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This review emphasizes the potential and use of microbes in sustainable insect pest

management. We first review the diverse insect traits shaped by insect-microbe

associations that span nutrition, immunity, ecological interactions with natural enemy,

insecticide resistance, and behavior. This is followed by discussing different microbiome

manipulation approaches to alter pest traits, describing some of the opportunities and

obstacles for each approach. We then highlight microbiomes as untapped chemical

inventories to discover novel biopesticides, including plant-incorporated protectants

and semiochemicals. The last topic covered is the use of beneficial microbes to

improve mass-reared insects’ performance for autocidal programs, including sterile

insect technique and incompatible insect technique, in which we identify topics where

data are limited or inconclusive, for future research.
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INTRODUCTION

According to the Entomological Society of America’s (ESA) recent position statement, invasive
insects incur control costs of over $2.5 billion and cause economic damages to crops, lawns, forests,
and pastures totaling $18 billion per year (The Not-So-Hidden Dangers of Invasive Species., 2018).
The threat of invasive crop pests to food security continues to be driven by the complex dynamics
of human movements, global trade activities, climate change, and changing agricultural practices.
Some of these factors also facilitate the dramatic expansion of urban pests and disease vector insects.
Chemical insecticides have been central to insect pest control. However, a growing demand for
reduced agricultural chemical use due to environmental and human health concerns in addition
to pesticide resistance issues are fueling interests in innovative approaches to manage insect
pests. For decades, the role of microbes in pest management has been largely confined to using
entomopathogens, with only a handful of microbial species being developed into bioinsecticides.
The paradigm is shifting owing to the advent of high-throughput sequencing, functional omics,
and gene editing technologies, which significantly accelerate microbial discovery, plus a better
understanding of microbial functions in complex communities across biological systems. There
is also overwhelming evidence that symbiotic microbes play pivotal roles in shaping various insect
traits. The collection of microbes associated with a given environment (both biotic and abiotic) and
their collective genetic materials is termed the microbiome. Research in the microbiomes of insects,
plants, and natural resources could be leveraged to develop novel management tools for insect pests.
Figure 1 provides a graphical summary of the potential microbiome-based insect management
strategies discussed in this review.
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FIGURE 1 | Microbiome-based insect pest management approaches and tools.

MICROBIAL INFLUENCE ON DIVERSE
INSECT TRAITS

Insects are associated with diverse microbial communities and
in many cases, these associations are crucial for insect survival
and development. Symbiotic microbes in the gut, hemolymph,
as well as in specialized cells, carry an arsenal of enzymes
that provide specialized services to the insect hosts (Blow
and Douglas, 2019). Supplies of essential nutrients (particularly
amino acids and B vitamins) by endosymbionts have been
well documented in a number of crop pests, particularly plant
sap-sucking Hemipteran insects such as aphids, whiteflies, and
psyllids (Douglas, 1998; Thao et al., 2000; Thao and Baumann,
2004; Luan et al., 2015), and in human disease vectors and
urban pests such as tsetse flies in the genus Glossina and the
common bed bug (Cimex lectularius). Some symbionts can
degrade complex polysaccharides or recycle nitrogen for insects,
such as the termites (Raychoudhury et al., 2013; Brune, 2014)
and cockroaches (Berlanga et al., 2016). The production of
antimicrobials by symbionts aids the immune system to fight
against invading pathogens, as was shown in the beewolf digger
wasps (Kroiss et al., 2010) and cotton leafworm (Shao et al., 2017).

Beside nutritional and immune services, symbionts can
shape the ecological interactions between insects and their
natural enemies. For instance, the secondary symbiont of aphids
Hamiltonella defensa increased the chance of host survival
from parasitoid wasp attacks by disrupting wasp embryogenesis,
mediated by its bacteriophage-encoded toxins (Oliver et al.,
2003, 2005; Moran et al., 2005; Vorburger et al., 2009; Schmid
et al., 2012; Brandt et al., 2017). H. defensa was also shown to

attenuate volatile release in aphid-infested plants, thus reducing
parasitic wasp recruitment (Frago et al., 2012, 2017). Similarly,
symbiont manipulation of plant physiology that facilitates insect
colonization was observed in whiteflies and the Colorado potato
beetle (Chung et al., 2013; Su et al., 2015). Modification of
body color by facultative symbionts may determine aphid
susceptibility to predation or parasitism (Xu et al., 2009). In
particular, Rickettisella infection in the pea aphid Acyrthosiphon
pisum increased the synthesis of blue-green polycyclic quinone
pigments, turning the host from red to green. This symbiont-
dependent color variation is believed to affect the aphid’s relative
risks between predation and parasitism, as their predators such as
the ladybird beetles preferentially prey on the red morphs, while
parasitoids preferentially attack the green morphs (Libbrecht
et al., 2007; Tsuchida et al., 2010, 2014).

Symbionts have also been shown to influence insecticide
resistance in various insect pests. In the bean bug (Riptortus
pedestris) and the oriental fruit fly (Bactrocera dorsalis), resistance
to organophosphorous pesticides has been attributed to direct
detoxification by their symbionts (Kikuchi et al., 2012; Cheng
et al., 2017). The insecticidal activity of Bacillus thuringiensis
(Bt) in the gypsy moth (Lymantria dispar) larvae was shown
to be dependent on the presence of symbiotic midgut bacteria
(Broderick et al., 2006). Microbiome surveys from field-
collected samples indicated that Bt resistance in cotton bollworm
(Helicoverpa armigera) was associated with distinct microbiome
compositions (Paramasiva et al., 2014; Visweshwar et al., 2015).
Xia et al. observed varied levels of susceptibility to chlorpyrifos
in the diamondback moth (Plutella xylostella) treated with
antibiotics and then recolonized with different gut-associated
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bacteria (Xia et al., 2013, 2018). The contribution of gut bacteria
to insecticide resistance was also reported in mosquitoes that
showed reduced mortality to insecticides when fed with different
gut commensal bacteria (Barnard et al., 2019).

Accumulating evidences have suggested that microbes play
a more prominent role in shaping insect behavior than
previously thought (McFall-Ngai et al., 2013). Insect behaviors
that have been shown to be affected by microbes include long-
term dispersal, oviposition, mating, host searching, and kin
recognition (Ezenwa et al., 2012). Studies also suggest that
microbiomes can influence host behavior via production of
metabolites acting on host neuro-endocrine circuits (Adamo,
2013; Hemarajata and Versalovic, 2013; Wang and Kasper,
2014), a phenomenon termed the “gut-brain axis.” There is
a plethora of research on the gut-brain axis, a majority of
which has been focused on mammalian systems. However,
this subject is still in infancy. One example is a recent study
suggesting that the microbiome of Drosophila melanogaster
influences host olfactory-guided foraging preferences toward
foods of different microbial content (Wong et al., 2017). Similar
microbiome-priming effects on fly behaviors were found in
subsequent studies by Farine et al. (2017) and Qiao et al.
(2019).

