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Private businesses in sectors, such as food, energy, and retail, as well as public sector

and federal agencies are interested in the predictive understanding of weather impacts

on crop yield, which is an important aspect of food security. Scientific literature has mainly

examined how crop yield is impacted by growing season-averaged weather indices.

Although a few studies did consider weather extremes in their analysis, their scope

was either restricted to measuring their conditional relationship with yield or the extreme

event types considered were limited. Selection of regression models, whether the more

commonly used linear approaches or nonlinear methods, have not been appropriately

justified in this context. Here, we develop data-driven methods to examine two inter-

related hypotheses for improved scientific understanding and enhanced predictive

modeling. The first hypothesis, that extremeweather indices have a statistically significant

information content in them is found to be valid based on linear and nonlinear methods for

pairwise dependence. The second hypothesis, examines the value addition of nonlinear

regression methods, and suggests that linear approaches may not alone be adequate.

The results of this study can inform scientific understanding, generation and relevance

of indices and end-to-end risk assessment systems in the context of climate impacts

on crop yield. An immediate application may be in the context of NASA Earth Exchange

(NEX) which facilitates the generation and dissemination of impacts relevant weather data

and indices using a multitude of satellite-derived data sets and model outputs.

Keywords: crop yield, weather indices, nonlinear regression, pairwise dependence, food security

1. INTRODUCTION

Several studies have shown that the global food production would have to double by 2050 to
meet the needs of rising population and diet shifts (Bruinsma, 2009; Tilman et al., 2011; OECD
and Food and Agriculture Organization of the United Nations, 2012). However, a prior study
found that the current growth rates in yield for the major cereals grown across the globe are
insufficient to achieve this target (Ray et al., 2013). According to the Fifth Assessment Report
(AR5) of the Intergovernmental Panel on Climate Change (IPCC), surface temperature is projected
to rise over the twenty-first century under all assessed emission scenarios with a high degree of
likelihood of an increase in the intensity and duration of heat waves and extreme precipitation
events in many regions (IPCC, 2013b). This is expected to cause a significant decline in the
global crop production (Gourdji et al., 2013; Deryng et al., 2014), thus making the world
more food insecure in future. Figures 1A,B are graphics taken from the IPCC AR5 Working
Group 2 report on Food Security and Food Production Systems (IPCC, 2013a) which provide a
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FIGURE 1 | As per the Fifth Assessment Report (AR5) of the IPCC (IPCC, 2013a), changes in temperature and precipitation patterns are expected to cause a

significant decline in global crop production. Climate change is also expected to increase the inter-annual variability in yields across different regions. (A) Summary of

estimated impacts of historical changes in climate (1960-2013) on yields for four major crops grown in different regions across the globe. Numbers in brackets for

each category represent the number of studies. (B) Summary of projected changes in yield over the twenty-first century. This includes projections for different

emission scenarios, for temperate and tropical regions, with and without adaptation.

summary of results from several studies on the impact of
climate change on yields for four major crops grown in different
regions of the world. An overwhelming majority of these studies
show a declining trend in yields over the historical period
1960–2013 (shown in Figure 1A), with several of them also
projecting major declines in future across different regions
of the globe, especially toward the end of the twenty-first

century (shown in Figure 1B). The threat to food security from
climate change is a critical issue for a number of businesses
like food and beverage, retail, agriculture, insurance, biofuels,
transportation and weather analytics. With the world population
expected to hit 9 Billion by 2050, governments across the
globe need to be well-equipped to deal with supply shocks in
major cereals.
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Statistical models and, more recently, tools from machine
learning have been used to model crop yield variability
using weather indices as inputs. Previous studies have shown
the importance of growing season-averaged temperature and
precipitation in explaining crop yield variability (Schlenker and
Roberts, 2009; Lobell and Burke, 2010; Lobell and Field, 2011;
Lobell et al., 2011b; Urban et al., 2012; Osborne and Wheeler,
2013; Moore and Lobell, 2014; Ray et al., 2015). However,
extreme weather events from the recent past, like the droughts
in Russia in 2010-2011 and in United States (U.S.) in 2012
and their impact on the regional crop production and global
commodity markets has clearly made the case to also consider
weather extremes in crop yield modeling (Otto et al., 2012).
Winter Wheat, for example, has been shown to be particularly
susceptible to freezing temperatures during Fall and to heat
stress during grain filling and stem elongation (Tack et al.,
2015). This vulnerability to extreme temperatures is believed to
be the reason behind a decline in wheat yields across Europe
(Brisson et al., 2010). As per a different study (Schauberger
et al., 2017), each day above 30◦C causes a decline in maize and
soybean yields by upto 6% under rainfed conditions. Similarly,
the interannual variation in rainfall also has a crucial role
to play in crop growth. Although a few studies did consider
extreme weather indices in their analysis, their scope was either
restricted to measuring conditional relationship with yields
(Troy et al., 2015) or the extreme event types considered
were limited (Lobell and Burke, 2010; Lesk et al., 2016). Non-
linear and threshold-type relationships have been shown to exist
between yields and weather indices (Schlenker and Roberts, 2009;
Lobell et al., 2011a; Troy et al., 2015). However, most of the
previous studies have modeled this nonlinearity using regression
models with quadratic terms for mean weather indices without

