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Plant growth often occurs under a range of stressful conditions, including soil acidity
and alkalinity. Hydrogen ion concentration, which determines pH of the soil, regulates
the entire chemistry of plant nutrient colloidal solutions. Beyond certain levels of pH,
multiple stresses such as hydrogen ion toxicity, and nutrient imbalance, toxicities and
deficiencies are induced in plants. Breeding for stress coupled with suitable agronomic
practices has been a way to deal with this situation in agriculture. However, plant
growth promoting microbes (PGPM) have shown potential as sustainable plant growth
enhancers and have potential to help with a range of stresses in their environment.
Considering the long-term evolutionary relationships between plants and microbes, it is
probably that much remains unknown about potential benefits of microbes that could
be harnessed from PGPM. This article reviews the current understanding of acidity and
alkalinity stress effects on plants and various approaches have or could address these
stresses. This review provides a detailed account of the current understanding regarding
the role of PGPM in acidity and alkalinity stress management, including when agronomic
practices and plant breeding are combined. Approaches already evaluated have shown
limitations because acidity and alkalinity in soils are gradual and progressive conditions.
Greater exploitation of PGPM in this regard, would be interesting to explore as they have
the potential to address multiple stresses in a more sustainable fashion. Future crop
production will require further breeding for pH stress resistance, but also implementation
of microbial technologies that provide enhanced tolerance to pH stress.

Keywords: acidity, alkalinity, PGPM, soil pH, plant stress

INTRODUCTION

Abundant microscopic life resides in the soil including bacteria, algae, protozoa and fungi (Glick,
1995; Müller et al., 2016), together with below-ground plant parts. The vigor of the microbes in the
soil depends on nutrient availability, temperature, water and pH, among others. Plants, partition
significant amounts of photosynthetically synthesized carbon to their root systems (Zhalnina et al.,
2018) for the important roles of root growth and maintenance. Additionally, this C partitioning,
to a large extent, is released from the roots into the rhizosphere in the form of exudates and
sloughed off cells, together called rhizodeposition (Paterson et al., 1997; Badri and Vivanco, 2009).
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Rhizodeposition serves as the main reduced C source for the
microscopic life inhabiting in the soil and sustains diverse groups
of microbes and microbial feeding life forms (Nguyen, 2009).
The root exudates are organic compounds which include: organic
acids, sugars, fatty acids and amino acids (Huang et al., 2014);
all these have nutritional, preferential microbe selection and
soil colloidal effects. Exudates therefore, control interactions
between plants and microbes in part because they contain
signal molecules that facilitate the interactions (Bulgarelli et al.,
2013). Many studies have shown that plants expend this C to
attract beneficial microbes such as rhizobia, involved in biological
nitrogen fixation in legumes (Msimbira et al., 2016; Chagas
et al., 2018) and mycorrhizal associations (Van Der Heijden
et al., 2015). The legume-rhizobia symbiosis is a plant growth
promoting mechanism acting through nitrogen fixation that is
well described as compared to other plant-microbe associations
(Oldroyd, 2013); it is reported to contribute to about 50% of
the biologically fixed nitrogen on earth (Lindström et al., 2010).
The second-most largely studied mechanism is that of a set of
plant-fungal interactions, which involves about 90% of all plant
species on planet Earth, by way of mycorrhizal symbioses (Gough
and Cullimore, 2011; Zifcakova, 2020). Such interactions benefit
plants by improving nutrient acquisition, water uptake and ability
to survive various stresses. The usefulness of plant-microbe
interactions has been the focus of intensive research, focused on
unlocking key unanswered question, since their first description
(Kloepper et al., 1989). Since then, beneficial interactions and
better understanding of the mechanism(s) involved in microbial
enhancement of plant growth have been demonstrated (Lira,
2015; Smith et al., 2015).

Beneficial symbiotic associations between early plants and
mycorrhizal fungi are thought to have evolved to overcome
limitations of terrestrial ecosystems, such as restricted water
and nutrient availability (Kenrick and Crane, 1997; Kenrick and
Strullu-Derrien, 2014). In soils, nutrient availability is related to
hydrogen ion concentration (H+), which is the measure of soil
pH. The pH variation in the environment has a direct impact
on the availability of nutrients and plant growth; the critical and
important effects of these conditions on microbial communities
are not well understood. In soils, pH is an important driver
for soil microbial community structures. Microbial survival and
colonization in such conditions requires the capacity to sense,
and adapt to, environmental changes (Biswas et al., 2007).

Recent years have witnessed considerable interest in
unraveling the role and potential of microbes in the success
of plants and animals. Of all, the human microbiome is the
most studied, as reviewed by Gilbert et al. (2018); more recently,
much attention has been focused on plants and their associated
phytomicrobiome (Compant et al., 2019); terrestrial plants being
the entry point of most energy into the terrestrial biosphere.
Much has been done, mostly on symbiotic microbes and
particularly under optimum conditions for plant growth. This
review investigates the current understanding of one of the
common, but complex and less explored abiotic factors, pH,
as a determinant factor of the distribution and survival of
microbes and plants. This review also wishes to understand
how much is known regarding aspects of acidity and alkalinity

stress alleviation related to the evolutionary understanding
that microbes have co-evolved with plants, each benefiting the
other. Microbes, having a large surface area to volume, are very
exposed to environmental stressors, so that their mode(s) of
adaptation is of great importance for survival and, potentially
of high impact, if these could be translated to multicellular
organisms. While optimum pH is a crucial factor for survival in
an evolutionary context, challenging conditions improve fitness
over the course of evolution. Other factors of great importance
include temperature and nutrients, which will also be touched
upon as related to pH.