Advances in high throughput sequencing and functional
genomics have enabled scientists to accomplish two milestones
in insect microbiome research: 1. Explore previously
uncharacterized microbiomes in a greater variety of insects,
leading to a better understanding of host and environmental
factors that shape insect microbiome diversity and composition.
Some examples include microbial communities associated with
Drosophilid and Tephritid fruit flies (Behar et al., 2008b; Wong
et al., 2011, 2013; Ras et al., 2017), ants (Ramalho et al., 2017;
Shin et al., 2017), bees (Engel et al., 2016), mosquitoes (Minard
et al., 2013; Novakova et al., 2017), ticks (Narasimhan and Fikrig,
2015), beetles (Hulcr et al., 2012), and midges (Halpern and
Senderovich, 2015), among others. 2. Attribute microbiome
functions to specific microbial taxa or consortia. While the
diversity and stability of microbiomes vary by insects, microbial
influence on insect invasive traits is widely supported. For
example, the invasiveness of the sweet potato whitefly (Bemisia
tabaci) was promoted by a recent sweep of a Rickettsia sp. into the
pest population, from 1% infected in 2000 to 97% by 2006) which
led to faster development, higher survival rate to adulthood,
and higher fecundity of the host (Himler et al., 2011). Studies
on the powerful lab model Drosophila melanogaster showed
that its microbiome, consisting of 5–20 microbial species,
accelerates larval development, affects host foraging preference
and reproduction (Ridley et al., 2012, 2013; Wong et al., 2014,
2017; Morimoto et al., 2017), which are all important parameters
for invasiveness. Its close relative, Drosophila suzukii, or spotted
wing drosophila (SWD), a significant pest of small fruits, relies
on the microbiome to develop in ripening fruits (Bing et al.,
2018). Among the highly destructive crop pests in the family
Tephritidae, microbial symbiosis was first described in the olive
fruit fly Bactrocera oleae (Petri, 1909, 1910). Unlike other fruit
feeding Bactrocera species, B. oleae is associated with an obligate
bacterial symbiont (Candidatus Erwinia dacicola) maintained

in larval midgut caeca. The symbiont is currently uncultured
but studies have shown that it facilitates fly development
and reproduction by providing essential amino acids and
metabolizing urea from various sources such as bird droppings,
making nitrogen available to adult flies (Capuzzo et al., 2005;
Ben-Yosef et al., 2014). It also helps the larvae develop in unripe
olives by counteracting a plant defensive metabolite, oleuropein
(Capuzzo et al., 2005; Estes et al., 2009). Interestingly, the
symbiont has been found to be absent in domesticated B. oleae
reared on artificial media containing antibiotics, demonstrating
the impact of rearing on symbiont selection (Estes et al., 2012;
Sacchetti et al., 2019). Other bacterial species associated with
the guts of B. oleae include Pantoea sp. and Burkholderia sp.,
although their nutritional role is unclear (Ras et al., 2017).
Microbiome-dependent larval development has also been seen in
the medfly (Ceratitis capitata) and apple maggot fly (Rhagoletis
pomonella). In medfly, microbial nutrient provisioning involves
diazotrophs that express nitrogen reductase gene (nifH) in the
gut (Behar et al., 2005). These medfly-associated bacteria include
the genera Citrobacter, Klebsiella, Pectobacteria, Enterobacter,
and Pantoea (Behar et al., 2008b). The community has been
shown to support fly development, reproduction, and extend
longevity when administered as probiotics (Behar et al., 2008b),
and increase male copulatory success (Ben-Yosef et al., 2008).
In addition to the dominant Enterobacteriaceae, a minor
but stable community associated with medfly gut includes
Pseudomonas spp. (Behar et al., 2008b). Using a metabarcoding
approach, differences in microbial community was observed
at different instar stages of medfly (Malacrinò et al., 2018).
Burkholderia was found to be dominant in early instars and
adults and may play a role in nitrogen fixation, as suggested
in Tetraponera ants (Borm et al., 2002). Similarly, bacteria
belonging to the genera Sphingomonas, Pseudomonas and an
unidentified bacterium belonging to family Methylobacteraceae
were found more abundant in late instars of medfly, whereas
Leuconostoc, Weissella, Acetobacter, Gluconobacter and an
unidentified bacterium belonging to family Xanthomonadaceae
were more abundant at pupal stage (Malacrinò et al., 2018).
In addition, variable microbial community was observed in
medfly fed on different host plants. For example, medfly larvae
feeding on Ficus carica (common fig) fruits were found to
harbor Acinetobacter and Gluconobacter, while Acetobacter and
Leuconostoc were found to be more abundant when fed on
Prunus persica (peaches) (Malacrinò et al., 2018). Acinetobacter
and Gluconostoc have been suggested to play a role in detoxifying
phenolic glycosides (Mason et al., 2014). Similarly, apple maggot
flies are associated with a diverse range of Enterobacteria in
their gut, such as Pantoea, Klebsiella, and Enterobacter (Behar
et al., 2009). The bacteria are deposited into the fruit during
oviposition, thereby providing essential nutrients and proteins
required for larval development (Lauzon, 2003; Behar et al.,
2008a). In some Tephritids of the sub-families Dacinae and
Trypetinae, symbiotic bacteria support larval development by
metabolizing sugars, increasing the level of organic nitrogen, and
synthesizing vitamins (Lauzon, 2003; Behar et al., 2009; Hamden
et al., 2013). However, their functions in adult flies are unclear
(Ben-Yosef et al., 2014).
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MANIPULATION OF INSECT-ASSOCIATED
MICROBIOMES FOR PEST MANAGEMENT

The contribution of microbiomes to diverse insect invasiveness-
related traits represents a rich array of resources that could be
targeted for pest management. A simple strategy is to eliminate
or disrupt insect symbiosis using biochemicals (Baumann, 2005).
For example, ingestion of antibiotics such as tetracycline and
penicillin has been shown to render tsetse flies sterile by affecting
the obligate mutualist Wigglesworthia, impede the development
of immature ticks and diminish reproduction of adult ticks
by reducing their symbiont load (Zhong et al., 2007). The use
of antimicrobial peptides (AMPs) has also been explored to
manipulate insect symbionts, though more commonly used to
control human or plant pathogens vectored by insects (Carter
et al., 2013). AMPs (including diverse amphiphilic and cationic
oligopeptides) are an integral part of insect innate immunity.
They confer protection against a variety of microbes, including
bacteria, fungi and viruses. Cecropin was the first AMP isolated
from the pupae of Hylaophora cecropia (Hultmark et al., 1980;
Steiner et al., 1981) and since then, about 150 AMPs have
been purified from insects (Yi et al., 2014). On the basis of
amino acid sequences and structures they have been classified
into four groups: the α-helical peptides (e.g., moricin and
cecropin), cysteine-rich peptides (e.g., defensin and drosomycin),
proline-rich peptides (e.g., apidaecin, drosocin and lebocin),
and glycine-rich proteins (e.g., attacin and gloverin). Some of
the AMPs (e.g., defensins, cecropins, attacins, and proline-rich
peptides) are present across insect orders, whereas others (e.g.,
moricin and gloverin) are restricted only to certain orders (e.g.
Lepidoptera). The antimicrobial activity of AMPs is attributed
to their positively charged surface which enables them to
bind negatively charged microbial surface via charge-charge
interactions, thereby interfering with the integrity of bacterial cell
wall (Wu et al., 2018). AMPs have been engineered in plants and
some insects to confer resistance to bacterial, fungal, and some
eukaryotic parasites. For example, insect defensins (gallerimycin
from Galleria mellonella) and cecropin (sarcotoxin-IA from
Sarcophaga peregrina) have been shown to confer resistance
to pathogenic fungi in transgenic tobacco (Mitsuhara et al.,
2000). Similarly, transgenic expression of cecropins has also
been shown in conferring resistance to fungal and bacterial
pathogens in rice and tomato plants (Sharma et al., 2000; Jan
et al., 2010). Cecropins also show activity against protozoan
parasites, such as Plasmodium and Trypanosoma (Rodriguez
et al., 1995; Fieck et al., 2010). Transgenic expression of cecropin
in Anopheles gambiae, a vector for human parasite has been
shown to reduce the number of Plasmodium berghei oocysts by
60% (Kim et al., 2004). In addition, transgenic co-expression of
defensin-A and cecropin-A in Aedes aegypti has been shown
to cooperatively block the transmission of Plasmodium parasite
(Kokoza et al., 2010).

A key limitation of using antibiotics or AMPs is the possibility
of non-target effects, which can lead to disruption of the native
microbiome in non-target insects. Other limitations of using
AMPs include low bioavailability, instability, and emergence of
antimicrobial resistance (Shen et al., 2018). Nonetheless, AMPs

with enhanced specificities can be generated by methods such
as fusion with antibody fragments with affinity toward specific
antigens (Peschen et al., 2004), protein engineering and synthetic
biology techniques (e.g., substitution of amino acids, chemical
modifications) (Cao et al., 2018). Improved delivery of AMPs
to different living systems using nanotechnology is also being
actively researched (Biswaro et al., 2018).