appropriate justification. Understanding the exact relationship
between weather outcomes and yield is essential given that a prior
study reported a significant stagnation and declines in yield for
major cereal crops on more than a quarter of global croplands
(Ray et al., 2012).

2. RESEARCH QUESTIONS AND
HYPOTHESES

This study addresses the following two research questions:

1. Are extreme weather indices relevant in crop yield modeling?
2. Are nonlinear regression models better at capturing crop yield

variability than linear approaches?

Using linear and nonlinear measures for pairwise dependence
along with a suite of linear and nonlinear regression models,
this study tries to understand the nature of the crop yield-
weather relationship with the hypotheses that extreme weather
indices have a statistically significant information content and
that nonlinear regression models capture yield variability better
than linear approaches.

3. DATA

In addition to mean weather indices like growing season-
averaged maximum and minimum temperature and growing
season-averaged precipitation, this study also considered extreme
weather indices, as defined by the CCI/CLIVAR/JCOMM Expert
team on Climate Change Detection and Indices (ETCCDI) (Karl
et al., 1999), as predictors in the regression models. Table 1
provides the list of mean and extreme weather indices along

TABLE 1 | Predictor variables used for studying the impact of mean and extreme weather on corn yield.

Type Predictor Definition

Year The year was included as one of the predictors in order to account for the time series trend due to

technological advances

Mean Weather

Indices

Growing Season Precipitation (GSP) Precipitation averaged over the growing season

Growing Degree Days (GDD) It is a heat index that can be used to predict when a crop will reach maturity. Each day’s GDD is calculated by

subtracting the reference temperature (10◦C) from the mean temperature for that day. GDD for the growing

season is found by adding all the daily GDDs.

Growing Season Tmax (GSTmax ) Daily maximum temperature (Tmax ) averaged over the growing season

Growing Season Tmin (GSTmin) Daily minimum temperature (Tmin) averaged over the growing season

Extreme Weather

Indices

Frost Days Number of days during the growing season when Tmin < 0◦C

Summer Days Number of days during the growing season when Tmax > 25◦C

Heat Wave Index No. of consecutive days during the growing season when the Tmax for a particular day is greater than the

calendar day 90th percentile for the base period 1961–1990

Cold Wave Index No. of consecutive days during the growing season when the Tmin for a particular day is less than the

calendar day 10th percentile for the base period 1961–1990

Longest Dry Spell Maximum number of consecutive days when precipitation < 1 mm

Longest Wet Spell Maximum number of consecutive days when precipitation > 1 mm

95th percentile precipitation (prcp95p) No. of days during the growing season when the precipitation is greater than the 95th percentile of the base

period 1961–1990.

The weather indices used in this study were chosen from a list of 27 indices that were compiled by the CCI/CLIVAR/JCOMM Expert team on Climate Change Detection and Indices

(ETCCDI) (Karl et al., 1999).
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with their definitions. The crop considered for this study was
Corn (Maize), a major agricultural input to food production.
The U.S. is the largest producer and exporter of this crop with
36% of the world’s production (Schlenker and Roberts, 2009).
The majority of the U.S. corn production takes place in the
midwest region (also known as the “Corn Belt”). The county of
Cerro Gordo situated in the state of Iowa in the U.S. midwest
was chosen as the area of interest for this study. Yearly values
for corn yield (measured in bushels/acre) were collected over
a 76-years period starting from 1940 to 2015 from the NASS
portal of the USDA (USDA, 2010) for this county. The time
series of corn yield over this period, shown in Figure 2, has a
strong positive trend due to advancements in farming technology
over the years. In order to account for this trend, the year
corresponding to the yield was used as one of the predictors in the
regression model.

