
hand, had a higher R2 value (R2 = 0.31) and a significant beta
coefficient (p= 0.0003).

Finally we assessed which socio-economic, management, and
biophysical variables influence self-reported accuracy. Among
all the factors that we considered in our regression analysis
(Table S3), plot yield [as measured using the satellite yield
estimates from Jain et al. (2016)] was the only factor that
showed a significant relationship with self-reported accuracy (p
= 0.000005; Table 1). Specifically, we found that self-reported
accuracy was negatively associated with higher plot yields. This
suggests that farmers who had higher yields were more likely to
under-report their yields in our social survey.

Assessing the Ability of Self-Report Data
to Calibrate Satellite Yield Models
To assess the accuracy of our satellite yield estimation model
that was calibrated using self-report data, we compared satellite
yield estimates with crop cut yield estimates for the 64 fields for
which we had crop cut data. We found a weak and insignificant
relationship between these two variables (R2 = 0.05, p = 0.15;
Figure 4). This suggests that our satellite yield estimates were
unable to capture the variation in true field-level yields as
estimated using crop cut data.

We also assessed whether our satellite yield estimates
calibrated using self-reported data were able to capture the
known relationship between late sowing and lower wheat yields
for the 74 fields for which we collected self-reported data, and

FIGURE 3 | Relationship between sowing date and self-reported yield (A) and

crop cut yield (B). R2 and p values from linear regressions are also reported.

The gray band around each regression line represents the standard error.

TABLE 1 | Multiple linear regression results for the socio-economic, management,

and biophysical variables associated with self-report accuracy (kg/ha).

Dependent variable:

Self-report accuracy (kg/ha)

Irrigation 90.168 (209.220)

Age −3.298 (8.630)

Education −89.999 (78.135)

Plot Area −536.777 (507.624)

Plot yield −0.741*** (0.243)

Fertilizer −167.711 (238.238)

Wealth Index 20.575 (517.065)

Constant 2,014.515 (1,208.545)

Observations 74

R2 0.188

Adjusted R2 0.102

Residual Std. Error 955.299 (df = 66)

F Statistic 2.189** (df = 7; 66)

*p < 0.1; **p < 0.05; ***p < 0.01.

for the 64 fields for which we collected crop cut data. As
a comparison, we conducted this same set of analyses using
satellite yield estimates from Jain et al. (2016), which were
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FIGURE 4 | Predicted yields using the satellite yield estimation model

calibrated using self-reported data vs. crop cut observed yields. The R2 and p

values from a linear regression are reported. The gray band around the

regression line represents standard error.

calibrated using crop cut data. We found that we were able
to detect the expected negative relationship between sowing
date and yield when using satellite yield estimates calibrated
using crop cut data (Figures 5A,C). However, we obtained an
unexpected positive relationship between sowing date and yield
when using satellite yield estimates calibrated using self-reported
data (Figures 5B,D).

DISCUSSION

In this study, we examined the accuracy of self-reported yield
estimates and whether there are ways to increase self-reported
accuracy in order to improve satellite yield estimation models
that are calibrated using such data. This research question is
critical given that one of the main constraints to mapping yield
using satellite data is obtaining appropriate calibration data that
is sufficiently low cost to collect across large spatial and temporal
scales. Our results showed that farmers’ self-reported yields were
not accurate, and that self-reported yields led to inaccurate
satellite yield estimation models when used for calibration. We
also found that providing more information to farmers about
the study design and benefits of satellite yield estimation did
not improve self-reported accuracy. These results suggest that
even though self-reported yield data can be collected with ease
compared to typical calibration datasets, such as crop cut yield
estimates, using self-reported data to calibrate remote sensing
algorithms should be done with caution.

Overall, we found that the majority of farmers (73%) under-
reported their yield, with an under-reporting of −568 kg/ha on

average. In addition, we found that self-reported yields are likely
inaccurate as they were unable to detect the known relationship
between later sowing and lower wheat yields (Erenstein and
Laxmi, 2008). Previous studies in sub-Saharan Africa have
similarly found that farmers’ self-reported yields are inaccurate
(Lobell et al., 2018; Gourlay et al., 2019; Wahab, 2019), though
several of these studies found that farmers over-reported their
yields by up to 200% (Lobell et al., 2018; Gourlay et al., 2019).
There are several unintentional and intentional reasons why self-
reported yields in our study may be inaccurate. Unintentional
reasons include that farmers often report yields in local weight
(quintal, mand) and area (katha, bhiga) units, and errors may
arise from the conversion of non-standard units to standard
units during reporting (Fermont and Benson, 2011). In addition,
recall bias could contribute to inaccurate self-reported estimates
as human memory is subject to memory constraints (Gourlay
et al., 2019). However, we do not believe that recall bias likely
played a large role in our study given that all farmers were
interviewed shortly after harvesting their crop (within 3 weeks).
Finally, farmers in our study region often have multiple plots
of land, and it may be challenging for farmers to report the
specific yield of an individual plot since harvesting is usually
done across all fields around the same time. Intentional reasons
could include that farmers perceive that yield is a proxy for profit,
and farmers may not report crop outputs that have been used as
payments (Wahab, 2019). Alternatively, it is possible that farmers
may under-report yield if they expect to receive compensation
or benefits for having low yielding fields. Unfortunately, it is not
possible for us to disentangle the relative importance of these
potential causes of error, and future work should examine which
of these potential sources may be the main drivers of inaccurate
self-reported yields. It is important to note that our assessment
that self-reported yields are inaccurate is based on comparison
with satellite yield estimates, which also have their own source
of error. Future work should compare self-reported data with
crop cut data, the gold standard for yield estimation, from the
same field.