Introducing a foreign microbe to insects or replacing a
symbiont with another microbe is also a viable strategy for
manipulating insect traits. Experimental replacement of specific
cultured and uncultured insect symbionts has been demonstrated
in stink bugs and aphids. Hosokawa et al. (2007) showed that
the swapping of the Ishikawaella symbionts between stink bug
Megacopta punctatissima, a regular pest of soybean and other
legumes, and a closely related non-pest species, Megacopta
cribraria, resulted in poor M. punctatissima egg hatching on
the plants. Experimental replacement of the primary symbiont
Buchnera with a different genotype by microinjection in the pea
aphid has also been shown to alter pest thermal tolerance (Moran
and Yun, 2015).

Incompatible Insect Technique (IIT)
Multiple protocols have been established to generate gnotobiotic
insects (i.e., insects with experimentally controlled microbiomes)
in the lab, such as Drosophila (Ridley et al., 2013), mosquitoes
(Coon et al., 2014), and honey bees (Kešnerová et al., 2017).
The protocol often involved cleansing the insect eggs to remove
maternally deposited microbes on the surface, or treating larval
or adult insects with antibiotics, followed by feeding on food
seeded with cultured microbes or microbe-laden materials (e.g.,
fecal transplantation). While the gnotobiotic approach has
been instrumental in the discoveries of microbiome impact
on insect traits such as development, physiology, behavior,
and insecticide resistance (Jaenike et al., 2010; Ridley et al.,
2012; Coon et al., 2014; Wong et al., 2017; Xia et al., 2018),
its use in pest management remains largely conceptual. A
major exception is the rapidly growing interest in utilizing
Wolbachia to control mosquitoes and mosquito-borne infectious
agents. Wolbachia is a widely distributed, vertically transmitted
endosymbiont in arthropods, estimated to infect over 60% of
all insects (Hilgenboecker et al., 2008). The bacterium is known
primarily for its ability to manipulate host reproduction through
induction of cytoplasmic incompatibility (CI), feminization,
parthenogenesis, and male killing (Stouthamer et al., 1999).
By distorting sex ratios toward females, Wolbachia-infected
females have a reproductive advantage over uninfected females,
facilitating their propagation in a population. The incompatible
insect technique (IIT) employs Wolbachia-induced CI as a
strategy to control mosquitoes and other insect pests (Werren,
1997; Stouthamer et al., 1999). CI results in embryonic lethality
(Bourtzis et al., 1998) and can be induced unidirectionally
in crosses between Wolbachia-infected males and uninfected
females, or bidirectionally in crosses between infected individuals
bearing different strains of Wolbachia (Saridaki and Bourtzis,
2010). Wolbachia-induced sterility does not compromise the
male mating competitiveness and their survival, as observed
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in Aedes aegypti (Segoli et al., 2014). In IIT, Wolbachia-
infected males are repeatedly released to compete with the
wild populations (Zabalou et al., 2004, 2009; Bourtzis, 2008;
Berasategui et al., 2016). Extensive research has been carried out
to use IIT against several insect pests including Rhagoletis cerasi,
Ceratitits capitata, the tsetse fly, and disease vectors including
Culex pipiens, Aedes albopictus and Culex quinquefasciatus
(Zabalou et al., 2004, 2009; Alam et al., 2011; Bourtzis et al.,
2014; Zhang et al., 2015; Atyame et al., 2016). Wolbachia can
be transinfected into a novel host which are not naturally
infected by Wolbachia strains that can induce CI (Zabalou et al.,
2004, 2008; O’Connor et al., 2012; Zhang et al., 2015). For
example, Wolbachia strain wSuz naturally infects D. suzukii
but it does not induce CI (Ometto et al., 2013; Siozios et al.,
2013; Hamm et al., 2014; Cattel et al., 2016). Two CI-inducing
Wolbachia strains (wHa and wTei) from other Drosophila
species have been identified and successfully introduced to D.
suzukii, setting up the stage for IIT for this pest (Cattel et al.,
2018; Nikolouli et al., 2018). However, the stability of the
association, consequences of Wolbachia transinfection on host
fitness including mating competitiveness need to be critically
assessed before field applications can be exercised (O’Connor
et al., 2012). In addition, the genotype of IIT insects should
be considered since host genotype plays an important role in
Wolbachia density and phenotypic expression of infection in
hosts, including CI (Mouton et al., 2007).

Recently, significant progress has been made in identifying
the molecular factors for Wolbachia-mediated CI. LePage et al.
(2017) identified two differentially transcribed wMel genes,
cifA and cifB (encoded by WO prophage), that functionally
reiterated CI when expressed dually in uninfected males. Both
genes are incapable of inducing CI independently. Further
studies demonstrated that transgenic expression of cifA gene
independently rescues CI and abolishes the embryonic lethality
caused by wMel Wolbachia in Drosophila (Shropshire et al.,
2018). In another study, Beckmann et al. (2017) demonstrated
that interaction of Wolbachia deubiquitylating enzymes (DUB)
cidA and cidB induces CI in transgenic Drosophila.

In addition to CI, another important trait of Wolbachia for
mosquito control concerns its pathogen-blocking ability. Aedes
aegypti, the vector for many clinically important arboviruses, do
not generally bear Wolbachia in nature, but when transinfected
with Wolbachia derived from Drosophila or other mosquitoes
(e.g., Aedes albopictus and Culex quinquefasciatus), display
drastically reduced competence for dengue, chikungunya, yellow
fever, and Zika viruses (Bian et al., 2010; Van den Hurk et al.,
2012; Aliota et al., 2016; Carrington et al., 2018), as well as
Plasmodium and filarial nematodes (Kambris et al., 2009;Moreira
et al., 2009). The exact mechanism of Wolbachia-mediated
pathogen blocking is under investigation. Several hypotheses
have been proposed, including priming of the immune system,
changes in cholesterol and lipid droplets production and
trafficking (Geoghegan et al., 2017), and (viral) RNA degradation
(Thomas et al., 2018). In 2011, Ae. aegypti carrying the wMel
strain were released into the wild near Cairns, Australia, marking
the first trial of microbiome manipulation of a wild insect
population for the purpose of reducing vector competence

(Hoffmann et al., 2011). A follow-up investigation 2 years later
suggested that the Wolbachia infection has stably established
in the mosquito population (Hoffmann et al., 2014). More
importantly, the release effectively stopped dengue transmission
in Cairns and surrounding locations in northern Queensland,
Australia. As of late 2019, mean Wolbachia frequencies in
the original Cairns populations remains around 95%, with
a 96% reduction in dengue cases. Subsequent releases have
established Wolbachia throughout northern Queensland, as well
as Yogyakarta, Indonesia, and Kuala Lumpur, Malaysia (Nazni
et al., 2019; Ryan et al., 2020; Tantowijoyo et al., 2020).

