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The El Niño–Southern Oscillation (ENSO) is one of the strongest drivers of climate

variability that directly influences agricultural production. The aim of this study is to assess

the impact of ENSO on agriculture in Southern and Eastern Africa by (1) exploring the

association between ENSO, vegetation condition and soil moisture, and (2) analyzing the

difference in soil moisture and vegetation conditions for two extreme ENSO phases (El

Niño and La Niña). Our results indicate that vegetation conditions are strongly associated

with ENSO and show a clear dipole pattern that is reversed between El Niño and La Niña.

Lagged correlation analysis confirms the ability of soil moisture and ENSO to predict

vegetation conditions with 1–3 months of lead-time. The temporal and spatial evolution

of soil moisture and vegetation responses showed the expected dipole pattern during the

El Niño and subsequent La Niña events. Results indicate that ENSO impact on crop yield

varies with geographical location, crop types, and ENSO phases. For example, yields in

La Niña years have been higher in Southern Africa but lower in Eastern Africa. Maize yield

decreases associated with El Niño events were usually larger than corresponding yield

increases during La Niña events over Southern Africa. Our findings highlight the impact

of ENSO on agricultural production, which has significant potential to enhance the early

warning system for agriculture and food security.

Keywords: agriculture, soil moisture, ENSO, food security, earth observation

INTRODUCTION

Agriculture plays a valuable role in improving food security not only by increasing the quantity and
diversity of food but also by maintaining a strong economy, providing a livelihood of 38.3% of the
world’s workforce. While agricultural technologies are advancing recently, the climate is still the
most critical factor in agricultural production (Rosenzweig et al., 2001). Global climate anomalies
such as El Niño-Southern Oscillation (ENSO) leads to variability in the agro-climate variables
affecting vegetation condition and contribute to one-third of the annual crop yield variability,
varying across crop types and locations (Ray et al., 2015).

The ENSO is one of the most significant phenomena in the Earth’s climate system, which
explains variations in tropical Pacific sea surface temperatures (SST). Such variations affect
tropical weather patterns but can have a global effect (Hanley et al., 2003). There are three
phases to ENSO-El Niño, La Niña, and Neutral. In the central and eastern Pacific, the SSTs are
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substantially warmer than usual during the El Niño phase, where
a La Niña phase happens when the SSTs are slightly cooler
than normal. Neutral condition applies to the situation where
neither El Niño nor La Niña occurs, and the SSTs are near-
average in the equatorial Pacific. Higher sea surface temperatures
warm the atmosphere during the El Niño phase, resulting in
greater convection and rainfall over Eastern Africa. By contrast,
a continental high-pressure system dominates Southern Africa
and suppresses regional atmospheric convection and rainfall
(Mulenga et al., 2003). Such changes in precipitation due to
ENSO directly affect root-zone soil moisture (RZSM), which
represents the available water within the plant’s root zone of one
meter or less and regulates vegetation growth and density (Wang
et al., 2007). As a result, dry RZSM conditions due to lower
precipitation and higher temperatures result in water stress for
plants and reduce vegetation greenness and productivity, while
favorable soil moisture conditions are associated with increased
vegetation activity.

ENSO-related climate variability is especially important in
Southern and Eastern Africa, where agriculture is the main
economic sector; contributing to∼17% of regional GDP and 60%
of the region’s population rely on the sector for their livelihood
(Nhamo et al., 2019). ENSO has been affecting the climate regime
of Eastern Africa, causing frequent drought during past decades,
and is the main natural hazard that contributes to food insecurity
and poverty (Qu et al., 2019). The Eastern Africa region has
experienced eight droughts over the last 16 years, and the drought
frequency has doubled from once every 6 years to once every
3 years since 2005 (Ayana et al., 2016). The 2010–11 Eastern
Africa drought was one of the most recent extreme events that
affected over 20 million people and caused a wider range of food
insecurity situations in that region (AghaKouchak, 2015). The
recent 2015–2016 El Niño event led to major hydrological crises
in Eastern and Southern Africa, where 29 million people faced
food insecurity due to the extreme drought conditions. Because
of extensive crop failures and associated insecure food supply,
humanitarian assistance was required for millions of people in
Zimbabwe, Malawi, Mozambique, and Madagascar until 2017
(Guimarães Nobre et al., 2019).