Data for three weather variables: daily maximum temperature
(Tmax) in ◦C, daily minimum temperature (Tmin) in ◦C
and daily precipitation (Precip) in mm were collected for
the period of interest for three weather stations within the
county from the Global Historical Climate Network (GHCN)
daily database (Menne et al., 2012) using the Climate Data
online portal of the National Oceanic and Atmospheric
Administration (NOAA) (NOAA, 2018). The county-averaged
time series of weather was created by taking an average
of the daily data from the three stations, as shown in
Figure 3. May 10th and Oct 20th were chosen as the start
(sowing) and end (harvesting) dates for the growing season
and were kept constant over the entire period of interest.
Any fluctuations in weather occurring outside the growing
period were assumed to have no impact on crop growth.
The predictor and response variables were normalized prior
to their use by subtracting the mean and dividing by their
standard deviation.

4. METHODS

4.1. Correlation Between Yield and
Weather Indices
Previous studies have used linear correlation measures, such
as Pearson correlation coefficient, to estimate the conditional
dependence of yield on weather indices. However, multiple
studies have shown that this relationship is actually nonlinear and
is characterized by the existence of critical thresholds. This study,
therefore, uses a correlation coefficient which gives a measure
of the overall dependence (linear and nonlinear) between yield
and each of the mean and extreme weather indices. This
correlation coefficient, namely Mutual Information, is defined in
the following section.

4.1.1. Mutual Information
The basic intuition behind information theory is the idea of
characterizing the “unpredictability” of a random variable, also
known as information entropy. For a random variable X which
takes on values in the set χ = {x1,x2,...,xn} with a probability mass
function p(x), the entropy H(X) can be formulated as

H(X) = −
∑

xεχ

p(x)log(p(x)) (1)

The negative sign ensures that entropy is always positive or zero.
H(X) can be seen as being approximately equal to how much
information we learn from one instance of the random variable
X. The information content will be high when the probability is
low and vice versa.

Mutual Information (MI) measures how much a random
variable tells us about another and is closely related to the concept
of entropy. MI for two random variables X and Y , denoted by
I(X;Y) can be stated as

FIGURE 2 | Time series of yearly corn yield (bushels/acre) for Cerro Gordo county over the period 1940–2015. The strong positive trend in the time series can be

attributed to advancements in farming technology over the years.
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FIGURE 3 | Data for daily maximum and minimum temperature and daily precipitation was collected from three weather stations in Cerro Gordo county, Iowa over the

period 1940–2015. Daily county-averaged values for these variables were generated by taking an average over the daily values from the three stations.

I(X;Y) = H(X)−H(X|Y) (2)

where, H(X|Y) is the conditional entropy for X given Y . I(X;Y)
measures the average reduction in uncertainty about X that
results in learning the value of Y (MacKay, 2003). It is a more
general form of correlation coefficient, providing an overall
measure of dependence (linear and nonlinear) between two
variables (Fraser and Swinney, 1986). The larger the value of
MI, the greater is the relationship between the two variables. It
is an important statistic when analyzing time series from non-
linear systems (Moon et al., 1995). The MI between two random
variables X and Y with joint probability mass function p(x, y)
and marginal probability density functions (pdfs) p(x) and p(y)
is defined as

I(X;Y) =
∑

xεχ

∑

yεϒ

p(x, y)log
p(x, y)

p(x)p(y)
(3)

4.1.2. Estimate for Mutual Information
Estimates for MI were obtained using a procedure similar to the
one used by Khan et al. (2006). The estimation of MI requires the
estimation of joint and marginal pdfs, which were approximated
using kernel density estimators (KDE).

For any bivariate dataset (X,Y) of size N, the estimate for MI,
Î(X;Y), is given as

Î(X;Y) =
1

N

N∑

i=1

log
p̂XY (xi; yi)

p̂X(xi )̂pY (yi)
(4)

where p̂XY (xi; yi) is the estimated joint pdf and p̂X(xi) and p̂Y (yi)
are the estimated marginal pdfs at (xi, yi) (Khan et al., 2006).