Paratransgenesis
A related strategy gaining traction in recent years is to genetically
modify microbes to express desired effects in insects, known as
paratransgenesis (Aksoy et al., 2008; Coutinho-Abreu et al., 2010;
Caragata and Walker, 2012). Instead of transforming the insects
(i.e., transgenesis), paratransgenesis bypasses the disadvantages
of fitness cost associated with introducing a transgene into
the insects and transgene instability in insect genomes. This
approach is particularly suited for microbes that can be cultured,
transformed, and readily reintroduced into the insect hosts.
Paratransgenesis was proposed back in the early 90’s, but most
of the research progress has been focusing on human disease
vectors and a fewHemipteran crop pests. Beard et al. (1992, 1993,
2000) demonstrated that the gut symbiont Rhodococcus rhodnii
of the triatomine bug (Rhodnius prolixus) can be genetically
modified to express effector molecules (cecropin A and related
pore-forming molecules) against the protozoan Trypanosoma
cruzi, the causative agent of Chagas disease. The symbiont can
be introduced to insect progeny by inoculating eggshells or food
with feces seeded with the engineered symbiont. Durvasula et al.
(1999) also transformed the symbiont with an anti-trypanosome
single-chain antibody and showed significant reduction in
parasite load. The promising results from laboratory studies led
to subsequent field trials in testing the transmission efficiency
of engineered R. rhodnii to the triatomine bug using simulated
triatomine-fecal materials called CRUZIGARD which consisted
of an inert guar gum matrix dyed with India ink (Hurwitz et al.,
2011a,b). More recently, a study has integrated paratransgenesis
with RNA interference (RNAi) technology to control Rhodnius
prolixus. Oral administration of an Escherichia coli strain HT115
or R. rhodnii engineered to express dsRNA targeting the
antioxidant genes-heme-binding protein (RHBP) and catalase
(CAT) genes in R. prolixus was shown to trigger systemic RNAi
to silence these genes, resulting in poor development of nymphs
and reduced fecundity of females (Taracena et al., 2015). Similar
paratransgenic approaches have been tested on tsetse flies, using
engineered symbiont Sodalis glossinidius that expressed antigen
binding molecules targeting Trypanosoma brucei, the causative
agent of sleeping sickness. Sodalis is found in the hemolymph,
midgut, andmilk gland and can be transmitted vertically through
the milk glands (De Vooght et al., 2012, 2014). In mosquitoes,
several paratransgenic strategies have been explored to prevent
the transmission of malaria-causing Plasmodium parasites, using
bacteria and fungi isolated from the mosquito midguts and
ovaries. The Gram-negative Asaia bogorensis was selected for
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paratransgenesis against Plasmodium berghei since it was shown
to persist in the midguts of mosquitoes and can spread quickly
within a population, both vertically and horizontally (Bisi and
Lampe, 2011; Dinparast Djadid et al., 2011). Genetically modified
Asaia strains were constructed by fusing the siderophore
receptor gene with anti-plasmodial effector genes. These genes
included the scorpine antimicrobial peptide and a synthetic anti-
Pbs21 scFv-Shiva1 immunotoxin composed of a single chain
antibody (scFv) against P. berghei ookinete surface protein 21-
Shiva1 fusion protein. Parasite development was significantly
inhibited after Anopheles stephensi mosquitoes were fed with
the transformed Asaia and challenged with P. berghei infected
blood (Bongio and Lampe, 2015). Previously, a common
symbiotic bacterium of mosquitoes, Pantoea agglomerans, was
engineered to express anti-Plasmodium effector proteins using
Type I hemolysin secretion system derived from E. coli. These
engineered P. agglomerans strains were found to inhibit the
development of P. falciparum and P. berghei in the midgut of
Anophelesmosquitoes (Wang et al., 2012). An entomopathogenic
fungus, Metarhizium anisopliae, has also been manipulated to
secrete the antimicrobial scorpine and anti-plasmodial peptide
SM1 capable of inhibiting the development of Plasmodium
parasite (Fang et al., 2011). A study by Wang et al. (2017)
discovered that gut and ovaries of A. stephensi are colonized by
a novel Serratia sp. AS1. The AS1 strain was both sexually and
vertically transmitted, persisting for at least three generations.
Mosquitoes infected with an engineered Serratia AS1 containing
five different anti-plasmodium effector molecules (Shiva1, a
cecropin-like synthetic antimicrobial peptide; MP2, midgut
peptide 2; EPIP, enolase-plasminogen interaction peptide (lysine-
rich enolase peptide); scorpine, scorpion Pandinus imperator
venom antimicrobial peptide; and mPLA2, inactive bee venom
phospholipase A2) displayed a reduction in the oocyte load by
93% (Wang et al., 2017).

The potential of paratransgenesis in crop protection against
insect pests or insect-vectored pathogens is demonstrated
in the Glassy-winged sharpshooter (GWSS), Homalodisca
coagulata. GWSS is a vector of Xylella fastidiosa, the bacterial
pathogen that causes Pierce’s disease in grapes by producing
exopolysaccharides, which helps them colonize the xylem of
its host plant, blocking the xylem flow (Hopkins and Purcell,
2002; Hackett, 2003; Bextine et al., 2004; Killiny et al., 2013).
Among the different bacterial species isolated from GWSS,
Alcaligenes xylosoxidans var. denitrificans (Axd), was chosen
as a candidate bacterium for genetic manipulation. It has been
consistently found in the xylem of host plants; the same niche
occupied by the pathogen. Genetically modified Axd containing
a DsRed fluorescent protein gene was successful delivered
from injected stems to GWSS. It was found to colonize the
insect foregut, suggesting a paratransgenic approach to clear X.
fastidiosa from GWSS is feasible (Bextine et al., 2004). However,
the use of transformed Axd in plants has potential drawbacks
since this genus of bacteria has been reported as nosocomial
human pathogen implicated in causing lung infection in
cystic fibrosis patients (Krzewinski et al., 2001; Saiman et al.,
2001). To ease the safety concern, an endophytic bacteria of

grapes Pantoea agglomerans E325 (an EPA-approved agent
for managing fire blight in pears and apples) was genetically
engineered to express anti-Xylella effector proteins melittin and
a scorpine-like AMP, and successfully colonized in the foregut of
GWSS through an artificial feeding system (AFS) (Arora et al.,
2015). Furthermore, targeted delivery of recombinant Pantoea
agglomerans E325 to the gut of GWSS using microencapsulation
strategy has been established to control Pierce’s disease
under simulated field conditions. Microencapsulation
strategy may be useful for field application as it could
prevent the environmental spread of foreign genetic material
(Arora et al., 2015).

More recently, Leonard et al. (2020) developed a
paratransgenic approach in honeybees and showed that it
improved bee survival against viral infection and varroa mites
in the lab. The authors engineered a symbiotic gut bacterium
Snodgrassella alvi, expressing dsRNA specifically targeted to
interfere with bee, viral or mite genes.

Successful application of gnotobiotic or paratransgenic
approaches to control insect pests largely depends on the choice
of microbes, the genetic design, and implementation of the
treated insects. The microbes should ideally be specific to
target insects or harmless to non-target hosts, another obstacle
concerns the stability of the association. Persistent association
ensures microbial-mediated impacts on host insects will be
lasting, but some microbes may be “lost” from the insects due
to environmental selective pressure or antagonistic effects with
other microbes. Despite these caveats, it is anticipated that
research and development on gnotobiotic and paratransgenic
insects will continue to grow.

EXPLOITING THE CHEMICAL
INVENTORIES OF MICROBIOMES TO
DEVELOP NEW BIOPESTICIDES

A key challenge to crop protection concerns the emergence
of insecticide resistance, and for many insect pests there are
no alternative control methods. Development of new synthetic
pesticides has become increasingly costly and challenging, partly
due to the difficulty of converting a lead compound into a product
that can pass through strict environmental and safety regulations.
A recent report estimated that in the US, the development of a
synthetic pesticide now costs over $300 million and takes nearly
12 years (McDougall, 2016). The need to overcome resistance
problems and to promote sustainable agriculture necessitates the
discovery of new insecticidal agents.

In recent years, the push to develop novel insecticides with
minimal environmental impact has led to a resurgence of interest
in biopesticides (i.e., pesticides based on living organisms or
their natural products, including their genes and metabolites).
Currently, the global market for biopesticides is valued at $3
billion and is expected to grow by 15% in the next 4 years,
outpacing the market growth of synthetics by 10-fold (Damalas
and Koutroubas, 2018). Biopesticides fall into one of the three
main categories: biochemical pesticides, which are naturally
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occurring chemicals that can alter pest behavior or physiology;
microbial pesticides, which use pathogenic or toxic microbes
as the active ingredient, and plant-incorporated protectants
(PIPs), transgenic plants that produce pesticidal compounds
(USEPAO, 2015).