PLANT MICROBE INTERACTION

Plants do not exist alone; always have complex interactions with
microbes. Plants co-live with microorganisms (fungi, bacteria
and archaea), allowing them to inhabit almost all of their tissues;
and the resulting assemblage of microbes is collectively known as
the plant-microbiome or phytomicrobiome (Knack et al., 2015;
Smith et al., 2017). This perspective has helped, in recent years, to
start answering some common evolutionary questions regarding
how microbes have evolved, together with their host organisms,
from their original ancestors. It is of critical importance to
understand how plant adaptation has been influenced by their
interactions with microbes, though much remains unknown.
Plant-microbe interactions are a lifelong process for plants, as
some microbes may be leaving the plant-associated community,
while others will be entering the community (Baltrus, 2017).
The ability of plants and microbes to communicate prior to
physical contact being established is a very important (Chagas
et al., 2018) as it helps the partners maximize the chance
of benefiting from one another, without harm. There are a
number of phytomicrobiome groupings, for instance depending
on the plant part colonized by microbes: rhizomicrobiome –
roots, caulomicrobiome – stem, phyllomicrobiome – leaves,
anthromicrobiome – flowers, carpo microbiome – fruit, or degree
of intimacy with the plant tissue which are termed as endophyte
(interaction inside plant parts), epiphyte (on the surface of
plant structures such as shoots, stems, leaves, flowers and fruits)
(Laksmanan et al., 2014; Chagas et al., 2018). The rhizosphere
phytomicrobiome richness, activities and diversity is far greater
than the phyllosphere (Laksmanan et al., 2014). This is primarily
because much of the root exudation and sloughed off cells contain
nutrient rich compounds for microbes associated with roots
(Meharg and Killham, 1990; Beneduzi et al., 2012; Daguerre
et al., 2017). Even with many questions unanswered about
their full potential role in each of their tissues of colonization,
plant-associated microbes provide promising insights around
some best ways to augment plant growth and productivity, and
understanding continues to expand.

For agriculture, microbes hold great promise in promoting
productivity through synergistic interactions with host plants.
All agricultural production taking place under field conditions
face a range of challenges. This means increasing production
with a constant, or even decreasing, land resource, and the
need for a breakthrough to find possible sustainable means
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for food production under field conditions. Plant growth
promoting elements in the rhizomicrobiome provide promising
potential for sustainable crop production and there has been
increased interest in optimizing their use under a range of
stresses, such as salinity and drought (Booth et al., 2002;
Subramanian et al., 2016). As the world faces changing, and
generally harsher, crop-growth conditions related to ongoing
climate change, preparedness requires multiple options for
sustainability. Apart from drought and salinity two other key
growth stressors of the phytomicrobiome are increasing acidity
and alkalinity of the soils.

Many recent studies have identified beneficial microbes that
help plants, including crop plants, to survive the stresses they
encounter, including nutrient imbalance (Mylona et al., 1995;
Yazdani et al., 2009), salinity (Subramanian et al., 2016), and
drought (Lim and Kim, 2013), with much less being reported
regarding soil acidity and alkalinity. Thus, there is potential to
understand better and move forward with a more sustainable
agriculture based on knowledge at hand on each physical stress,
and the role microbes can play in agricultural management of
these stresses. A key factor in microbial proliferation in the wild is
pH. The acidity and alkalinity of soils has been linked directly to
soil and plant associated microbial population dynamics (Biswas
et al., 2007; Zhalnina et al., 2015). Despite its obvious importance
much seems unclear as to why microbes behave the way they do
at varying pH levels.

SOIL: A CENTER FOR PLANT MICROBE
INTERACTION

Soil is a reservoir of basic natural resources, such as nutrients,
for animals, plants and microbes. It is a life support system
that provides a wide range of necessary ecosystem goods and
services ranging from storage of carbon, to water purification,
soil fertility and agricultural production (Rojas and Caon, 2016).
Variation in soil characteristics throughout the world is affected
by weather/climate and how it is geopositioned on the globe.
Apart from nutrients, soil also contains plant-available water
which plays a key role in creating an aqueous nutrient solution,
the form taken up by plants (Sassenrath et al., 2018). The fact
that all living biological cells are water-based systems makes a
cell’s survival very dependent on aqueous equilibria. For any
aqueous solution reaction to occur, presence of anions and
cations is needed. The necessity of appropriate pH in a biological
system is crucial as it helps maintaining biochemical equilibria,
correct levels of proton dissociable groups and maintain the
cell pH at near neutral all the time. Like any other living
cells, microbes need an appropriate pH balance to maintain
physiological functions.

Soil pH
The measure of soil reaction (alkalinity or acidity) is expressed
as pH. It is mostly measured in water solutions and to lesser
extent, for research purposes, 0.01 M calcium chloride is used
(Blake et al., 1999). Soil pH is a key condition with substantial
influence on soil biology, chemistry and physical processes which

have direct impacts on plant growth and development. It is clear
soil and crop productivity are linked to pH. The United States
Department of Agricultural National Resources Conservation
Service has categorized soil pH as follows: ultra-acidic (<3.5),
extremely acidic (3.5–4.4), very strongly acid (4.5–5.0), strongly
acidic (5.1–5.5), moderately acidic (5.6–6.0), slightly acidic (6.1–
6.5), neutral (6.6–7.3), slightly alkaline (7.4–7.8), moderately
alkaline (7.9–8.4), strongly alkaline (8.5–9.0) and very strongly
alkaline (>9.0) (Burt, 2014).

Agricultural crop production is generally conducted within
the range of slightly acidic to slightly alkaline, a window that
is associated with optimal availability of soil nutrients. In all
soils, solubility, mobility and bioavailability of trace elements
is strongly affected by pH. However, soils which fall outside of
the range of optimum nutrient availability are grouped as either
acidic or alkaline and pose a range of challenges to plants. Though
plants differ in their tolerance to extreme pH, most agricultural
plants perform optimally at a pH near neutrality (Läuchli and
Grattan, 2012). In the context of crop production, pH variation
is associated with all the ways the soil is managed before, during
and after crop production, which includes; soil tillage, planting
of cover crops, fertilizer application and lime addition, as well as
precipitation and other climate variables.