The impact of ENSO on agricultural production has been
investigated over different geographical regions across Eastern
and Southern Africa. Crop yields tend to decrease toward
the positive phase of ENSO (El Niño) in a large proportion
of Southern Africa, while yields seem to increase toward the
positive phase in Eastern Africa (Heino et al., 2019). Alemu and
DirbaKorecha (2018) analyzed the effect of ENSO on the yields
of major cereal crops in central Ethiopia’s Upper Awash Basin
area and recorded a 16% reduction in cereal yields during the El
Niño period. Stige et al. (2006) found strong associations between
year-and-year variability in ENSO and yields of maize, sorghum,
millet, and groundnuts in Southern Africa, and reported a 20–
50% decrease in crop yields in extreme El Niño years. Favorable
rainfall conditions associated with El Nino resulted in a 17%
increase in corn production in Kenya during 2015–2017 ENSO.
However, much of Southern Africa experienced extreme drought
conditions in 2015–2016 resulted in a 50% reduction in corn
production from the 5-year average.

Earth observation data have been widely used to
evaluate ENSO’s impact on agricultural production as it
provides continuous, consistent, and timely information
on meteorological, hydrological, and biophysical variables,
regardless of the location and economic development of the
country. Several studies analyzed and described vegetation
response to ENSO-related anomalous climatic conditions using
remote sense data (Anyamba et al., 2002; Peters et al., 2003;
Glennie and Anyamba, 2018). Among the several methods
and indices proposed for quantifying remote sensing based
vegetation properties, the Normalized Difference Vegetation
Index (NDVI) is extensively used to explore the relationship
between vegetation conditions and various large-scale climatic
indices (Nagai et al., 2007; Shuai et al., 2016). For example,
Anyamba et al. (2018) studied the spatio-temporal evolution of
NDVI and precipitation anomalies over Southern and Eastern
Africa during 2015–2017 ENSO cycle and found that countries
in Southern (Eastern) Africa experienced dry (wet) conditions
during El Niño and wet (dry) conditions during La Niña phase.
This precipitation deviation from normal conditions resulted in
increased vegetation activity in Southern Africa particularly in
Botswana, Zimbabwe, and Central and Northern South Africa.
During the same period, the dry conditions associated with
La Niña led to a decrease in vegetation activity in East Africa.
Winkler et al. (2017) used the Standardized Precipitation Index
(SPI) and the Vegetation Condition Index (VCI) to monitor
and analyze major episodes of drought linked to ENSO events
across Eastern and Southern Africa between 2000 and 2016.
They identified a mixed pattern of drought in Eastern Africa,
where areas with two growing seasons were primarily affected
by droughts during La Niña, and unimodal rainfall regimes
were found to have drought at the beginning of El Niño. By
comparison, most of the Southern Africa endured drought
conditions during ENSO events, and the temporal-spatial
evolution of the drought pattern varied significantly during
the events.

Most of the above studies investigated specific El-Niño events
that could not provide an adequate assessment of vegetation
sensitivity to ENSO as the extent of ENSO-affected areas may
not be consistent between different ENSO events (Propastin
et al., 2010). In addition, understanding the effects of large-scale
climate oscillations on land surface phenology is useful for early
warning and drought risk reduction, particularly in Southern
and Eastern Africa countries, where 95% of agriculture is rain-
fed. The objectives of this work are to present a comprehensive
picture of the agricultural responses to ENSO and demonstrate
the potential of ENSO and earth observation data for early
warning and food security over Eastern and Southern Africa.
The correlation between ENSO and NDVI was computed to
understand how changes in vegetation activity are associated
with changes in climate variability. To illustrate the impact of
ENSO at different stages of vegetation growth, we explored the
relationship between ENSO and NDVI on a monthly time step.
Apart from the correlation analysis, we examined the spatio-
temporal evolution of the precipitation, root-zone soil moisture
(RZSM), and NDVI departure during major ENSO events to
evaluate the impact of ENSO on different sub-regions. This
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will help to assess the vulnerability of ENSO affected areas
and improve food supply planning in times of food shortages,
promote effective drought strategies, and disaster risk programs
at national and county levels. To complement the analysis, the
impacts of ENSO on the major crops (maize, sorghum, soybean,
wheat, and barely) were quantified over Eastern and Southern
Africa. Following this introduction, the remainder of the paper
is divided into four further sections. The data and methods
employed in the study are described in section Materials and
Methods. Section Results describes the impact of ENSO onNDVI
and crop yield, and sections Discussion and Conclusion provide
some discussion of the results and conclusion, respectively.

MATERIALS AND METHODS

Study Area
The ENSO impact on vegetation was performed over eastern
and Southern Africa, which are characterized by a wide range
of topographic, climatic, and ecological diversity. Annual rainfall
in Southern Africa varies from 2,100mm over the north-west
region to <20mm over the Namibian desert, while the mean
annual temperature ranges from 9 to 31◦C. The Intertropical
Convergence Zone (ITCZ) primarily controls the climate of
Eastern Africa, where annual rainfall varies from 1,500mm over
the highlands to 200mm in the lowlands of northeastern Kenya
and Somalia. The vegetation of Southern Africa ranges from
the dry savanna biome in Angola to Mediterranean vegetation
in western South Africa, which accounts for more than 40%
of the flora diversity in the southern hemisphere (Lawal et al.,
2019). The vegetation of Eastern Africa is dominated by the
open grassland and shrub land distributed over eastern Ethiopia,
northern Somalia, and Kenya, but closed evergreen forest occur
in the southwestern part of Ethiopia (Abera et al., 2018).