Microbial Insecticides and
Plant-Incorporated Protectants
Historically, microbial insecticides have taken the form of
living microbes or spores applied directly to the field.
Among the most common microbial insecticides are the
entomopathogenic fungi, or EPFs, which are used in half of
all classical biological control programs (Hajek and Delalibera,
2010). Several attributes of EPFs make them ideal candidates
for biological control agents: many can be mass cultured
in vitro; fungal spores have a long shelf life compared to
other biological control agents; and they are often capable of
persisting in the host population without repeated introductions
(Hajek and Delalibera, 2010). The majority of economically
significant species are soil inhabiting Hypocreales, including
Metarhizium anisopliae, Beauveria bassiana, and Entomophaga
maimaiga. Entomopathogenic nematodes (EPNs) of the families
Steinernematidae and Heterorhabditidae, and their respective
bacterial symbionts Xenorhabdus and Photorhabdus, are also
important biological control agents of insects. EPNs have a
broad host range, kill rapidly, and actively search for hosts to
infect. However, they have a short shelf-life and are sensitive to
environmental conditions such as low moisture levels and UV
exposure (Lacey and Georgis, 2012).

Entomopathogens as biological control agents have several
advantages over applying conventional insecticides: they are
often host-specific, reducing impact on non-target species, and
usually harmless to humans; they can be used in organic
farming and Integrated Pest Management Programs; and are less
susceptible to the pest resistance issues of conventional products.
However, they can be difficult and expensive to mass-produce,
with many requiring a host to complete their life cycle; they are
also sensitive to environmental conditions such as sun exposure
and humidity; and tend to have a short shelf life. A list of
entomopathogens (bacteria, fungi, protozoa, and viruses) is listed
in Table 1.

Most of the bacterial insecticidal products are derived from a
small number of species, more significantly Bacillus thuringenesis
(Bt), a Gram-positive, spore-forming species common in soils. Bt
was first discovered in 1901, as the causal agent of sotto disease
in silkworms, Bombyx mori (Ibrahim et al., 2010). However, the
mechanism of Bt-induced insect mortality was not understood
until the 1950’s, when it was discovered the Cry proteins of
certain strains are toxic to insects (Schnepf et al., 1998; Bravo
et al., 2007).

Bt remained a niche product used primarily in forestry and
organic farming until 1995, when transgenic crops expressing
Cry proteins became commercially available. Development of
Bt transgenic crops completely transformed Bt application: the
toxin becomes constitutively expressed, covers all tissues, and
non-target effects were minimized, as only insects that consume

the plants are affected (Sanchis, 2011). Today, Bt varieties of
maize, cotton, soy, and eggplant are widely grown, and new Bt
varieties are constantly being developed (ISAAA’s GM Approval
Database, 2019). In the United States, more than 80% of maize
and cotton acreage is planted with Bt varieties (Wechsler, 2018).
Furthermore, over 300 distinct forms of the cry gene have been
identified so far, with specificity against Lepidopteran, Dipteran,
Coleopteran, or nematode hosts (Ibrahim et al., 2010). However,
in recent years, the emergence of Bt resistance threatens the
efficacy of Bt crops, underlining the importance of insect
resistance management (IRM) practice and the need to search for
new microbial insecticides.

Spinosad is another successful commercial insecticide derived
from microbial natural products (NPs). It is the result of a
natural product discovery program, conducted in the mid-1980’s
by Dow Agrosciences. The program involved exposing larval
mosquitoes and Lepidoptera to fermentation broths derived
from soil samples. One particular soil sample collected at a
Virgin Islands rum distillery showed insecticidal activity toward
both taxa, which was determined to be caused by secondary
metabolites produced by an unknown actinomycete, described
later as Saccharopolyspora spinosa (Mertz and Yao, 1990). These
metabolites, the spinosyns, were found to be broad-spectrum
insecticides with low toxicity to vertebrates and a novel mode of
action targeting nicotinic acetylcholine and γ-aminobutyric acid
(GABA) receptors. Spinosad, a formulation combining spinosyn
A and spinosyn D in an approximately 5:1 ratio, first received
regulatory approval in South Korea and the United States in the
late 1900’s, and was approved in the US for over 150 conventional
and organic crops by 2004 (Racke, 2006).

This relatively low number of microbial insecticides is likely
non-representative of the true diversity of microbial insecticidal
products. Screens of microbial NPs for insecticidal properties
are rare in the literature; the majority of NP discovery efforts
focus on potential pharmaceuticals. Additionally, in the past 30
years, identifying novel NPs using traditional, culture-dependent
screenings has become increasingly difficult, due to the high rate
of rediscovery of known compounds (Katz et al., 2016). However,
considering the percentage of successfully culturedmicrobial taxa
is frequently estimated to be 1% or less, it is likely that many
bioactive microbial NPs have yet to be discovered (Hofer, 2018).

The development of culture-independent, high-throughput
metagenomics techniques has begun a renaissance in the field of
NP discovery. Microbial toxins could be “mined” by extracting
DNA from environmental samples, cloning into plasmids and
expressing in recombinant expression systems. However, this
method assumes the expression system possesses the molecular
machinery necessary for heterologous expression and folding of
the desired gene products, including regulatory elements (such as
promoters and ribosomal binding sites), chemical substrates and
biosynthetic precursors, an assumption which does not always
hold. For example, in an experiment by Gabor et al. (2004),
shotgun cloning of environmental microbial DNA recovered
only ∼40% of enzyme activity in the E. coli vector. This issue
can be mitigated by conducting functional screenings in a broad
range of expression systems, typically through the use of a
specially constructed shuttle vector (Katz et al., 2016).
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TABLE 1 | List of known bacterial, fungal, protozoa, and viral entomopathogens.

Pathogen Target pest(s) Mechanism Virulence factor(s) Commercial

application(s)

Citation(s)

Bacteria Bacilius thuringenesis

various strains

(Bacillaceae)

Lepidoptera, Coleoptera,

and Diptera

Colonization and perforation

of midgut epithelium

Cry proteins, Vegatative

Insecticidal Proteins

(VIP)

Spore suspension (liquid

and granular), Cry

protein expression in

GM crops

Sanchis, 2011;

Lacey et al., 2015

Serratia entomophila

(Enterobacteriaceae)

New Zealand grass grub

(Costelytra giveni)

Colonization of foregut and

cessation of feeding

sepA, sepB, and sepC

on pADAP

Soil-applied granules
Hurst et al., 2000;

Wright et al., 2017

Xenorhabdus

nematophila

Lepidoptera, Coleoptera,

Diptera

Symbiont in

entomopathogenic nematode,

Steinernema carpocapsae.

Interferes with host

AMPs, insecticidal

toxins complex (Tc)

Steinernema-

Xenorhabdus

association

Ji et al., 2004;

Stilwell et al., 2018

Bacillus popilliae,

Bacillus lentimorbus

Larvae (grubs) of

Japanese beetle (Popillia

japonica)

Spores germinate in the larval

gut, vegetative cells penetrate

into the haemocoel leading to

death.

Soil-applied spores
Rippere et al.,

1998

Fungi Beauveria bassiana

(Cordycipitaceae)

Aphids, fungus gnats,

mealy bugs, mites, thrips,

whiteflies

Conidia land on host and

germinate into cuticle;

mortality caused by fungal

toxicity and colonization of

vital tissues

Spore suspension,

promotion of existing

natural populations

Lacey et al., 2015

Metarhizium anisopliae termites, mosquitoes

(Aedes spp., Anopheles

spp. and Culex spp.), and

cattle ticks; Various ticks

and beetles; root weevils,

flies, gnats, thrips.

Conidia land on host and

germinate into cuticle;

mortality caused by fungal

toxicity and colonization of

vital tissues

Spore suspension,

promotion of existing

natural populations

Lacey et al., 2015;

Aw and Hue, 2017

Verticillim lecanii Greenhouse whitefly

(Trialeurodes

vaporariourum), aphids

(Hemiptera: Aphididae)

Conidia land on host and

germinate into cuticle;

mortality caused by fungal

toxicity and colonization of

vital tissues

Spore suspension
Sinha et al., 2016

Lagenidium giganteum Mosquito (larvae) Biflagellate zoospores attach

to larval cuticle, proliferates in

host.