A full understanding of pH is necessary for optimizing
nutrient cycling, soil remediation and plant nutrition, as it
affects the entire interacting system. In order to establish ways
to deal with various aspects that are affected by soil pH, one
should initially understand what causes variation in the soil
pH. One of the major causes of pH variation is the inherent
mineral composition of the parent soil material. In this review,
acidification and alkalization of soil are discussed to enlighten
our understanding of causes of pH changes in the soil below and
above neutrality.

Soil Acidification
Soil acidification is the result of various direct and indirect factors
interacting with the soil; these include nutrient cycling and
organic matter decomposition, high and acidic rainfall, fertilizer
application, crop growth and weathering (Figure 1). Acidification
is a gradual and progressive process which is influenced by
agricultural practices and now by climate change (Bolan et al.,
1991; Filipek, 1994; Hao et al., 2019). It is the result of increased
H+ concentration with the H+ released from Carbon (C),
Nitrogen (N) and Sulfur (S) during transformation and cycling.
For example S and N oxides released from burning of fossil
fuels react with rain water to form tetraoxosulfate (vi) acid and
trioxonitrate (v) acid (Oshunsanya, 2018). Mineralization and
oxidation of organic N and S release H+, thus lowering the soil
pH. Organic matter decomposition causes release of CO2 into the
soil air which, when dissolved in soil water, forms H2CO3 which
causes a decline in pH (Bolan et al., 1991).

High rainfall is also a cause of soil acidification because
rainwater is slightly acidic (around pH 5.7), a result of reaction
with atmospheric CO2 forming carbonic acid, hence reducing the
pH of soil. In addition, water in the soil causes leaching of basic
cations, such as bicarbonate, leaving more Al3+ and H+ relative
to other cations in the soil (Oshunsanya, 2018).
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FIGURE 1 | An illustration of various soils with respect to pH, nutrient availability, deficiencies, and imbalances.

In agricultural soils a major contributor to acidity is the
application of ammonium-based fertilizers, urea, sulfur and
legume cultivation. The salts from applied fertilizers have strong
effects on acidification of the soil through nitrification. This
happens only when NH4

+ undergoes nitrification and/or NO3
−

is leached but not when the nitrate is taken up by plants
(Marschner, 2011). The scope of the problem is becoming
worrisome as the occurrence of acid rain and continued intensive
use of synthetic fertilizers. In addition, N2 fixation also has impact
on soil acidification. Comparatively, legumes are known to cause
more soil acidification than non-legumes, due to excessive uptake
of cations relative to anions during N2 fixation, and also leaching
of nitrates eventually resulting from fixed N (Tang, 1998; Tang
et al., 1999). However, variation in N2 fixation among legumes
exists, which results in variation of the acid generated with a range
of 0.2 to 1 mol H+ for each mol of fixed N (Bolan et al., 1991).
Other factors which influence acidification by legumes are soil
nutrients and nitrogen (Yan et al., 1996; Marschner, 2011).

Crop growth is another factor which causes localized soil
acidification as a result of nutrient uptake. Plants take up
nutrients from the soil solution in ionic form with a preference
for cations over anions, which leads to cation reduction in the
soil (Tang and Rengel, 2003). To counteract the effect of charge
imbalance, plants release H+ from roots to the rhizosphere, hence
lowering soil pH. In addition, roots naturally exude organic acids
which cause acidification of the soil.

Soil Alkalization
Soil alkalinity can be a result of natural weathering processes or
man-made conditions. Weathering of silicates, aluminosilicates

and carbonate containing compounds such as Na+, Mg2+,
K+, and Ca2+ is linked to silicates being hydrolyzed and
subsequent OH− release, which increases soil pH. Irrigation is
also associated with alkalinity of the soil, especially when the
used water contain large quantities of bicarbonates (Oshunsanya,
2018). Drought is another natural cause of soil alkalinity
due to insufficient water to leach soluble salts, allowing their
accumulation in the upper soil profile. Alkaline soils are
characterized by high concentrations of carbonates (CO3

2−)
and bicarbonates (HCO3

−) which have the ability to neutralize
acids (Bailey, 1996). As a result, alkaline soils are associated
with desertification in most parts of the world, and this is also
closely associated with soil salinity. Recently, the demand for
aluminum in the world has contributed to increased alkalinity
in surrounding ecosystems because mining and disposing of
the alkaline bauxite residue (Kong et al., 2017). Lastly, over
liming also leads to alkalization of soil. Therefore, liming
should carefully consider the knowledge of soil acidity so that
required liming material can be calculated before it can result in
soil alkalization.

MICROBIAL COMMUNITIES IN
RELATION TO SOIL Ph

Environmental factors are the main drivers of the
phytomicrobiome composition (Chu et al., 2016; Baltrus,
2017) with soil pH exerting a large effect in microbial community
structure (Zhalnina et al., 2015). According to Graham et al.
(1994), prokaryotic lifeforms are profoundly influenced by the
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pH of their environment. For all living cells there are optimum
pH requirements for normal physiological functions. The pH
range 5.5–6.5 is optimal for plant growth as the availability of
nutrients is optimal. This is also so for most soil microbes, in
part because in this range plants grow well and produce more
root exudates as a carbon source available for survival and
multiplication of microbes. Though, some microbes have the
ability to alter soil pH by acidifying their surroundings, as a way
to outcompete other microbes, most bacteria do best around
neutral pH. Fungal activities on the other hand are favored by at
least somewhat acidic pH conditions, which explains why they
are dominant in forest acidic soils compared to range land soils
and sub-humid and arid prairies which are mildly acidic and are
dominated by bacteria (Zifcakova, 2020).