Agriculture is the primary source of livelihood, and crop
production in Eastern and Southern Africa and depends strongly
on seasonal rainfall as it determines the crop yield. Southern
Africa displays large monthly precipitation variability, where
most of the regions receive the majority of precipitation during
austral summer (December–February), and the dry season
generally lasts from May to September. Summer rainfall over
Southern Africa is well-known to be modulated by the phase
change in the ENSO. On the other hand, much of Eastern Africa
experiences the main rainfall from March through May and a
brief rainy period from October through December. This short
rainy season is characterized by the high inter-annual variability
associated with the ENSO and the Indian Ocean Dipole (Bowden
and Semazzi, 2007). Seasonal rainfall patterns in those regions
determine the vegetation activity. Most of Southern Africa
region experiences single vegetation growing season spans from
approximately December to May. Conversely, most of Eastern
Africa has two growing seasons each year, the primary growing
season runs from March to August and the second growing
season spans from September to February. Maize, sorghum,
millet, wheat, barley, rice, and teff are the principal crops in
Eastern Africa, wheremaize and sorghum are themost significant
in the context of regional food security, as both together account
for more than 70% of the total cereal production (Rojas et al.,

2005). South Africa’s core agricultural is composed of five major
crops: maize, millet, sorghum, barley, and wheat. Maize one of
the main staple crops, which accounts for 70% of total produced
grains and covers about 60% of the cropping area in South Africa
(Akpalu et al., 2008).

Data Used
In this study, ENSO phases were categorized according to
Oceanic El Niño Index (ONI), which is based on a 3-month
running mean of Sea Surface Temperature (SST) anomaly in the
Niño 3.4 region (5◦S−5◦N, 120◦-170◦W). The region overlaps
with two other regions—namely, Niño-3 (5◦S−5◦N, 90◦-150◦W)
and Niño-4 (5◦S−5◦N, 160◦E−150◦W), and is considered to be
most sensitive to fluctuations, duration, and magnitude of ENSO
events (Erasmi et al., 2009). An El Niño event is characterized
when the index values in a given ENSO year exceed 0.5◦C, while
a La Niña event is defined as or below the −0.5◦C anomaly
(Center, 2011).

Soil moisture and NDVI data used in this study were obtained
from the NASA’s Global Inventory Modeling and Mapping
Studies (GIMMS) Global Agricultural Monitoring (GLAM)
system (Tucker et al., 2005). The soil moisture data set is
developed by incorporating Soil Moisture Ocean Salinity (SMOS)
Level 3 soil moisture observations into the two-layer Palmer
model using a Kalman Filter (EnKF) data assimilation approach
(Bolten et al., 2010). The Palmer Model is a water balance model
that accounts for the water gained through precipitation and
lost by evapotranspiration and driven by daily precipitation data
and daily minimum and maximum temperature observations
provided by the U.S. Air Force 557th Weather Wing (Sazib et al.,
2018). Before integration with the Palmer model, SMOS Level
3 soil moisture products were gridded into daily composites
by NOAA NESDIS Soil Moisture Operational Products System
(Bolten and Crow, 2012; Mladenova et al., 2019). The GIMMS
system provides various soil moisture products: surface and root
zone soil moisture, soil moisture profile, surface, and root zone
soil moisture anomalies, which are available in 3-days composites
with 0.25◦ spatial resolution. Root-zone soil moisture product for
the period of 2010-present was used for this study.

NDVI, which is defined as the ratio of the difference between
the near-infrared and red bands of the spectrum over the sum
of the near-infrared and red bands, is used as a vegetation
index (Tucker, 1979). Among other vegetation indices, NDVI
was selected to use for this study as it is an operational, global-
based vegetation index, known to be very well-correlated with
the relative abundance of green biomass, including leaf area
index and density of chlorophyll in plants and most widely used
to investigating the effects of ENSO on vegetation conditions
across different geographical regions across the globe (Sellers
et al., 1997; Kogan, 2000; Behrenfeld et al., 2001; Propastin
et al., 2010). Other similar vegetation indices such as Enhanced
Vegetation Index (EVI) could have been used for this study
and we expect would have produced similar results, though a
comparison of multiple vegetation indices is beyond our scope.
The NDVI data set is generated using the Resolution Imaging
Spectroradiometer (MODIS) Terra surface reflectance products
provided by National Aeronautics and Space Administration
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(NASA) Goddard Space Flight Center (GSFC) MODIS Adaptive
Processing System (MODAPS) (Tucker et al., 2005).