Spore suspension
Suh and Axtell,

1999

Protozoa Nosema locustae European cornborer

caterpillars, grasshoppers

and mormon crickets

Infects fat body tissues;

disrupting host metabolism

and energy storage

Spores applied to bait
Solter et al., 2012

Nosema pyrausta European corn borer

(Ostrinia nubilalis)

Spore is consumed by larva,

the spore’s polar filament is

extruded, penetrating a

midgut cell and inoculating it

with sporoplasm. Disrupts

larval development, pupation,

adult longevity, oviposition

and fecundity.

Spore suspension

applied to bait Gassman and

Clifton, 2017

Vairimorpha necatrix Armyworm (Noctuidae) Spore consumed by larva,

penetrating a midgut cell, and

inoculating it with sporoplasm.

Spores applied to bait
Solter et al., 2012

Viruses Cd GV (Cydia

pommonella granulosis

virus)

Codling moth (Cydia

pomonella)

Suspension

concentration of virus Sauer et al., 2017

Nuclear polyhedrosis

viruses (NPV)

Lepidoptera Capsid dissolves in the

alkaline midgut of Lepidoptera

to release the virus particle

causing cell lysis.

Polyhedral capsid Suspension

concentration of virus Chiu et al., 2012

Ns NPV (Neodiprion

sertifer nuclear

polyhedrosis virus)

Pine sawfly Capsid dissolves in the

alkaline midgut to release the

virus particle causing cell lysis.

Polyhedral capsid Suspension

concentration of virus Podgwaite et al.,

1984; Chiu et al.,

2012

Ag NPV (Anticarsia

gemmatalis nuclear

polyhedrosis virus)

Velvet bean caterpillar Capsid dissolves in the

alkaline midgut to release the

virus particle causing cell lysis.

Polyhedral capsid Suspension

concentration of virus Castro et al.,

1997; Chiu et al.,

2012
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Microbial Semiochemicals
Insects rely on chemical communication to adjust their behaviors
in response to the environment. These behaviors include
foraging, mating, hazard avoidance, kin recognition, and social
interactions. Chemicals that convey signals between organisms
leading to changes in the behavior of recipient organisms are
referred to as semiochemicals. A sustainable approach to pest
management is to harness these semiochemicals to manipulate
insect behavior. Insect pheromones (defined as semiochemicals
that mediate interspecific interactions) constitute a large market
share of attractants for plant and urban pests. Pheromone-baited
traps are used in both monitoring and control of a variety of
agricultural, forestry, and urban pests, such as the cotton boll
weevil Anthonomus grandis, the gypsy moth Lymantria dispar,
and the house fly Musca domestica (Witzgall et al., 2010). Field
application of synthetic sex pheromones has also been shown to
effectively control multiple Lepidopteran pests, including codling
moth Cydia pomonella, pink bollworm Pectinophora gossypiella,
and diamondback moth, by inhibiting their ability to find mates,
a process known as mating disruption (Cardé and Minks, 1995).

Many commercially used insect semiochemicals are not insect
pheromones, but rather, plant or microbial volatile organic
compounds (VOCs) (Davis et al., 2013). VOCs are a large
class of low-molecular weight compounds signified by high
volatility and low vapor pressure. VOCs can be produced through
different metabolic pathways, such as fermentation, amino
acid catabolism, sulfur reduction, and terpenoid biosynthesis
(Lemfack et al., 2017; Choudoir et al., 2019). Many VOCs
are effective semiochemicals, requiring only small quantities
to elicit responses from insects, which tend to have highly
sensitive chemosensory (especially olfactory) systems. VOCs
permit ranged communication by traveling through the air and
serve as important means of environmental perception.

Recently, there is a growing interest in the discovery
and implementation of microbial VOCs (mVOCs) as pest
management tools. Multiple factors have contributed to this
trend. First, according to mVOC 2.0, an online database of over
2,000 microbial volatiles from nearly 1,000 microbial species
(Lemfack et al., 2017), <10% of known mVOCs are studied or
assigned with functions. Given that an estimated 1018 microbial
species are expected to exist on earth, many mVOCs have yet to
be identified, Second, there is an increasing demand for natural
products in agricultural pest management, as such products are
generally better perceived by the public than synthetic chemicals
in terms of safety and environmental sustainability.

Microbes have existed for over three billion years and through
the processes of evolution, their metabolism is extremely diverse
and versatile. The metabolic capabilities of microbiomes often
far exceed than those of their eukaryotic hosts. Additionally,
microbial metabolism can be augmented by genetic engineering
using recombinant and synthetic techniques. This implies that
microbial production of desired metabolites (including mVOCs)
can be readily scaled up to meet the commercial needs.
Advances in “-omics” techniques and computational biology to
study the microbial metabolism can also help to accelerate the
discoveries of mVOCs in a number of ways. Notably, high-
throughput sequencing is illuminating the biosynthetic potential

of microbiomes that extend beyond from cultured microbes,
to uncultured ones found in plants, soils, and other natural
resources. Computational tools are also becoming available to
assemble complex metagenomes and metatranscriptomes, and
to predict biosynthetic gene clusters from mining big data sets
of DNA/RNA sequences (Medema et al., 2011; Weber et al.,
2015). Although the vast majority of microbes on earth are
yet to be cultured such that they are not readily amenable to
conventional culture-dependent approaches, biologically-active
natural products can be obtained from uncultured microbes by
cloning environmental DNA into plasmid vectors and expressing
in recombinant systems, such as E. coli, yeast, or baculovirus
(Rappé and Giovannoni, 2003; Hofer, 2018). This approach
has been actively pursued in screening for new antibiotics and
therapeutic drugs in recent years, and in principle can be applied
to the discoveries of microbial-based compounds for agricultural
uses, including novel semiochemicals as well as biopesticides
(Clardy et al., 2006).

Besides acting on insects directly, microbes can influence
insect behavioral interactions with plants by altering plant VOC
emission profiles. Ballhorn et al. (2013) showed that lima bean
plants colonized with Rhizobia emitted a different VOC profile
from the non-colonized plant in response to stimulation by
jasmonic acid (JA), an important plant hormone involved in
anti-pest defense, growth, and development. The distinct VOC
profile from colonized plants corresponds to significantly greater
Epilachna varivestis (Mexican bean beetle) repellency and was
attributed to increased indole secretion (Ballhorn et al., 2013).
Additionally, several symbiotic fungi, including endophytic fungi
and arbuscular mycorrhizas, were shown to modify plant volatile
emissions and consequently plant susceptibility to various insect
pests (Fontana et al., 2009). These results hint at indirect
beneficial effects of symbiotic microbes in plant defense that can
be developed into probiotics for plants. On the other hand, some
pathogenic microbes are known to manipulate plant volatile
emissions to attract pests and potential vectors. Examples include
the bacterium Candidatus Liberibacter asiasticus that infects
citrus plants and causes Huanglongbing (HLB), also known as
citrus greening disease. Candidatus L. asiaticus infection of citrus
plants increased methyl salicylate levels, which was believed to
promote attraction of its vector insect, the Asian citrus psyllid
(Diaphorina citri) (Li et al., 2017). A number of plant viruses
such as the Cucumber mosaic virus and Barley yellow dwarf
luteovirus were also found to modify plant volatile emission to
attract its vector insects (aphids) to improve their transmission
(Sharifi et al., 2018).