Bacteria are among the single celled organisms most
able to adapt to and thrive under harsh environmental pH
conditions. Acidic soils are dominated by Acidobacteria and
Alphaproteobacteria (Shen et al., 2019) while Actinobacteria
abundance increases toward alkalinity (Jeanbille et al., 2016).
However, the most sensitive component of the cell to pH changes
is its workhorse, the protein (Hyyryläinen et al., 2001). Slight
changes in pH have been reported to interfere with amino acid
functional group ionization and impair hydrogen bonding, as a
result protein folding is changed, leading to denaturation and
cessation of enzymatic or other activities (Booth et al., 2002).

Variation of pH in the environment has a direct impact
on the availability of Al, Fe, Mn, Cu, and plant growth; the
critical and important effects of these conditions on microbial
communities are not well understood. Graham et al. (1994),
reported that there were two pH related mechanisms influencing
microbial communities, the direct and indirect, the latter being
the spillover effects of pH.

Acidity Tolerance in PGPM
In general, organisms have developed mechanisms to survive
environmental variation. Among other abiotic factors, most
organisms need to sense and adapt to hydrogen ion concentration
(pH) (Booth et al., 2002). In soils, pH is an important driver for
soil microbial community structures. Microbial survival under
such conditions requires the capacity to sense, and adapt to,
environmental changes (Biswas et al., 2007).

However, little is known about optimal pH ranges and
nutrient availabilities for many species of microorganisms
(Ratzke and Gore, 2018). Plant–microbe interactions such as
that of legumes and rhizobia are affected by Ca, P, Fe, and
Mo; they influence rhizobia and their optimal growth, which is
near pH 6. Biochemical properties and activities of microbes are
partly affected by pH, leading to diversity effects in microbial
community structure (Roe et al., 1998).

Microbes have developed various means to tolerate extreme
pH changes. Production of extracellular polysaccharides by
rhizobia is one of the reported behaviors (Gopalakrishnan et al.,
2015). Rhizobium tropici demonstrated an ability to tolerate
acidic pH by producing glutathione, a tripeptide (Muglia et al.,
2007; Wang et al., 2018). Some rhizobia are known for their
ability to accumulate high levels of potassium and phosphorus as
a means to tolerate low pH, as compared to acid sensitive strains

(Watkin et al., 2003). However, the relationship between these
microbial survival mechanisms and plant growth promotion is
not well understood.

Cells’ major functions, such as nutrient acquisition,
cytoplasmic pH homeostasis and protection of DNA and
proteins are largely affected by low pH (Booth et al., 2002).
Mechanisms involved in the induction of protective systems pose
a considerable challenge. The advent of proteomics (Blankenhorn
et al., 1999) has complemented the genome information in this
area, for example, Lactobacillus spp., like many microorganisms,
produces a thin biofilm composed of polysaccharides and
proteins, which protects the cell against changes in the pH of the
environment (Wang et al., 2018).

Alkalinity Tolerance in PGPM
High pH disrupts the bonds holding together the DNA helix
strands, and lipid hydrolysis occurs more readily as the
environment becomes more basic (Rousk et al., 2010; Shen
et al., 2019). Most microbes adjust their surrounding medium
to near neutrality as a way to survive high pH. Sodium is
very important in intracellular pH maintenance for microbes
because it allows exchange of H+/Na+ antiporters into the
culture media (Satyanarayana et al., 2005). Furthermore, the
H+ concentration gradients across the membranes plays an
important role in producing ATP during cellular respiration,
through proton motive force (Celiker and Gore, 2013). It is not
very clear how PGPM are able to use sodium-dependent ATP
synthases as an alkali tolerance mechanism.

ACIDITY AND ALKALINITY STRESS IN
PLANTS

Acidity Stress
Acidification of the soil is currently a major limit for sustainable
agricultural production in the world. Acid soil covers about
30–40% of the arable land worldwide, and about 70% of the
world’s potential agricultural land (Von Uexküll and Mutert,
1995; Kochian et al., 2004). In the soil plant roots are in constantly
adjusting to varying pH as a result of water status variability
(Misra and Tyler, 1999). Soil pH has significant influence on
plants because it affects almost every aspect of nutrient uptake by
them. In acid soil plants face three major toxicities, Al3+, Mn2+

and H+, which inhibit plant growth. In any acidic soil Al toxicity
is the major and often first limitation to plant growth. Effects of
Al toxicity include; inhibition of root growth, inhibition of root
cell division, modification of the cytoskeleton and inhibition of
nutrient uptake (Bojórquez-Quintal et al., 2017; Kaur et al., 2019).
In many cases direct Al toxicity effects are not obvious, instead
they are manifest as P deficiency symptoms with overall stunting,
dark green leaves, late maturity and purpling of stems, leaves
and leaf veins. All these P deficiency symptoms occur because of
delocalized P metabolism by Al. Also P ends up being fixed by
Fe in most acidic soils, degrading conditions for crop production
(Kaur et al., 2019).

The second prevalent toxic metal in acidic soil is Mn. In
contrast with Al toxicity, Mn as an essential plant nutrient,
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toxic when plants absorb it in excess. Mn toxicity is prevalent
at pHs as high as 5.6; this makes it more important as a
constraint in crop production, in some acid mineral soils, than
Al (Sumner et al., 1991).

Low pH stress has been associated with inhibition of root
growth (Yang et al., 2005) by facilitating H+ influx into
roots, which causes poor plant growth. High H+ influx causes
depolarization of the plasma membrane, impacting the acidity of
the cytoplasm (Babourina et al., 2001). Thus generally, low pH
stress caused by H+ adversely affects root tissues, which leads to
reduced growth and development of crops. There is a meaningful
lack of knowledge regarding how various plants respond to low
pH conditions; low pH tolerance would be a good trait to select
for in plant breeding programs.