The precipitation data sets were obtained from the Climate
Hazards Group Infrared Precipitation with Station (CHIRPS)
database developed by the United States Geological Survey
(USGS) in collaboration with Earth Resource Observation
and Science (EROS) center. CHIRPS was developed through
the combination of satellite imagery and in-situ observations
from various national and regional meteorological departments.
The data sets are available from 1981 to near present at
pentadal, decadal, and monthly temporal resolution with a
spatial resolution of 0.05◦ and a quasi-global coverage of 50◦

S-50◦ N, 180◦ E-180◦ W (Funk et al., 2015). Information on
the land cover type was obtained from the ESA’s global land
cover data developed using the Medium Resolution Imaging
Spectrometer (MERIS) data collected by the Environmental
Satellite (ENVISAT) (Arino et al., 2012). The land cover map
contains 22 land cover classes as defined by the Food and
Agriculture Organization of the United Nations (FAO) Land
Cover Classification System (LCCS). Crop yield data for eastern
and Southern Africa was obtained from the United Nations
FAOSTAT database (http://faostat.fao.org). The FAOSTAT is a
collection of online databases containing primary crop data for
all countries and regions in the world (Food and Agriculture
Organization of the United Nations, 2016). All data products
used in this study were averaged to monthly composites and then
resampled to 0.25◦ grid spacing to ensure similar temporal and
spatial resolution between different datasets.

Methods
We performed two types of analysis to assess the impact of
ENSO on agriculture over eastern and Southern Africa. First, we
computed the Spearman’s rank correlation coefficient between
ENSO and NDVI for each pixel to characterize how ENSO
associated with land surface dynamics over the study regions. The
Spearman’s rank correlation was chosen as the other statistical
methods such (e.g., Pearson correlation, Linear regression) has
the tendency to underestimate or overestimate the significance
of the relationship when the interaction is not linear (de Beurs
and Henebry, 2008). Moreover, these statistical approaches
assume that soil moisture, NDVI, and ENSO anomalies follow
a Gaussian distribution, whereas they exhibit non-Gaussian
behavior. Spearman’s rank correlation uses the rank of the
data to measure the correlation coefficient does not make such
assumptions, and is more suitable for non-normally distributed
ENSO, vegetation indices, and soil moisture anomalies data.
Correlations were also computed between monthly overlapping,
3-month ENSO values over the Niño-3.4 region, and monthly
NDVI values at different time lag to address the delayed
vegetation response to climate disruptions (Philippon et al.,
2014). The sensitivity of NDVI to root zone soil moisture was
also evaluated to understand the origin of the ENSO signal
observed in the NDVI. In addition, precipitation, soil moisture,
and NDVI anomalies were compared for the most recent 2015–
2017 ENSO cycle, which was the second strongest event within
the available ∼165-year Pacific Ocean SST record (Welhouse
et al., 2016; Kolusu et al., 2019). Monthly precipitation, soil

moisture and NDVI data were standardized to isolate the inter-
annual variability from the seasonal cycle. For each time series,
monthly anomalies have been estimated with the use of Z-score
(xi – µ)/(std), where µ and std represent the mean and standard
deviation values of the data for that month over all the years and
xi is the data value for a given month in year i.

In the second set of analyses, we evaluated the impact of
ENSO on major crops in the agricultural region over Eastern
and Southern Africa. Associations between yield anomalies and
ENSO phase were explored through the spread of yields among
ENSO phases. Crop yield data were detrended before analysis
in order to understand the ENSO effect alone precisely as
several other non-climate factors such as changes in agricultural
technologies, institutional changes, trade policy, and financing
have an impact on crop yield variations. It was achieved by
subtracting an average yield of 5 years from the annual yield
values and then dividing it by 5-year averages in order to
obtain proportional annual deviation from the normal values
(Iizumi et al., 2014).

RESULTS

Teleconnection Between ENSO and NDVI
The correlation between ENSO and NDVI was carried out to
reveal the vegetation response during ENSO because ecological
processes can be better predicted by large-scale climate indices
than local weather and climate (Bastos et al., 2017). We observed
a dipole correlation pattern over Southern Africa with negative
values over the majority of the region and positive values over the
northern parts of Angola, Zambia, and Mozambique (Figure 1).
The significant negative values indicate that vegetation activity
tends to decline during the ENSO. ENSO is generally considered
the dominant mode of inter-annual climate variability with the
greatest effect on summer rainfall in Southern Africa, often
leading to drought conditions. ENSO is also associated with
higher land surface temperatures that last longer than the
drought condition and contribute to higher evaporation and
drier soils. However, we found an exception to the general
pattern along the southern coast of South Africa and the northern
part of Southern Africa (Figure 1). These ecologically and
climatologically distinct regions had a positive association with
ENSO, which could be attributed to the underlying variations in
local topography and the regional ocean influence on vegetation
(Anyamba et al., 2018). The correlation between ENSO and
NDVI anomalies was mainly positive in Eastern Africa, resulting
in increased vegetation growth during ENSO. Regions with
significant positive correlation were distributed over the arid
part of Somalia and the semi-arid part of eastern Ethiopia
and Kenya. During ENSO, these areas experienced higher than
normal rainfall and an increase in the number of wet days, which
enhanced vegetation growth.