Applications of microbial-based attractants or repellents in
pest management have been backed by laboratory studies and
field trials. For example, the invasive Drosophila suzukii is a
major pest of small fruits and distinct from other non-pest
Drosophila species in that it attacks intact, ripe, and ripening
fruits (Keesey et al., 2015). Research has shown that Drosophila
species are strongly attracted to fermentation products (Keesey
et al., 2015), and by adding fermenting sugar-yeast mixture to
a commonly used non-microbial trap bait (apple cider vinegar
+ 10% ethanol), D. suzukii capture rate increased by up to 15-
fold in both laboratory and field conditions (Lasa et al., 2017).
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Huang et al. (2017) also showed combination baits of yeast-
wine-vinegar-sugar mixtures are superior attractants compared
to wine-vinegar alone. Ishii et al. (2015) genetically modified
the acetic acid bacterium (AAB) Komagataeibacter europaeus
with increased acetoin (a key ingredient in vinegar) production
and was able to trap significantly more Drosophila using the
mutant strain compared to other strains loaded on sticky
traps. Similarly, microbial semiochemicals have been shown to
attract tephritid fruit flies. For instance, a set of 21 compounds
including alcohols, ketones, pyrazines, phenols and acids were
identified from fermented broth of Klebsiella pneumoniae that
attracted the Mexican fruit fly (Anastrepha ludens) (Lee et al.,
1995). The Caribbean fruit fly (Anastrepha suspensa) females
were shown to be attracted to VOCs 3-methyl-1-butanol and
ammonia emitted from Enterobacter agglomerans, a bacterium
isolated from larvae infested fruits and fly adults (Epsky et al.,
1998). Some mVOCs, especially those produced by fungi, have
potential to be developed into insect repellents. Geosmin was
first described to be emitted by mold, sensed and avoided
by Drosophila melanogaster (Stensmyr et al., 2012). It was
later shown to induce aversive behaviors in SWD and may
serve as an oviposition deterrent on crops (Stensmyr et al.,
2012; Wallingford et al., 2016). The establishment of certain
fungal species (Phoma spp., Fusarium spp., or Rhizopus spp.)
on chicken feces also significantly reduced oviposition by the
housefly, Musca domestica, and the effect was associated with
emission of dimethyl trisulfide and 2-phenylethanol (Lam et al.,
2010). Plant-associated symbionts could be another source of
VOCs. For instance, Muscodor vitigenus, an endophyte of the
tropical liana Paullina paullinoides, produces naphthalene and
is strongly repelled by insects (Daisy et al., 2002). Microbial
catalysis of repellent chemicals has been demonstrated in fungi
including Penicillium, Aspergillus, and Fusarium that can convert
JA derivatives dihydrojasmone and cis-jasmone to bioactive
compounds such as (+)-(R)-4-hydroxydihydrojasmone and (–)-
4-hydroxyjasmone (Gliszczyńska et al., 2015). These compounds
were then found to repel aphids in a food-choice behavioral
assay. In a study by Skrobiszewski et al. (2018) (±)-β-aryl-γ-
ethylidene-γ-lactones (compounds which have previously been
determined to have phagodetterent, antifungal, antibacterial, and
anticancer activity) were enantioselectively hydrolyzed by a strain
of Aspergillus ochraceus to form (–)-(S)-γ-ethylidene-γ-lactones
and (+)-(R)-γ-ketoacids (Skrobiszewski et al., 2018). The
phagodeterrent/repellent properties of these derived chemicals
were then demonstrated against the lesser mealworm Alphitobius
diaperinus. Many entomopathogenic bacteria, such as Bacillus
thuringiensis (Bt), Pseudomonas entomophila, and nematode-
associated species in the genus of Xenorhabdus and Photorhabdus
have also been shown to have insect repellent properties (Bode,
2009; Kajla et al., 2019). For example, a recent study showed
that a cocktail of bioactive secondary metabolites (primarily
fabclavines) isolated from Xenorhabdus budapestensis exhibited
greater repellency against Aedes aegypti than DEET and required
a smaller concentration to achieve the same repellent effect (Kajla
et al., 2019). More examples of microbial semiochemicals and
their interaction with insects has been described by Leroy et al.
(2011).

FIGURE 2 | A generic pull-push system for agricultural pest management.

Microbial-based semiochemicals can replace or synergize non-microbial

attractants and repellents in the pull-push system.

By identifying the different pathways from large-scale omics
data, scientists will be able to make accurate inferences of
microbial regulatory networks in mVOC production. Another
emerging field is to dissect synergistic multi-species interactions
(i.e., consortia of microbes) in metabolite production (Schulz-
Bohm et al., 2015; Kai et al., 2018). Together, these studies
hold promise that microbial-based insect attractants or
repellents produce more diverse, effective, and versatile products
for agricultural applications. One of the applications is to
incorporate microbial based semiochemicals into push-pull
strategies (Figure 2). In a typical push-pull system, a target
pest is repelled or deterred away (“push”) from a protected
source (a valuable crop or farm animal) using stimuli that make
it unattractive. In parallel, the pest is diverted to attractive
stimuli (“pull”) placed outside of the protected source. Stimuli
commonly in use include different crop plants (intercrops
or trap crops), visual signs, pheromones, synthetic volatiles,
phagostimulants/repellents, and antifeedants (Cook et al., 2006).
Microbial products can replace or be used in conjunction to these
stimuli to improve the efficacy of future push-pull strategies.

Combining Microbial Based Biopesticides
With Nanotechnologies
Advances in nanotechnology are promoting effective and
sustainable use of biopesticides in field applications. For instance,
the potency of entomopathogenic bacteria, including Bt and
Photorhabdus luminescens, increased significantly when they
were applied to insect pests in the form of nanoparticles
(Kim and Je, 2012; Kulkarni et al., 2017). Murthy et al.
(2014) demonstrated that larvae subjected to Bt nanoparticles
resulted in a faster and higher mortality as compared to
unhomogenized Bt powder, owing to increased solubility of the
Cry toxin in the alkaline midguts. Additionally, the development
of nanoformulation delivery systems, such as nanoemulsion,
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nanocapsule, and nanosuspension, enhances the durability
and stability of biopesticides under variable environmental
conditions including exposure to UV light and humidity (Li et al.,
2015; Sabbour and Singer, 2016; Zhang et al., 2016; Damalas and
Koutroubas, 2018; Vassilev et al., 2020). These delivery systems
are ecofriendly since they are often made of biodegradable
natural polymers.

An emerging theme led from the research on nanoformulation
is smart nanopesticides, in which the active ingredients are
encapsulated in stimuli-responsive carriers such that their release
can be controlled by stimuli such as light, temperature, humidity,
or pH (Khot et al., 2012; Camara et al., 2019; Kumar et al.,
2019). The stimuli-responsive delivery approach enables more
precise spatial delivery while reduces the dosage and frequency
of pesticide applications, therefore minimizing the impacts on
the environment. In case of VOCs, nanoformulations have the
potential to fine-tune the thermal stability of the compounds,
leading to optimal release and longevity of the semiochemicals.
Comprehensive reviews on different types of nanopesticides
and stimuli-responsive delivery systems have been published by
Huang et al. (2018), Camara et al. (2019).

Currently, the use of nanotechnology in agrochemical
applications is still at an early stage. However, commercial
products in this niche are beginning to be introduced to the
market. An example is Seltima R©, a fungicide launched by BASF
in 2016 to protect rice crops. Seltima uses humidity responsive
polymers to encapsulate pyraclostrobin, a fungicide chemical
that is highly toxic to aquatic organisms. This encapsulation
is resistant to water, thus allowing controlled release of the
fungicide to the rice leaf surface and minimizing contamination
of the surrounding aquatic ecosystems.

Based on the expectation that new microbes and microbiome-
derived chemicals are being discovered exponentially, there
will be unforeseen obstacles in the handling, storage, and
delivery of these products for agricultural uses. Integration of
microbial products with nanotechnology offers versatile means
to improve their efficacy and stability, while controlling their
environmental dispersal. Together, the combined efforts of
microbiome mining and nanotechnology offers great potential
in generating transformative bioinsecticide applications in
near future.

MICROBIAL INTERVENTIONS TO
IMPROVE FITNESS OF MASS-REARED
INSECTS FOR AUTOCIDAL PROGRAMS

Probiotics strategies to promote populations of beneficial insects
(e.g., pollinators, natural enemies of pests) has been described by
Engel and Moran (2013). Here, we focus on microbial strategies
to promote insect rearing for autocidal programs, such as,
the incompatible insect technique (IIT, described earlier in the
section “Manipulation of insect-associated microbiomes for pest
management”) and the sterile insect technique (SIT).