Alkalinity Stress
Most land desertification in the world is linked with soil
alkalization and lower water availability and retention ability,
soil erodibility and also reduced biodiversity. Alkaline soils are
characterized by high concentrations of carbonates (CO3

2−)
and bicarbonates (HCO3

−) which have the ability to neutralize
acids (Bailey, 1996; Rashid et al., 2019), high pH and poor
amounts of organic carbon, leading ultimately to poor availability
of nutrients. Other minor contributors to soil alkalinity are
those which result from hydroxides (OH−), borates, organic
bases, silicates, phosphates and ammonia. The problem of
alkalinity in soils is prevalent, as a secondary effect of drought
in many places. Most arid and semi-arid regions of the globe
experience soil alkalinity since concentrations of salts decrease
and levels of carbonates and bicarbonates increase, leading to
alkalinity of the soils. Alkalinity stress effects on crop plants
are remarkably similar to those of salt stress (Xu et al., 2013),
though it has remained a less researched area. Most of the
studies to date have dwelt on the relationship between salinity
stress and alkalinity stress by showing a strong link between
them (Bui et al., 2014). The stress caused by carbonate salts is
sometimes higher than that of salinization by NaCl and NaSO4
(Shi and Sheng, 2005).

The higher pH of sodic soils results in nutrient imbalance
stress in crop production by affecting bioavailability of
phosphorus, iron, copper, boron and zinc (Chen et al., 2011).
However, it is important to note that under high pH (more
OH− than H+) the activity of the OH− ions comes into play,
increasing alkalinity at pHs greater than 11, whereas below pH
11 forms of carbonates are responsible for alkalinity (Whipker
et al., 1996). In alkaline soils with pH < 11 there are major effects
of pH on plants that are largely due to carbonate ions, rather
than hydroxide ions.

Nutrient availability for plant uptake is related to soil
chemistry, which is predominantly influenced by pH. When
addressing pH related stresses, many other associated
stresses come into play; under alkalinity stress, apart from
essential element stresses, there are also osmotic, ion-induced
injury or high pH effects that are automatically problematic
(Lynch and Clair, 2004).

Most plants under alkalinity stress manifest stunted growth
due to poor nutrient uptake and leaf chlorosis due to high and low

uptake of Na+ and Fe+, respectively (Zhang et al., 2012; Singh
et al., 2018). High levels of Na+ interfere with stomatal closure,
which worsens the problem of water loss for plants (Bernstein,
1975), a common phenomenon under saline conditions, which
can be similar under alkalinity conditions. Bicarbonates reduce
Fe absorption and sometimes increase internal precipitation of
Fe (Norvell and Adams, 2006), all of which affects synthesis of
chlorophyll, and hence leads to chlorosis. Chlorosis, which is
linked to diminished photosynthesis, has an ultimate impact on
plant growth. Similarly, in calcareous soils reports have shown Fe
and lime-induced chlorosis are dominant factors leading to iron
deficiency (Coulombe et al., 1984). Conversely, the concentration
of bicarbonate ions in the soil is known to induce minor to
severe stunting in plants. For instance, cucumber plants were
reported to experience negative effects of HCO3

− on their growth
(Rouphael et al., 2010).

Alkalinity stress causes inhibition of root growth due to high
concentrations of HCO3

− in the soil solution, though this varies
among crop species. The suppression of root growth by HCO3

− is
associated with inhibition of respiration by the roots (Alhendawi
et al., 1997). The inhibition of root growth may also result from
excessive accumulation of organic acids (OAs) in root cells. Of
the OAs commonly reported to stop root elongation, malate is a
problem when concentrated in the elongation zone, as a result of
bicarbonate in calcifuge grass species (Lee and Woolhouse, 1969).
Furthermore, plant hormones are known for variation in their
activity under a range of stresses, leading to alleviation of negative
impacts on plants, though their final mechanisms of action
are often unclear. Under alkaline stress abscisic acid (ABA) is
secreted by roots into the rhizosphere, which negatively impacts
root growth as water becomes limiting (Slovik et al., 1995).

MANAGEMENT OF ACIDITY AND
ALKALINITY STRESSES IN PLANTS

Acid soil management is the application of indirect and direct
means to ensure that production potential of a particular soil is
regained or attained. Some of the direct acidic soil amendments
include correction of acidity by liming and manipulation of
agricultural practices for optimum crop yield (Yirga et al., 2019).
Liming is one of the major known ways to manage acid soils.
However, breeding for acidity tolerance and use of PGPM are also
becoming established mechanisms to address soil acidity stress.
The combination of two or more of these methods could be more
helpful than single method strategies. The problem is recurrent
for soils that are prone to acidification.

To ensure optimum plant growth, soil pH should be
monitored and the soil amended to optimal pH levels, near
neutrality. Generally, it has been established that soils with
high organic matter, >5%, have pHs between 5.0 and 5.5. In
contrast with soil acidity, which can be tolerated by some crops,
very few crops survive in even moderately alkaline soils, due
to restricted nutrient mobility and availability. Alkaline soil
amendment for crop production involves the use of cultural
practices (conservation tillage, crop covers and rotation, organic
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matter amendments, avoiding bare fallow), use of PGPM and
production of alkali stress tolerant crop varieties.