The lag correlation analysis showed slightly higher correlation
values when ENSO precedes NDVI by zero to 3 months,
especially over Southern Africa, which means that ENSO impacts
the spatio-temporal evolution of vegetation productivity. The
number of significant pixels reached a peak when the time lag
was 3 months for the Eastern African region. Delayed vegetation
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FIGURE 1 | Correlation between ENSO and standardized NDVI anomalies

over Southern Africa and Eastern Africa for the period of 2010–2019. The

white areas are the pixels for which the correlation is not significant at the

90% level.

response to ENSOmay be due in part to growth rates of different
vegetation types but, more importantly, to mediation between
rainfall and vegetation growth through soil moisture. A large
percentage of areas with significant correlation was found for the
Southern Arica region compare to the Eastern Africa region. As
shown in Figure 1, the relationship was significant for 78% of
the pixels across Southern Africa, while about 59% of the pixels
exhibited a significant correlation in the Eastern Africa region.

We performed a correlation analysis between the 3 months
ENSO and monthly NDVI to assess the impact of the climate
oscillation on different growth stages, which is essential for
yield determination. During the starting phase of ENSO (July–
September), negative correlations were observed between NDVI
and ENSO over Eastern Africa, but positive relationships
were recorded over Southern Africa (Table 1). The correlation
coefficients were statistically significant (p < 0.01) and appeared
to have a stronger negative impact during the peak phase of
ENSO (December–March), rising from around−0.16 in October
to −0.47 in March over Southern Africa. As for Eastern Africa,

TABLE 1 | Monthly correlation coefficients between ENSO and standardized NDVI

anomalies during the study period of 2010–2019 in Eastern and Southern Africa.

Month Southern Africa Eastern Africa

Correlation Correlation

September 0.42 −0.39

October 0.47 −0.16

November −0.16 0.31

December −0.45 0.49

January −0.49 0.53

February −0.50 0.48

March −0.47 0.43

April −0.40 −0.12

May −0.51 0.52

June −0.43 0.42

July −0.13 −0.22

August 0.06 −0.48

Correlation during peak ENSO months are indicated by bold fonts.

the NDVI was most strongly influenced ENSO during the
December–March. These findings indicate that the peak phase of
ENSO is critical for the vegetation growth over the study regions.
The correlation during the post phase of ENSO (April–June)
was also positive but weaker over Eastern Africa, as only 10%
of the pixels showed a significant relationship between ENSO
and NDVI over the region. East Africa’s rainfall climatology
is dominated in most parts by rainy seasons from March to
May (long rains) and from October to December (short rains).
Relative to the long rainfall, the short rainfall appears to have
higher inter-annual variability and a close association with ENSO
resulting in a weaker vegetation effect of ENSO during or shortly
after the ENSO post-phase compared to the peak phase (Wenhaji
Ndomeni et al., 2018).

Correlation Between NDVI and Root-Zone
Soil Moisture
The association between the RZSM and NDVI anomalies varied
with geographic location and lag. Over most of the areas,
NDVI and RZSM anomalies have positive correlations, which
implies that an increase in soil moisture due to the ENSO could
promote vegetation greenness (Figure 2). Generally, the positive
significant correlation values varied significantly with changing
time lags, indicating a tendency to have higher correlation values
with shorter lags and lower correlation values with longer lags.
The lagged relationship between root-zone soil moisture and
NDVI illustrates that root-zone soil moisture can be used to
predict vegetation anomalies at 1–3 months lead time, essential
for early warning and food security (Asoka and Mishra, 2015).

We noticed stronger correlations between RZSM and NDVI
anomalies in the semiarid and arid regions (e.g., Western Cape of
South Africa, Kenya) compare to the humid area (e.g., Angola,
central Ethiopia). Humid areas have much higher vegetation
densities than semiarid or arid regions, and the availability of soil
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FIGURE 2 | Correlation coefficient between RZSM and NDVI anomalies for

different lag times over Southern Africa (top) and Eastern Africa (bottom) for

the study period of 2010–2019. The white areas are the pixels for which the

correlation is not significant at the 90% level.

water is not amajor factor regulating vegetation growth. In water-
limited areas, such as the eastern part of Ethiopia and Somalia,
a sudden change in the RZSM resulted in a rapid vegetation
change. Based on the correlation values given in Table 2, it is
obvious that areas with crop land has better association between
RZSM and NDVI compare to other land cover types since
cropland roots are located in shallow depths and are more
sensitive to soil moisture changes than deep-rooted plants such
as forests.