A gaussian kernel was used for the multivariate kernel density
estimator, which is defined as

p̂X(xi) =
1

Nhd

N∑

i=1

1√
(2π)d|S|

exp
−

(x−xi)
TS−1(x−xi)

2h2 (5)

where N is the number of data points; x and xi are the d-
dimensional vectors; S is the covariance matrix on the xi and h
is the kernel bandwidth. For this study, the kernel bandwidth

is chosen as h = [ 4
(d+2)

]
1

(d+4)N
−1

(d+4) . The MI estimates were

obtained by first estimating p̂X , p̂Y , and p̂XY using Equation (5)
and then using them in Equation (4). The value of MI can vary
from 0 to ∞. In order to compare the linear and nonlinear
dependence measures, a scaled estimate for MI, denoted as
λ̂(X,Y) and ranging from 0 to 1 (Joe, 1989; Granger and Lin,
1994), is defined as

λ̂(X,Y) =

√
1− exp[−2̂I(X;Y)] (6)
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FIGURE 4 | Pearson correlation coefficient was used to measure pairwise linear dependence between predictors. Many pairs of mean and extreme weather indices

were found to have high absolute values of correlation, indicating the presence of a strong positive/negative linear relationship. The problem of multicollinearity is quite

common in weather data and needs to be addressed before fitting any statistical model.

Pearson correlation coefficient (ρ), defined in Equation (7),
was used to measure linear dependence between two random
variables X and Y .

ρ =

∑N
i=1(xi − x̄)(yi − ȳ)√∑N

i=1(xi − x̄)2
√∑N

i=1(yi − ȳ)2
(7)

In statistics, it is common to estimate the bias and standard error
of an estimate. The bias-corrected estimates for λ̂ and ρ were
obtained using jackknife resampling. Resampling was performed
using 100 samples of size 0.8 N. The bias for λ̂ was calculated
as b̂ias = λ̂∗ - λ̂, where λ̂ is the original estimate for scaled
MI calculated using all N observations and λ̂∗ is the mean of
all jackknife replications. The bias-corrected estimator, λ̄, was
defined as λ̄ = λ̂ - b̂ias. The lower and upper bounds of 90%
confidence bounds were defined as the 5% and 95% quantiles of
the 100 jackknife samples, respectively (Khan et al., 2006). The
same method was used to obtain the bias-corrected estimate and
error bounds for ρ.

4.2. Linear Regression
Prior to fitting a Multiple Linear Regression (MLR) model with
P predictors, Pearson correlation coefficient (ρ) was calculated
between each pair of predictor variables to measure pairwise
linear dependence, as shown in Figure 4. Many pairs of mean
and extreme weather indices were found to have a high absolute
value of ρ with one another, implying the presence of a strong
positive/negative linear relationship between them. Notable
among them are indices like GSTmax, GSTmin, Summer Days
and Heat Wave indices which have a strong positive correlation
between them. On the other hand, indices like Frost Days and
GSTmin have a strong negative linear relationship. The problem
of multicollinearity is quite common in weather data and needs
to be addressed prior to fitting a linear regression model.
Multicollinearity inflates the standard errors of the regression
coefficients, making them highly sensitive to minor changes in
the model.

4.2.1. Principal Component Regression
In order to address the issue of multicollinearity, dimensionality
reduction using Principal Component Analysis (PCA)
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was performed. PCA does feature extraction by taking
projections of data along axes of maximum variance (principal
components) which are independent of one another (Jolliffe,
1986). Principal Component Regression (PCR) uses these
principal components (PCs) as inputs instead of the original
correlated features. The appropriate number of PCs to be used
as inputs for the MLR model was determined with the help
of a cumulative plot of the proportion of variance explained,
as shown in Figure 5. By setting a threshold of 95% for the
accumulated explained variance, the number of components
chosen for the regression was 8. After randomly shuffling the
data, about 80% (60 out of 76 samples) was used for fitting the
linear model, with the rest used for testing. The resulting PCR
model is shown in Equation (8)

yi = β0 +

8∑

j=1

βi.PCij, (8)

where βi are the coefficients.