Our study also suggests that using self-reported yield data
to calibrate satellite yield estimation models leads to inaccurate
satellite yield estimates. We found that these satellite yield
estimates had a low R2 (0.05) and a non-significant relationship
with observed crop cut yields. Furthermore, the relationship
between sowing date and wheat yield was the opposite of
what was expected, with later sowing dates associated with
higher yields. These findings are corroborated by those of
previous studies (e.g., Jain et al., 2016), which found that satellite
yield estimation is less accurate when using self-reported yield
estimates as calibration as opposed to other types of calibration
data, including crop cuts and crop model simulations. One
potential reason for this unexpected positive relationship is
because farmers who had higher yields weremore likely to under-
report their yields, and these farmers were also the ones who were
more likely to sow their wheat earlier. Thus, it is possible that
higher under-reporting of yields for those farmers who sowwheat
earlier may have led to the counterintuitive positive relationship
between sowing date and yield. We believe that this positive
relationship is inaccurate because we were able to capture the
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FIGURE 5 | Sowing date vs. yield for self-reported calibrated and crop cut calibrated yield estimation models. We present four panels: sowing date vs. yield predicted

from satellite data calibrated using crop cut data (A,C), and sowing date vs. yield predicted from satellite data calibrated using self-reported data (B,D). The R2 and p

values from each linear regression are reported along with standard error (represented by the gray band around each regression line).

known association between later sowing and lower wheat yields
when using crop cut yields or satellite yield estimates that were
calibrated using crop cut yields. These results suggest that even
though self-reported yield estimates may be a faster and lower
cost way to collect field-level yield estimates, they are likely not
an adequate data source to train accurate satellite yield prediction
models. We, however, test the ability of self-reported data to
serve as calibration data by examining satellite yield prediction
accuracy at the field scale. Yet it is possible that self-reported yield
data may be adequate to train satellite yield prediction models at
coarser scales; for example, if one were interested in estimating

yield variation using satellite data at the village or block level, it
is possible that village or block-level differences in self-reported
data would be accurate enough to train suchmodels. Future work
should examine whether self-reported data may be adequate for
training satellite prediction models at coarser than field scales.

Though previous studies have suggested that providing more
information to participants may increase self-reported accuracy,
we did not find that to be the case in our study. Instead, we found
that self-reported accuracy was statistically similar regardless of
whether or not farmers received detailed information about how
their data would be used for satellite yield estimation and about
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potential study benefits. These findings support a previous study
where authors did not find a significant difference in the accuracy
of self-reported responses when study design explanations were
framed differently (Jerit et al., 2016). It is important to note,
however, that our intervention was limited. Our sample size was
relatively small and we only engaged farmers in our study design
at the end of our study. It is possible that alternative methods
of farmer involvement that occur over longer time periods, such
as crowd sourcing and citizen science, may increase farmer
engagement and improve self-reported accuracy (Beza et al.,
2017; van Etten et al., 2019). For example, previous studies have
shown that farmers in smallholder systems can be motivated to
participate as citizen scientists throughout a research project by
providing benefits to the farmers, including information sharing,
agronomic advice, capacity building, and new seed varieties (Beza
et al., 2017). Future work should examine whether such efforts
to increase farmer engagement in data collection improve self-
reported accuracies.

While we found that self-reported data were inaccurate for
the purposes of this study, which was to calibrate satellite yield
estimationmodels, it is important to note that we do not question
the authenticity of self-reported data in general. Self-reported
yield data have been widely used in qualitative and quantitative
research to examine the drivers of yield variation across farmers,
and this research has produced important and accurate results
(Fermont and Benson, 2011; Jain et al., 2015; Sapkota et al.,
2016). In these studies, yield information is often collected as an
average value across multiple plots, as opposed to the method
used in our study which was to estimate the exact yield for a
single field. It is possible that these differences in methodology
result in the increased inaccuracy in self-reported data found in
our study. However, when creating remote sensing algorithms to
map yield at the field scale, it is critical to use field-level yield data
for calibration. Thus, it is important for future work to identify
ways to increase the accuracy of self-reported yield estimates at
the plot-level.

In conclusion, we found that our self-reported yield estimates
were inaccurate and that providing more information to farmers
did not increase self-reported accuracies. In addition, our
results highlight that field-level self-reported yield estimates
lead to inaccurate satellite yield estimation when used for
calibration. This is unfortunate given that self-reported yield

estimates are relatively easy and low cost to collect, particularly

in comparison to other typically used calibration datasets,
such as crop cuts. We acknowledge that the information
intervention that we implemented in this study was limited,
and encourage future work to identify if alternative modes
of farmer engagement, including crowd sourcing and citizen
science, may lead to improved self-reported accuracy and
satellite yield estimation at large spatial and temporal scales.
Furthermore, future work should examine the generalizability of
the impact of information sharing on self-reported accuracies
by conducting similar studies in other farming systems across
the globe.
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