Spatial Response of Soil Moisture and
NDVI During 2015–2017 ENSO Phase
The 2015–2016 drought is one of the strongest drought events
in the Southern Africa region driven by one of the strongest El

TABLE 2 | Correlation coefficients computed between root-zone soil moisture and

NDVI anomalies for different land cover types over Eastern and Southern Africa.

Eastern Africa Southern Africa

Land cover Lag month Lag month

0 1 2 3 0 1 2 3

Crop land 0.50 0.48 0.36 0.25 0.49 0.45 0.33 0.23

Grass land 0.43 0.42 0.37 0.30 0.32 0.32 0.27 0.19

Shrub land 0.44 0.42 0.37 0.29 0.36 0.35 0.29 0.21

Forest 0.41 0.40 0.30 0.21 0.37 0.35 0.30 0.21

Niño events of the last 50 years since 2016. During the 2015–
2016 El Niño event, below normal rainfall condition was evident
over the eastern parts of South Africa, central Botswana, as well
as southern Mozambique and most of Zimbabwe and southern
Mozambique. In Zambia, situated in the latitudinal center of
Southern Africa, a dry condition was observed in the south of
the country, while wetter or normal conditions prevailed in the
north (Figure 3). Dry conditions during the El Niño event are
associated with abnormal cyclonic circulation over the central
Indian Ocean, which diverts moisture from the landmass and
reduces precipitation and soil moisture (Ratnam et al., 2014).
In contrast, Eastern Arica, particularly Kenya, Somalia, and
southern Ethiopia, had above average-rainfall conditions during
December–March. The maximum rainfall departures were in the
range of one to three standardized deviation. The pattern of soil
moisture and NDVI anomalies closely followed the precipitation
anomalies, notably with the largest increases in Kenya, Somalia,
and southeast Ethiopia during the El Niño phase, as shown
in Figure 4.

On the other hand, Southern Africa exhibited a wetter
condition commonly associated with the La Niña phase of the
ENSO cycle. The wet conditions were concentrated over the
Botswana, Mozambique, and eastern South Africa. During La
Niña events, most of the parts of South Africa experienced
above-normal precipitation except the south Western Cape. The
South Western Cape is a winter rainfall region with a peak
rainfall during May–July and is primarily influenced by mid-
latitude systems instead of ENSO. Drier than normal condition
were observed in Eastern Africa during the La Niña phase,
and the lowest precipitation anomalies were distributed over
the western part of Ethiopia and the eastern part of Somalia.
Large area with negative NDVI deviations was a result of
low soil moisture conditions, with maximum NDVI departures
by approximately −2 standardized anomalies below average.
Although dry and wet conditions spatial pattern indicated by
soil moisture, precipitation and NDVI agreed largely, there
were a number of apparent inconsistencies in the space/time
structure of the anomalies. For example, rainfall anomalies
values were higher compared to the soil moisture and NDVI
anomalies during the La Niña event over Southern Africa. On
the contrary, soil moisture and NDVI values showed relatively
wetter conditions than the rainfall anomaly values in Eastern
Africa during the El Niño event. This difference may be expected
as rainfall anomalies were derived over a much longer time
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FIGURE 3 | Standardized precipitation, root-zone soil moisture and NDVI

anomalies at peak El Niño (top) condition from November 2015 to January

2016 and La Niña condition (bottom) from November 2016 to January 2017 in

Southern Africa.

scale compared to the soil moisture and NDVI anomalies.
Soil moisture anomalies are based on physical water balance
model using both precipitation and temperature as input and
take the precedent soil moisture condition and properties into
account, in contrast to rainfall anomalies, which is based only on
precipitation data. NDVI anomalies are also affected not only by
water availability from precipitation but also by human activities
in the form of agricultural practices for land use changes, and by
natural influences like extreme temperatures, fires, pests, or plant
diseases (Du et al., 2013).

ENSO Impact on Crop Yield
Evaluating the impact of ENSO phase on crop yields is important
for food security monitoring and assessment particularly in food-
insecurity areas of the world where precipitation is often themain
limiting factor for vegetation growth. Our results indicated that
the impacts of ENSO on crop yield varied with the geographic
locations, crop types, and ENSO phases. In general, El Niño and
La Niña conditions lead to a decrease and increase, respectively,
in yield with respect to the normal condition in all of the crops
over Southern Africa (Figure 5). For example, average corn yield
was 12 and 19% lower compared to average yield during El
Niño years over South Africa and Zimbabwe, respectively. In
contrast, maize production increased by 11% over South Africa
during La Niña years. Crop requires adequate soil moisture
with no extreme temperature during the growing season, in

FIGURE 4 | Standardized precipitation, root-zone soil moisture and NDVI

anomalies at peak El Niño (top) condition from November 2015 to January

2016 and La Niña condition (bottom) from November 2016 to January 2017 in

Eastern Africa.

order to produce higher yield, our results suggest that these
conditions are likely to occur during La Niña events in South
Africa and Zimbabwe. While in the same phase of ENSO (La
Niña), Zimbabwe experienced a 17% reduction in sorghum
production (Figure 5), which might be associated with fertilizer
leaching and increased water levels due to excessive rainfall
(Hansen et al., 1999).