4.2.2. Ridge Regression
Ridge regression is a technique for creating a multiple regression
model for data that are highly correlated (Hoerl and Kennard,
1970). By adding a degree of bias to the model coefficients,
ridge regression reduces their variance, thus giving estimates
that are more reliable. Equation (9) represents a multiple linear
regression model between corn yield and the 12 predictors, with
βj representing the coefficients. In addition to minimizing the
deviation from yi, the objective function for ridge regression,
shown in Equation (10), also includes a penalty term that shrinks
the coefficient values closer to the “true” population parameters.
This penalty term, also referred to as L2 regularization, equals the
square of the magnitude of coefficients. The tuning parameter
(λ) controls the strength of regularization. When λ = 0, ridge
regression reduces to a multiple linear regression and when λ =
∞, all of the coefficients drop to 0.

yi = βo +

12∑

j=1

βjxij (9)

argmin

N∑

i=1

(yi −

12∑

j=1

βjxij)
2 + λ

12∑

j=1

β2
j (10)

One of the drawbacks of using the ridge regression is estimating
the value of λ. Multiple values for λ (ranging from 0.1 to 10) were
considered and the optimal value of λ = 5 was chosen using 5-fold
cross validation. Ridge regression was implemented in python
using the scikit-learn package (Pedregosa et al., 2011).

4.3. Nonlinear Regression
4.3.1. Support Vector Regresssion
Support Vector Machine (SVM), first identified by Vladimir
Vapnik and his colleagues in 1992, is a popular machine learning
tool for classification (Vapnik, 2013). Support Vector Regression

FIGURE 5 | An important step in using Principal Component Regression is the

ability to decide how many principal components are needed to describe the

data. This can be determined with the help of a plot of cumulative explained

variance as a function of the number of principal components. Setting a

threshold of 95%, the number of principal components selected for the study

was 8.

(SVR), which uses the same principles as SVM, aims at finding a
best possible continuous-valued function which balances model
complexity and prediction error (Awad and Khanna, 2015). In
other words, the goal of Vapnik’s ǫ-insensitive approach (Vapnik,
1995) is to find a function f (x) which has at the most ǫ deviation
from the individual points yi and at the same time does not
overfit the data. Any deviance less than ǫ does not contribute to
the regression fit, while data points with an absolute difference
greater than that threshold, called support vectors, contribute
a linear scale amount (Smola and Schölkopf, 2004; Kuhn and
Johnson, 2013).

The general form of the regression equation for SVR is shown
in Equation (11), where < ., . > denotes the dot product and β

is a vector of coefficients. The objective function for this model is
shown in Equation (12). Model complexity can be controlled by
seeking a small β . This can be ensured by minimizing the norm
||β||2 = <β ,β>.

f (x) =<β ,X> + b (11)

Minimize 1
2 ||β||

2

Subject to yi − <β .X> − b ≤ ǫ

<β .X> + b − yi ≤ ǫ

(12)

The constraints in Equation (12) may be too strict in some
situations, making the optimization problem infeasible. Hence,
it is a usual practice to introduce slack variables ξi and
ξ∗i in the constraints. The new objective function would
therefore look like Equation (13). The constant C is a positive
numeric value that determines the trade-off between model
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complexity and the extent upto which deviations larger than ǫ

are tolerated.

Minimize 1
2 ||β||

2 + C.
∑l

i=1(ξi + ξ∗i )
Subject to yi− <β .X> − b ≤ ǫ + ξi

<β .X> + b − yi ≤ ǫ + ξ∗i
ξi, ξ

∗
i ≥ 0

(13)

SVR was implemented in python using the scikit-learn package
(Pedregosa et al., 2011). The values for the hyperparameters:
type of kernel function, cost parameter C and error tolerance
ǫ were determined using a grid search over a range of possible
values for each parameter using 5-fold cross validation on the
shuffled dataset. C = 0.1, ǫ = 0.15 and a linear kernel were
chosen as the hyperparameters for the study.With a linear kernel,
the cross product is simply taken in the original space instead
of transforming the data into a higher dimension. This way,
the predictors would be in the form of a quadratic polynomial
of weather indices, something which has been considered by
past studies.