PGPM Enhance Plant Resilience to
Acidity and Alkalinity Stresses
Acidity
Sustainable agricultural innovations are not immune to the effects
of acidic soils. Considerable effort has been made regarding the
use of PGPM as a strategy for dealing with various environmental
stresses of plants. Current understanding indicates that about
2–5% of culturable rhizobacteria are plant growth promotors,
either directly and or indirectly (Dutta and Bora, 2019); the
need to exploit this resource in agriculture is increasing. Legume
symbioses with rhizobia, a well-studied beneficial plant microbe
interaction, are constrained with regard to nodule formation and
poor and/or failed bacterial survival (Correa and Barneix, 1997)
by various stresses, including soil acidity. Many reports share a
similar perspective, indicating that selecting for acid-soil tolerant
symbiotic partners can improve the survival and productivity of
crop plants (Zhang et al., 2020). With Sinorhizobium, for instance,
the genetic control of acid tolerance is becoming increasingly
understood (Draghi et al., 2016). In legume symbioses, as with
other interactions, there is a requirement for specific recognition
of signal molecules produced by both bacterial and plant partners.
One of the factors affecting the signal molecule exchange and
recognition process is pH, with effects on both plant and bacterial
partners (Zhang et al., 2020). Though there have been few
advances in understanding the direct effect of PGPM on acid
stress, there is a substantial body of research literature indicating
the potential for using microbes to address secondary effects of
acidity in the soil, such as Al toxicity (Zerrouk et al., 2016) and P
deficiency (de la Luz Mora et al., 2017; Delfim et al., 2018).

It has been established that, within the legume-rhizobia
nitrogen fixing symbiosis, rhizobia isolated from acidic soils
have more ability to colonize and improve plant growth under
acidic conditions. Several genes contributing to rhizobial survival
under acidic conditions have been identified. Some of them
are those which code for stress tolerance proteins, including
ActA (apolipoprotein N-acyl transferase) and ActR (response
regulator) (Tiwari et al., 1996a,b). Despite advances regarding
tolerance and ability of legumes to nodulate under low pH
conditions, much remains unknown regarding signal molecules
in this capacity.

The other highly studied plant microbe interaction is
mycorrhiza associations, which are associated with about 90%
of all terrestrial plants. With this degree of interaction, it
is clear that for a large proportion of acid dominated soils
where these plants occur there are mycorrhizal associations
with the plants growing there. There are two main groups of
these fungi: ectomycorrhiza and endomycorrhiza (Bonfante and
Genre, 2010). Endomycorrhiza reside inside plant cells and form
arbuscules within cortical root cells, which are directly involved
in the symbiosis beneficial effects. This type of mycorrhizal
association is as old as the evidence of first terrestrial plants on
the earth (Chagas et al., 2018) and is the most widespread type.
Endomycorrhiza are further divided into arbuscular mycorrhiza

(AM), ericoid and orchidoid associations (Parniske, 2005). The
promiscuity of AM make them associate with a wide range of
hosts and assist most plant species with a range of stresses, and
assist plants under nutrient imbalance situations, most notably P
deficiencies (Zhu et al., 2007). Plants depend on AM particularly
for P uptake from the nutrient stressed soils and the fungi
involved depend on plants for their C requirements (Mishra
et al., 2017). Acidic soils are also associated with metal toxicities,
ultimately resulting in decreased root growth, which hinders
overall plant growth and development. The major constraint to
plant growth in acidic soil is the toxic effects of Al, Mn, and
Fe, together with P deficiency. AM associations with plants is
one of the most important plant-microbe associations, due to its
ability to help plants with multiple stresses, compared to other
association which may address only one stress. Many reports have
shown that a wide variety of AM fungal species exist in acidic
soils and help plants survive in such conditions; dealing with
soil pH is always complex as it has numerous effects on both
roots and mycorrhizal associations (Clark, 1997; Bloom et al.,
2006). Even though more investigation is required to determine
the best ways to exploit the potential benefits of both partners,
some development has already been achieved. Studies of plants
associations with AM fungi as a strategy to thrive in acid soils
has revealed that these fungi provided benefit to plant growth
through the ability to bind to toxic ions, secrete organic acids
and glomalin (Thangavelu et al., 2014; Figure 2). Like plants
AM fungal species also vary in their tolerance to acidic soils.
AM fungal colonization of plant roots in soils is decreased at
pH < 4 (Higo et al., 2011), which can explain differences in the
ability of various AM fungal species to enhance plant growth
under acidity stress and their variation in mechanisms to be
employed (Figure 2).

Despite the advantages of AM to plants their beneficial impact
on plants in acidic soils is less well documented than in non-
acidic soils. The few studies that have examined the potential of
AM fungi to assist plants in dealing with acidity stress (Table 1)
have shown clearly that there are numerous benefits that can
be acquired by plants. Clark (2002), revealed that use of various
species of AM resulted in variable effects on switchgrass growth,
but that all AM fungi caused greater yields than the control.

Alkalinity
Developing proper and economically beneficial techniques for
managing major challenges in crop plants, such as alkalinity
stress, requires intensive research. PGPM with dual (salinity and
alkalinity) stress tolerance, termed as haloalkaliphilic, have the
ability to alleviate both salinity and alkalinity stresses of plants
and improve growth (Siddikee et al., 2011; Table 2). Bacteria
with the ability to maintain their intrinsic pH below 9 when
external pH is 9–11 are called alkaliphilic. This tolerance to
alkalinity is achieved through a cytoplasmic membrane proton
transfer system (Torbaghan et al., 2017). The Bacillaceae family
of rhizobacteria is among the best described in this capacity,
and has a wide range of host plants; the group of PGPM
consists of 15 genera which include Alkalibacillus, Bacillus
and Haloalkalibacillus, among others (Radhakrishnan et al.,
2017; Torbaghan et al., 2017). The use of alkalinity tolerant
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FIGURE 2 | Differences in mechanisms used by microbes (fungal versus bacterial) to alleviate different environmental stressors.

TABLE 1 | Effectiveness of PGPM on plant growth under acidity stress.