In Ethiopia and Kenya, the El Niño condition is usually
characterized by the above-normal rainfall and likely to cause
higher yields in most of the crops. In contrast, lower crop
yields compared to normal conditions were observed during the
La Niña period (Figure 6). Kenya experienced a 4% increase
in maize yields during El Niño years, and a 5% decrease
during La Niña years. Dry and warm conditions during La
Niña phases were associated with lower wheat production
in Ethiopia (6%) and Kenya (4%). Regional differences in
the ENSO impact could be partly explained by differences
in crop planting dates, cropping patterns, soil type, different
agricultural management practices, and variousmarket demands.
Another factor that may have contributed to the regional
differences in the ENSO impact is the coarse resolution of
the earth observation data, which might incorporate mixed
information from different surfaces and vegetation types, making
it difficult to distinguish particular crop types, given that
most croplands in Eastern and Southern Africa are small and
regularly multi-cropped.
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FIGURE 5 | Box plots showing 0, 25, 50, 75, and 100th percentiles, and means (solid line) of yield anomalies for major crops in Southern Africa during El Niño and La

Niña years.

FIGURE 6 | Box plots showing 0, 25, 50, 75, and 100th percentiles, and means (solid line) of yield anomalies for major crops in Eastern Africa during El Niño and La

Niña years.

DISCUSSION

Understanding the ENSO impact on agriculture production is
critical for improving the food system’s resilience to climate-
related shocks over Eastern and Southern Africa. In this study,
we evaluated vegetation response to changes in the climate
conditioned in eastern and southern Africa. In general, a

strong association between ENSO and NDVI was observed, with
NDVI typically lagging behind ENSO by zero to 3 months.
The magnitude of the correlation indicates the vulnerability
of vegetation to ENSO; areas with higher correlation are
more susceptible to climate variability caused by ENSO. A
strong negative correlation across Southern Africa suggests a
substantial decline in the vegetation productivity and, as a result,
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food insecurity. Our lagged correlation analysis indicates the
relationships get stronger during the growing season, which is
particularly essential for determining next season’s yields. Hence,
the NDVI-ENSO correlation is an important estimate of the
impact of climate oscillation on overall agricultural productivity.

Previous studies have found a similar pattern of vegetation
response between El Niño and La Niña in Eastern and Southern
Africa. For example, Anyamba et al. (2018) found a statistically
significant relationship between ENSO and NDVI at all lag
intervals in both Eastern and Southern Africa for the 2015–
2017 period. They also identified NDVI–ENSO north–south
correlation pattern while mapping the evolution of NDVI
anomalies during the ENSO years 1986–89 and 1997–98 over that
region. Philippon et al. (2014) also found the highest correlation
between ENSO and NDVI during December–February and
lowest during the March–May in the Southern Africa region.
However, areas with no significant relationship indicating that
ENSO is not the major factor that influences the vegetation
response to climate variability. Due to the interplay between
global atmospheric and oceanic circulations and their variable
regional effects, various factors such as ecological characteristics
and land use can play an important role for ENSO impact on
vegetation response (Propastin et al., 2010; Hawinkel et al., 2016).

We also analyzed the spatial pattern of vegetation response
for the 2015–2017 ENSO cycle, with one of the strongest
warm events (El Niño) on record followed by a short and
weak cold event (La Niña). Overall, the spatial evolution of
vegetation responses showed the expected dipole pattern,
with reduced vegetation activity during El Niño 2015–2016
and enhanced vegetation activity subsequent to La Niña
2016–2017 over Southern Africa. The NDVI anomalies
revealed stronger drought conditions over South Africa, central
Botswana, southern Mozambique, and most of Zimbabwe and
southern Mozambique, which resulted in delays in planting and
subsequent reductions of maize crop productions. Fortunately,
the drought was mitigated by the rain caused by La Niña during
the growing season 2016–2017 and led to a record-breaking
corn production of 16.4 million metric tons, doubling the
previous season (Anyamba et al., 2018). The present approach
of the spatial evolution of drought events points out areas that
are vulnerable to ENSO-related climate extremes and can be
used to improve the capacity of local farmers, politicians, and
national governments to respond effectively to ENSO’s effects
on agriculture.