4.3.2. Random Forest Regression
Random Forest (Breiman, 2001), which is a special case of
Classification and Regression Trees (CART) (Breiman et al.,
1984), is one of the most commonly used machine learning
models for classification and regression. Using just one decision
tree often creates a model that is unstable, meaning a small
change in the data can lead a significant change in the tree
structure. Random Forest, on the contrary, is an ensemble
model which makes predictions by combining predictions from
multiple decision trees using a technique called Bootstrap
aggregation or Bagging (Breiman, 1996). Boostrapping involves
random sampling of data with replacement and helps control
model variance (overfitting). Training a Random forest involves
training each decision tree on a randomly sampled subset
of features and data. The final prediction is produced by
taking an average of outputs from each tree. Random Forest is
good at handling tabular data with numerical features and at
capturing nonlinear interactions between the response variable
and the predictors.

Random Forest Regression was implemented in python using
the scikit-learn package (Pedregosa et al., 2011). Values of
hyperparameters like number of trees, maximum tree depth,
maximum number of features considered at each split and
minimum samples at each split were determined using the grid
search cross validation method. The model was trained on 80%
of data and tested on the remaining 20%.

5. RESULTS AND DISCUSSION

Figure 6 shows the bias-corrected estimates for λ̂ and ρ between
corn yield and each of the 11 mean and extreme weather indices.
The shaded areas in blue and red represent the 90% confidence
bounds (5% and 95% quantiles) for the bias-corrected estimates
generated using jackknife resampling. For some indices like
GSP, Cold Wave index and Longest Wet Spell, the gap between
the λ̂ and ρ is narrow. This shows that the variation of yield
with respect to these indices is mostly linear in nature. Mean

weather indices like GDD, GSTmax and GSTmin and extreme
weather indices like Summer days, Longest Dry Spell and prcp95p
have a strong nonlinear relationship with yield even though
the absolute value of their linear dependence is weak. It is
interesting to note that the information contained in certain
extreme weather indices like Summer days, HeatWave index and
Longest Wet Spell is more than that contained in mean weather
indices, thus making the case for their inclusion as predictors in
regression models.

The results obtained here indicate a high degree of
susceptibility of crop yield to extreme weather, thereby
conforming with the key insights from past research (Lobell
et al., 2011b, 2013). Many of the previous studies did not include
extreme weather indices in their regression models for multiple
reasons. The most common being the lack of availability of
daily weather data (Lobell et al., 2011b). Also, some of these
studies assessed the impact of climate change on crop yield using
temperature and precipitation derived from Global Circulation
Models (GCMs). The outputs from the current generation of
GCMs, however, are usually not thought to be credible at the
spatiotemporal resolutions required to directly capture the effect
of weather extremes on crop yield. Including extreme weather
indices is crucial as they capture the variability of weather
within the growing season which is not taken into account in
mean weather indices. For example, the same average growing
season temperature may arise from two very different seasons,
one with little temperature variation and the other with wide
fluctuations in temperature. A growing season with widely
varying temperatures can result in an increased exposure to
extreme conditions, which may critically impact the yields. The
insights from this work also agree with those from a different
study on the negative impact of temperatures on crop yield (Zhao
et al., 2017), which state that with each ◦C increase in global mean
temperature, the global maize yield would reduce by about 7.4%
(without any consideration of adaptation strategies or effects of
CO2 fertilization).

Table 2 compares the performance of linear and nonlinear
regression models based on metrics like R2 and RMSE. For the
linear models, PCR and Ridge regression were found to have R2

values of 0.89 and 0.88, respectively and RMSE values of 0.32 and
0.33, respectively. Nonlinear regression methods like SVR and
Random Forest were found to have slightly better performance.
R2 values were 0.90 and 0.93 for SVR and Random Forest,
respectively with the corresponding RMSE values being 0.32 and
0.25. Overall, Random Forest regression was found to have the
best R2 and RMSE. This could be attributed to its robustness
to data with multicollinearity and for being adept at capturing
non-linear interactions. The existence of nonlinear relationships
between crop yield and weather indices is not newfound and have
been conformed by multiple studies in the past (Schlenker and
Roberts, 2009; Lobell et al., 2011a).