SIT is an environmentally-friendly insect pest control method
involving mass-rearing of the target pests, where sterile male
insects are generated by exposure to non-lethal-doses of ionizing

radiation (Dyck et al., 2006; Nikolouli et al., 2018). Large numbers
of fully sterile males are then released to mate with wild females,
resulting in suppression or eradication of the pest population
(Knipling, 1979; Dyck et al., 2006). A derivative of the SIT termed
inherited sterility (IS) has also been developed for insect pests,
mainly lepidopterans, that require high radiation dose to achieve
complete sterility. In IS, partially sterile males are generated by
an exposure to sub-sterilizing doses of radiation and then mated
with wild females, resulting in reduced egg viability and highly
sterile offspring that are predominately male (Vreysen et al.,
2010). This approach avoids deleterious effects triggered by high-
dose radiation on the insects. Studies have shown that males with
inherited sterility suppress wild populationsmore effectively than
fully sterile males for several lepidopteran (moth) species.

Over the past decades, SIT has been used successfully
to control several high-profile pests, including the primary
screwworm (Cochliomyia hominivorax), medfly (Ceratitis
capitata), the Mexican fruit fly (Anastrepha ludens), various
Lepidoptera (moths), and tsetse flies (Pereira et al., 2013; Calla
et al., 2014; Vreysen et al., 2014; Barnes et al., 2015; Lees et al.,
2015; Zhang et al., 2015; Bourtzis et al., 2016; Munhenga et al.,
2016). However, a major setback for pest control through
autocidal programs is the cost, because large numbers of treated
insects are required to be released to compete with wild males
and sometimes repeated releases are necessary. For SIT, a ratio up
to 100 sterile insects for each wild insect is required. Less data is
available for IIT, but a study on Wolbachia-infected mosquitoes
showed that a release at 10:1 ratio of sterile to wild males was
sufficient to suppress local mosquito population (Harris et al.,
2012). Additionally, irradiation and handling in mass rearing
facilities compromise the survival and performance of insects,
which also contributes to the high cost of autocidal programs.
Empirical evidence suggested that reduced performance, such
as competence in attracting and mating with wild females, of
mass-reared and irradiated males could be linked to disruption
of their gut microbiomes. Agricultural pests and disease vectors
reared under laboratory conditions tend to have fewer gut
microbial taxa than their wild counterparts (Xiang et al., 2006;
Rani et al., 2009; Rinke et al., 2011; Wang et al., 2011; Morrow
et al., 2015; Liu et al., 2016; Waltmann et al., 2019; Raza et al.,
2020). Such reduction in species richness or diversity can be
due to limited microbial exposure, as insects are believed to
acquire their gut microbes from their natural habitats and
food sources but these microbes are mostly absent from the
artificial environment and diets (Drew and Yuval, 2000; Wong
et al., 2017; Stockton et al., 2019). Additionally, artificial rearing
exerts distinct selection pressure on the insect gut microbiome
composition. For instance, insect diets in the laboratory are
commonly added with antimicrobials as preservatives. These
antimicrobials could wipe out most of the microbes naturally
associated with the insects, as shown in the B. oleae example
discussed earlier. Considering the microbiome as an ecosystem,
losses in species richness or diversity may lead to poor host
outcomes, especially if the microbes provide specialized services
to the host.

While a considerable body of literature exists on the impact
of artificial rearing on the microbiomes of different insects,
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very little is known about how irradiation alters the insect
microbiome. Most of the research has been conducted on
tephritid fruit flies because several significant pests belonging
to this group have been the foci of SIT applications. In medfly,
newly eclosed irradiated males had lower levels of several
dominant gut bacteria (especially Klebsiella sp.) but higher level
of Pseudomonas sp. that was not presented in wild flies (Ami
et al., 2010) However, some of these bacteria appeared to recover
in abundance after a few days post irradiation. Similarly, in
the oriental fruit fly, irradiation treatment selectively increased
the abundance of Lactococcus and Orbus but diminished
Lactobacillus, members of the Orbacecae family, andMorganella
(Stathopoulou et al., 2019). More research is needed to define
how these transient changes in the gut microbiome influence
fly recovery from irradiation, and their long-term effects on
fly fitness.

Based on the assumption that reversing the microbiome
changes associated with artificial rearing or irradiation treatment
can improve the fitness of the insects, scientists have been
investigating the effects of dietary supplementation with
bacteria on the performance of irradiated tephritid fruit flies.
A summary of the current findings is shown in Table 2,
showing that probiotic effects were reported in many, but
not all studies. The discrepancies of results among these
studies highlight that different parameters likely affect the
outcome of probiotic treatment on insects, such as host
age, genotype, microbial strain, diet and rearing condition.

It is also worth noting that studies done so far have only
tested single bacterium or cocktails of a few bacteria as
supplement. Other approaches to manipulate the microbiomes
of artificially reared or irradiated insects remain to be tested.
One approach would be microbiome transplantation, either
by rearing the treated insects on diet seeded with feces from
freshly collected wild insects, or co-housing treated insects with
wild insects, although this may be challenging to scale up for
mass rearing. Another option would be to modify the diet
recipe to stimulate the growth of beneficial microbes in the
insect gut (“prebiotics”), which includes optimizing the nutrient
composition and possibly incorporating natural food substances
into their diets.

Clearly, more work is still needed to define how probiotics
improve the fitness of artificially reared, sterile insects, and
to identify treatment parameters that affect insect outcomes
in response to the different microbial intervention approaches
mentioned above. From a basic research angle, insects are
excellent models to tease apart the complexities of microbial
interactions and mechanisms, since their microbiomes are
generally less diverse than in the mammalian systems, where
most probiotics research has been conducted.

CONCLUDING REMARKS

The ongoing advances and reduced cost of high throughput
sequencing and omics technologies have enabled scientists

TABLE 2 | Effects of dietary bacterial supplementation on the performance of tephritid fruit flies.

Target insect Insect life stage Bacterial supplementation Beneficial effects Citation(s)

Ceratitis capitata (Vienna 8

strain)

Larvae Klebsiella pneumoniae, Enterobacter

sp. and Citrobacter freundii

Reduced the number of potentially pathogenic

Pseudomonas spp., improved male mating

competitiveness, increased adult size

Hamden et al., 2013

Ceratitis capitata (Vienna 8

strain)

Larvae Enterobacter sp. AA26 Faster larval and pupal development Augustinos et al.,

2015

Ceratitis capitata (Vienna 8

strain)

Adult Klebsiella oxytoca Reduced the number of potentially pathogenic

Pseudomonas, Morganella and Providencia

spp., shortened the mating latency of the

sterile males

Ami et al., 2010

Ceratitis capitata Adult Klebsiella oxytoca Improved male mating competitiveness,

reduced female remating, increases survival

under starvation conditions

Gavriel et al., 2011

Ceratitis capitata Adult Enterobacter agglomerans and K.

pneumoniae in a yeast-enhanced

agar

Improved mating competitiveness Niyazi et al., 2004

Bactrocera oleae Adult Pseudomonas putida Increased female fecundity Sacchetti et al., 2014

Bactrocera dorsalis Adult Klebsiella oxytoca BD177 Improved male mating competitiveness,

increased survival rate and life span of

irradiated males, improved food intake, sugar

and amino acid levels in the haemolymph of

Irradiated flies

Cai et al., 2018

Bactrocera cucurbitae Larvae Enterobacter sp. Increased pupal weight and adult survival rate Yao et al., 2017

Bactrocera tryoni (Froggatt) Larvae Enterobacter sp. and Asaia sp. Reduced larval development time Shuttleworth et al.,

2019

Leuconostoc and cocktail of Asaia,

Enterobacter, Lactobacillus and

Leuconostoc

Reduced mean time from egg hatch to adult

eclosion
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to conduct in-depth analyses of microbiomes in various
agroecosystems, including insects, plants, and other natural
resources. It signifies an exciting era to discover new microbes
or microbiome functions with potentials to be applied for
insect pest management. Progresses in cutting-edge gene
editing, microbial engineering, and nanotechnologies allow
scientists to continue to refine procedures to extract bioactive
products from uncultured microbes and apply them into pest
management. These approaches will prove to be highly valuable
for agricultural innovations.
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