Our results demonstrated that climate anomalies substantially
affect crop yield variability in Eastern and Southern Africa.
On average, El Niño shocks are likely to cause a reduction
in crop yield in Southern Africa. La Niña episodes, on the
other hand, are associated with increased wheat and maize
production. Our results show that maize production is more
vulnerable to El Niño effects in the South Africa region, with
productivity approximates 20% below the country’s long-term
average. These effects concern Southern Africa, especially where
maize is the primary food crop, and about 60% of people in the
study area derive their livelihood from maize cultivation. Low
productivity of maize, wheat, and sorghum resulting from La
Niña condition substantially influences food supply and security

of over Eastern Africa. In general, the sign of the impacts of
ENSO reported here is consistent with previous studies and have
implication for the farmer, government, and commercial entities;
however, the magnitude of the effects of ENSO on the yields
varies with the analysis methods. For example, Nhamo et al.
(2019) reported the positive effects of El Niño on the wheat yields
in the Eastern Africa region and the negative impacts of La Niña
on the wheat yields in the Southern Africa region. Stige et al.
(2006) found a strong association between ENSO and yields of
maize over Southern Africa region and production is expected to
drop by 27 and 31% in extreme 2015–2016 El Niño event.

Our findings suggest that early predictions can be made
about how ENSO will affect the agriculture production and
potentially help farmers and others decision maker to mitigate
the adverse weather effects on agriculture. It can be accomplished
by (1) evaluating different types of irrigation system optimum
for the crop types, (2) enhancing the efficiency and ease of
maintenance of existing irrigation system, (3) using conservation
strategies that minimize runoff and facilitate water infiltration
into the soil, and (4) growing crops that are resistant to drought
condition. As different crops respond to climatic conditions
differently, advanced knowledge of vegetation activity offers
information about the productivity of various crop patterns.
Individual farmers to identify best cropping patterns can use such
knowledge. In addition, governments and non-governmental
organizations can be better prepared for potential shortages and
advised where to organize strategic staple food reserves.

CONCLUSION

The ENSO is one of the main factors influencing global
climate variability and consequently has a significant effect on
agriculture production. Hence, a better understanding of the
impact of ENSO is required for identifying how agriculture
is vulnerable to these changes, and ultimately to guide the
development of strategies for reducing risk in the face of
changing climatic conditions. We quantified the impact of a
different phase of ENSO on NDVI and major crop yields in
Eastern and Southern Africa. Our results confirmed that both
regions vegetation conditions were significantly correlated with
ENSO and exhibited a clear dipole pattern that reverses between
warm and cold ENSO events. The lagged correlation analysis
showed a positive correlation between NDVI and root-zone soil
moisture, demonstrate the ability of soil moisture to predict
vegetation growth with 1–3 months lead-time, which could be
used in food security early warning and proper planning and
monitoring in water resources and agricultural sectors. The two
regions experienced significant but opposite effects; Southern
Africa was normally warm, dry, and Eastern Africa was usually
cold and wet during El Niño events. During the events in La
Niña, the impacts were reversed. Years of strongly positive SST
anomaly (El Niño years) were associated with lower than average
crop yields but years of negative SST anomalies (“La Niña”
years) were associated with higher than average crop yields in
Southern Africa. Our results provide implications for farmers,
policymakers, and governments, and enable them to take the
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necessary steps to mitigate the adverse impact and take advantage
of favorable ENSO conditions, which is particularly relevant
over the food insecurity region of eastern and southern Africa.
The spatial map presented here is useful for the identification
of vulnerable areas affected by the extreme climate condition.
It can be applied in improving the adaptation capability to
climate variability and change. Finally, the analyses and methods
provided can be applied to other regions around the world to
better understand ENSO’s local agricultural effects.

Although the study has successfully demonstrated the ENSO
impact on agriculture, findings in this study are subject to some
limitations. First, we considered all types of ENSO phases while
estimating the correlation between ENSO and NDVI, which
might cause underestimating of the strength of the correlation
areas where vegetation conditions are more (less) sensitive to El
Niño and less (more) sensitive to La Niña. For further research,
partial correlation analyses are suggested, separately examining
the relation of vegetation condition to El Niño and La Niña
events. Second, we used NDVI data for vegetation responses,
which has a tendency of saturation in densely vegetated areas
as well as observed atmospheric interferences related to aerosols
and clouds (Zargar et al., 2011). Finally, ENSO effects on the crop

yield were carried out for four major crops in the study region
due to the availability of data. If more crops were considered
in our analysis, the value of ENSO impact to agriculture sector
would probably be greater. Despite those limitations, the findings
and information highlighted by this study will improve our
understanding of the ENSO impact on agriculture in Eastern and
Southern Africa.
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