Plant species Microbe Stress type Response of plant to microbe References

Alfalfa Sinorhizobium meliloti
LPU63

Acidity Ability to nodulate under low pH and increase plant
growth

Segundo et al., 1999

Rice Burkholderia thailandensis,
Burkholderia seminalis
Sphingomonas pituitosa

Acidity Promote plant growth by increasing root volume and
seedling dry weight

Panhwar et al., 2014

Mung bean AM Acidity Increase and decrease of plant dry weight dependent
on the AM species

Lin et al., 2001

Cowpea AM Acidity Increase in biomass of plants with decreasing pH when
inoculated with AM

Rohyadi, 2008

Chickpea AM (Rhizophagus clarus) Acidity Increased shoot dry matter Alloush et al., 2000

Wheat AM Acidity Significant increase in straw and grain yield Suri et al., 2011

Switchgrass AM Acidity Increased shoot dry weight Clark, 2002

Sweet potato AM Acidity Increased biomass of the plants Yano and Takaki, 2005

rhizobacteria, with ability to produce indole acetic acid (IAA) and
1-aminocyclopropane-1-carboxylate (ACC), has the advantage of
reducing ethylene production, and increasing K levels (Figure 2).
This increases the relative humidity in plants and helps maintain
ion homeostasis (Soleimani et al., 2018) which increased wheat
growth. Several other mechanisms are also reported (Figure 2)
by which PGPM alleviate abiotic stress in plants, such as by
modulating hormones, enzymes, photosynthesis, secretion of
organic acids and secondary metabolites (Bisht et al., 2019; Dixit
et al., 2020). Moreover, rhizobacteria are involved in cycling of
key nutrients such as N and C, which ensures long term reserves
of nutrients in the soil.

The use of legumes is also regarded as a means of alkalinity
management and has been applied in various parts of the
world, as they have an inherent ability to acidify the soil.
The combination of legumes and their symbionts to alleviate
alkalinity problems is a sustainable way to redeem unproductive
soils for agricultural use again. The use of AM fungi and rhizobia
are among the oldest and best documented plant symbioses,
and our understanding of them has shed light on helping
plants withstand a range of stress conditions (Kumar et al.,
2009). Abd-Alla et al. (2014) demonstrated that rhizobia and
mycorrhizae can work together on faba bean to help the crop
grow well under alkaline stress conditions; they found clear and
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TABLE 2 | Effectiveness of PGPM on plants growth under alkalinity stress.

Plant species Microbe Stress type Response of plant to microbe References

Wheat Bacillus clausii Alkalinity Increased root and shoot growth, increased grain yield Torbaghan et al., 2017

Virgibacillus marismortui Saline-alkaline Increased root and shoot growth, increased grain yield Torbaghan et al., 2017

Lysinibacillus sp. Alkalinity Improved seed germination and vegetative growth Damodaran et al., 2019

Enterobacter sp. alkalinity Increased photosynthetic rate

Corn Bacillus sp. NBRI YN4.4 Alkalinity Photosynthetic pigment and sugar content improvement
and decreased level of proline in corn

Dixit et al., 2020

Soybeans Burkholderia spp. PER2F Alkalinity Increased plant growth and N/P ratio Fernández et al., 2007

Chrysanthemum Bacillus licheniformis Alkalinity Increased plant survival rate, photosynthesis and yield Zhou et al., 2017

Faba beans Bacillus subtilis Alkalinity Increased germination percentage, seedling growth and
yield due to increased production of IAA by microbe at high
pH

Yousef, 2018

Tall fescue Klebsiella sp. D5A Saline-alkaline Increased plant growth through the activity of ACC Liu et al., 2016

Wheat Bacillus simplex Alkalinity Significant decrease in pH of the rhizosphere and increased
plant growth and root P concentration

Hansen et al., 2020

Chickpea Mesorhizobium ciceri Alkalinity Efficient in nodulation under high pH and increase plant
growth

Müller et al., 2016

synergistic contributions of inoculated symbionts to alkalinity
stress resilience of faba bean, and that this resulted in increased
nodulation, nitrogenase activity and yield.

Plant Breeding and PGPM to Improve
Crop Yield Under Conditions of Acidity
and Alkalinity Stresses
Use of Alkalizing Agents in Acidic Soils
Acidic soil causes negative effects on plant growth and
development (Rengel, 2011) leading to poor or no crop yield.
Liming is a practice that corrects soil pH, moving it toward
neutrality by addition of alkalizing materials rich in Ca and
Mg. This material can be in solid (limestone, chalk) or liquid
(hydrated lime) forms. Liming is the most common amendment
technique and uses CaCO3 or MgCO3 as they have substantial
ability to neutralize acids, hence increasing soil pH. By increasing
soil pH, Al toxicity, which inhibits root growth is alleviated;
P, which is fixed by Fe, becomes available leading to improved
crop productivity and yield. This is the reason for the popularity
of liming (Fageria and Baligar, 2008) as an amendment for
acidic soils. How much lime to be applied for soil acidity
amendment depends mainly on the type of lime, fertility status,
crop grown, management practices and cost benefit analysis
(economic) considerations.

Use of Acid-Tolerant Crop Varieties
In acidic soils some plants are more tolerant than others, with
variation even among genotypes of the same species; choosing
the right crops based on the pH status of the soil is important
(Hede et al., 2001). Though the soil may continue acidifying if no
liming is done, it is advisable to include management practices,
such as reducing the use of nitrogen fertilizers to reduce nitrate
leaching, which increases soil acidity. Plowing crops or pasture
into the soil will help reduce acidification of soil. In addition,
rotation of legumes, which are rhizosphere acidifiers, with less
acidifying crops would be of great importance in reducing soil
acidity effects.

Use of Acidifying Agents
Lowering soil pH to reduce alkalinity can be achieved by adding
organic carbon to the soil; minimum tillage also helps to improve
water retention and soil structure improvement, as does the
use of cover crops and legumes, all of which acidify the soil.
Furthermore, the use of elemental sulfur acidifies the soil by
neutralizing alkalinity (Goulding, 2016).

The use of manure and compost is a common practice
for management alkaline soils, as it improves organic carbon
pools and soil structure. Manure and compost decrease soil
pH greatly, as a result of releasing NH4

+, CO2 and organic
acids during microbial decomposition (Walker et al., 2003). All
these sum up to improvement of soil structure, water holding
capacity and nutrient availability and, hence, soil health and
productivity is regained.