Results from this study could help researchers interested in
understanding the impact of environmental factors on crop
production. Mechanistic crop simulation models have been
traditionally used to model crop growth and yield and to
understand patterns of crop yield response to climate change.
However, gaps exist in our understanding of crop growth and

Frontiers in Sustainable Food Systems | www.frontiersin.org 8 May 2020 | Volume 4 | Article 52

https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org
https://www.frontiersin.org/journals/sustainable-food-systems#articles


Konduri et al. Weather Impacts on Crop Yield

FIGURE 6 | Unbiased estimates for Pearson correlation coefficient (which measures the linear dependence) and scaled Mutual Information (which measures the

overall dependence) between corn yield and weather indices. The shaded regions represent the 90% confidence bounds (5% and 95% quantiles) for the unbiased

estimates calculated using jackknife resampling. The information contained in certain extreme weather indices, like Summer Days, Heat Wave Index, Longest Dry

Spell and Longest Wet Spell is greater than or equal to that contained in the mean weather indices, thus making the case for their inclusion in regression models for

predicting crop yield.

TABLE 2 | Comparison of linear and nonlinear regression approaches to model

crop yield using weather indices.

Regression model R2 RMSE

Linear
Principal component 0.89 0.32

Ridge 0.88 0.33

Nonlinear
Support vector 0.90 0.32

Random forest 0.93 0.25

development processes. One example being the effect of extreme
temperatures on crop growth. Asseng et al. (2013) simulated
climate change impacts on future global wheat yields and
concluded that a greater proportion of the uncertainty was due
to variations among mechanistic crop models than to variations
among downscaled climate models. Insights from this study
could contribute toward a better understanding of the relevant
predictors in crop yield modeling and improve our existing
knowledge on the precise nature of crop-weather relationship.

Future studies should focus on expanding the scope of this
study in terms of the number of crops considered and the
spatial extent of the study. When performing this analysis
for a broader region, care should be taken to include effects,
such as spatial autocorrelation of environmental variables. The
presence/absence of irrigation has been shown to negate some of
the effects of extreme heat stress on crop growth (Siebert et al.,
2017) and hence, should also be considered. There are several
limitations of this study. First, the way in which some of the
weather indices are computed can have a sizeable impact on the
results. A separate analysis was performed to test the sensitivity
of some of the extreme weather indices to the specific value of
thresholds, as shown in Figures S1, S2. With a couple of indices
as test cases (Summer Days and pth percentile precipitation),

it was found that the value of threshold used can have a huge
impact on the value of the index. This is a problem that has
also been acknowledged in previous studies. According to Tack
et al. (2015), when calculating growing degree days, including
information on the distribution of temperature within each day
provides a statistically significant improvement in capturing yield
variability. For this particular study, data on intraday variability
in temperature was not available and therefore not used. Second,
different crop growth stages have different sensitivities to an
extreme event. Although this study did include extreme weather
indices, it did not consider the specific crop growth stage
affected by it. Third, this study included only temperature
and precipitation-based indices. However, other environmental
factors like relative humidity, ozone and CO2 concentration have
also been shown to affect yield.

6. CONCLUSIONS

Changes in the mean and extreme weather pose a major risk
to governments and businesses all across the globe. With corn
as a test case, the aim of this study was to come up with a
systematic approach to understand the nature of the crop yield-
weather relationship and determine if extreme weather indices
are relevant for yield modeling. Using Mutual Information as
a metric for pairwise dependence, it can be concluded that the
yield-weather relationship is indeed nonlinear. The information
contained in certain extreme weather indices like Summer days,
Heat Wave index, Longest Dry spell and Longest Wet Spell
was found to be greater than or equal to that contained in the
mean weather indices, thus making a case for their inclusion
as predictors in crop yield modeling. The results also suggest
that Mutual Information can be a better metric for covariate
selection over Pearson correlation coefficient as it gives a measure
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of the overall relationship (linear and nonlinear) between the
predictor and response variables. Using a combination of mean
and extreme weather indices as inputs, the nonlinear regression
models were found to have a slightly better fit than the linear
models, with the Random Forest regression giving the best fit
and least error on the test set. Future studies should focus on
expanding the scope of this analysis, both in terms of the spatial
scale and number of crops considered. The implications of this
work are important for researchers, businesses and government
agencies and especially for platforms like NASA Earth Exchange
which facilitate the generation and dissemination of impacts
relevant weather data and indices using a multitude of satellite-
derived datasets and model outputs.
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