Planting of cover crops helps alkaline soils in many ways,
including reduction of exposure of the soil to agents of
erosion. The cover crops also help in dissolution of carbonates,
through root exudates, improvement of the soil structure
and addition of organic matter to soil. Best cover crops for
alkaline soils are sorghum and legumes with high carbon
sequestration by stabilizing soil organic matter and structure,
hence carbon and nitrogen concentration in the soil is increased
(Williams et al., 2016).

Ammonium sulfate and other sulfur containing fertilizers
cause quick declines in soil pH, which makes them good fertilizer
options for alkaline soils. When oxidized elemental S and SO2
from the atmosphere produce acids which decrease the pH
of alkaline soils. Similarly, nitrogen fixation by legumes forms
NH4

+ inside the nodule, and excessive uptake of K+ causes
charge imbalance, both of which leads to proton release by
the roots to balance the charge (Marschner, 2011), resulting in
rhizosphere pH decline.

Use of Alkalinity Tolerant Crop Varieties
Plants have developed various strategies in response to
environmental stimuli, such as activation of various metabolic
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defense molecules. Among the metabolic molecules produced
by plants to enhance defense capacity are salicylic acid,
ethylene, calcium and jasmonic acid (Klessig and Malamy, 1994).
Of the mentioned defense molecules salicylic acid has been
confirmed to confer alkalinity tolerance to tomato plants, when
applied exogenously, by reducing reactive oxygen species (ROS)
generation and improving antioxidant defense against alkaline
stress (Khan et al., 2019). Similarly, it was demonstrated that SA
applied in combination with Si had positive effects on alkalinity
tolerance in tomatoes (Khan et al., 2019). From such reports, it is
clear that much is still to be understood regarding how different
tolerance molecules and beneficial elements work together in
helping plants grow under such alkaline stress conditions.

Plant breeding is one important approach to ensuring crop
productivity in stress prone areas, including alkalinity of soil
and water. A range of plants have shown various mechanisms
of tolerance to alkaline stress, most of them showing early
seed germination and seedling establishment. Cultivars of lentil
tolerant to alkalinity stress are known to have shoots with a
thicker epidermis than sensitive cultivars (Singh et al., 2018).
Similarly, tolerant lentils (Singh et al., 2018), finger millet
(Krishnamurthy et al., 2014) and Lotus tenuis (Paz et al.,
2012) minimize Na+ uptake by having intact pericycle and
stele regions. Despite the presence of tolerance mechanisms
for alkalinity stress by plants much remains unknown in
relation to other related stresses, such as salinity and drought.
According to Bui et al. (2014), the success of breeding for salinity
tolerance required that increased attention also be placed on
alkalinity tolerance.

As previously indicated a major limiting nutrient under
alkaline stress is Fe; plants have developed two strategies to
deal with this problem. Firstly, most plants optimize Fe uptake
via transporter by first reducing Fe+++ to Fe ++ in the root
plasma membrane. Secondly, development of specific iron uptake
by release of phytosiderophores for chelating iron (Curie et al.,
2001). The iron chelators have high affinity to Fe+++ when
released into the rhizosphere; the chelated iron is then taken up
by the plant through yellow stripe-like (YSL) transporters a family
of protein used by maize (Yordem et al., 2011).

Plants have also been shown to have mechanisms for alkaline
stress management through acidification of the rhizosphere
by H+ ATPase activity related to plasma membrane proton
extrusion (Xu et al., 2013).

FUTURE PERSPECTIVES

From various studies of tolerance to extreme pH there is a
wider range of adaptation of microbes than plants. Our limited
knowledge on the full information available in the genome of
microbes that help them in adapting to such extremes will pave
the way to understanding and broadening their application in
biotechnology and crop production. The constant need to explore
the unknown potential of microbes in helping enhance plant
productivity under various unfavorable conditions of growth and
is currently developing quickly and contributing to improvement
of plant growth under stressful environmental conditions.

Currently we use synthetic fertilizers as part of our approach
to feeding the growing global population. The uptake efficiency
of these fertilizers by plants is generally 30–50%, leading to
economic losses and large environmental impacts, due to large
quantities of the fertilizer being lost to water bodies and the
atmosphere (Adesemoye and Kloepper, 2009). PGPM have
shown their ability to increase the efficiency of nutrient release
from fertilizer and subsequent uptake by plants. Bearing in mind
that soil acidification and alkalization are both gradual and
progressive processes, preparing ahead of time is not optional.
The future of crop production sustainability meaningfully
depends on better understanding of PGPM in conferring stress
alleviation and ways to effectively introducing them under field
conditions, to provide the same results that are observed under
controlled environment conditions.

CONCLUSION

The importance of pH in agriculture is well understood,
and similar to a patient’s temperature in humans. Most of
the literature has acknowledged pH is a “master” variable in
productivity of agricultural soils as it controls soil chemistry. This
review started with an evolutionary perspective regarding plants
and microbes, an interaction that has always been present, to
the benefit of both members of the partnership. It is becoming
clearer that the interaction has always provided plants with
a mechanism of survival even in harsh environmental stress
conditions. With the ongoing development of climate change
conditions and associated multiple stresses, potentially occurring
simultaneously and impacting plant productivity. This is quite
similar to pH stress which is accompanied by other stresses
in its effects. The reviewed literature has shown that most of
the acid and alkaline soil remediation measures are focused on
cultural practices and breeding for tolerance. Little has been
established regarding utility of PGPM as a mechanism of dealing
with acidity and alkalinity stresses. Our future will require further
breeding for pH stress and the help of microbes that provide
enhanced tolerance to pH stress. With this consideration in mind
the potential for alleviation of extreme pH stress by PGPM has
become clearer and there is a need to now focus more research
effort specifically on acid and alkaline stresses in this regard.
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