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Resistance to last-resort antibiotics is significant public health issue. Antibiotic use in

animal husbandry may be a driver of resistance that can subsequently be disseminated

via the food chain. This study sought to determine the level of polymyxin resistance

in Gram-negative pathogens present in Australian poultry, particularly the presence

of mobilizable mechanisms of polymyxin resistance. Cloacal swabs from 213 birds

were taken in a point prevalence survey from six different farms at a Victorian chicken

processing facility. Colistin resistant organisms were recovered by direct plating on

CHROMagar COL-APSE media. Bacterial isolates were identified and analyzed by

MALDI-TOF, biochemical and genotypic assays. The 213 specimens yielded 57 (26.8%)

colistin-resistant Gram-negative organisms, all of which have been previously described

as exhibiting intrinsic resistance to polymyxin antibiotics. The most frequent organism

was identified as Hafnia paralvei (40/57; 70%). Other colistin-resistant organisms

included Aeromonas hydrophila (16%), Myroides odoratus (7%), Alcaligenes faecalis

(5%), and Pseudochrobactrum spp. (2%). No mobile colistin resistance (mcr) genes

were detected, although the arnA gene was identified in two A. hydrophila isolates and

may mediate colistin resistance in these isolates. Intrinsic polymyxin-resistant organisms

are widely distributed in the food chain, with over a quarter of the birds tested yielding

a polymyxin-resistant organism. However, strains containing mcr genes remain rare in

Australian poultry.
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INTRODUCTION

Polymyxin B and E (colistin) are cationic antimicrobial peptides currently reserved as a last resort
treatment for serious infections caused bymulti-drug resistant Gram-negative bacteria (Poirel et al.,
2017). Although colistin has been used in human and veterinary medicine for over 50 years, it has
recently become increasingly important in the treatment of infections with carbapenem-resistant
organisms where few treatment options now remain. Enterobacteriaceae such as Serratia spp. and
Proteus spp., as well as Gram-negative cocci such as Neisseria are well-known to be intrinsically
resistant to colistin. However, less has been documented about other intrinsically colistin-resistant
organisms in the food chain. The increased reliance on this agent has forced us to reconsider how
polymyxins are used, particularly in light of the emergence of mobilisable colistin resistance.
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The first plasmid mediated mechanism of polymyxin
resistance (MCR-1) was identified in China (Liu et al., 2016)
and since this initial observation it has been identified globally
(Arcilla et al., 2016; Wang et al., 2018). The mcr-1 gene encodes
a phosphorylethanolamine transferase enzyme (PEtN) that
modifies the lipopolysaccharide (LPS) in the outer membrane of
Gram-negative bacteria and reduces the binding of polymyxins
and other cationic peptides. Plasmid mediated colistin resistance
genes (mcr-like) have been reported in Enterobacteriales from
humans, food, food-producing animals and the environment
(Wang et al., 2018). Often the discovery of these genes in
food and food animals proceeds their identification in humans
(Liu et al., 2016). Colistin has also been used widely in animal
rearing in many countries, and therefore may provide a selective
pressure for the emergence of polymyxin resistance. This has
led to some countries (China and Brazil) to ban the use
of colistin in agriculture. To the best of our knowledge,
polymyxins are not routinely used in animal production systems
in Australia, although they may be used therapeutically in
cattle and sheep (Australian Pesticides Veterinary Medicines
Authority, 2014). A position statement form the Australian
Chicken Meat Federation (ACMF) states that polymyxins have
never been approved for use in Australian poultry, and therefore
should never have been used in Australian chicken flocks
(Australian Chicken Meat Federation, 2018). Consequently, little
has been documented in Australia about whether there in colistin
resistance in poultry, or more broadly within the food chain.

The current study sought to determine if polymyxin resistant
pathogens, are present in the Australian food chain. Poultry
were selected as there are many reports of colistin-resistant
organisms associated with poultry (Ling et al., 2017; Monte et al.,
2017; Apostolakos and Piccirillo, 2018). Birds were screened for
colistin-resistant organism using a recently described bacterial
culture media; CHROMagar COL-APSE (Abdul Momin et al.,
2017). CHROMagar COL-APSE is a selective medium for the
isolation and differentiation of colistin-resistant Gram-negative
bacteria. The utility of this media for prospective screening of
veterinary specimens is also defined.

MATERIALS AND METHODS

Specimen Collection
Poultry were sampled immediately post-slaughter on two
separate visits to the abattoir in Victoria, Australia during
December 2016. On each trip, birds from three different farms
were sampled (Farms A–C and D–F, respectively). With the
exception of farm A (n = 29 birds), a minimum of 30 birds
were sampled with from each farm. Swabs (Copan, Brescia, Italy)
were taken from poultry by insertion in the cloaca and placed in
Aimes transport media with charcoal before being returned to the
laboratory for processing. All birds sampled were indoor raised
(not free range) meat chickens.

CHROMagar COL-APSE media (CHROMagar, Paris) was
prepared from dehydrated powders, autoclaved, and quality
controlled locally. Swabs were plated directly onto CHROMagar
COL-APSE and incubated at 37◦C for 24 h to screen for the
carriage of polymyxin resistant Gram-negative bacteria present

in the avian flora. Themedia was prepared with the addition of 50
mg/l 1 para-nitrophenyl glycerol (PNPG) to inhibit swarming of
Proteus spp. Colistin resistant colonies were sub-cultured back on
CHROMagar COL-APSE before long-term storage in brain-heart
infusion broth (Oxoid, Basingstoke, UK) supplemented with 10%
glycerol at−80◦C.

Bacterial Identification
All presumptive colistin-resistant bacteria were identified by
matrix assisted laser desorption ionization-time of flight mass
spectrometry (MALDI-TOF MS, Bruker, Coventry, UK). Single
colonies were spotted in triplicate onto the target plate and
overlaid with 1 µl α-cyano-4-hydroxycinnamic-acid matrix
(10 mg/ml). Target plates were analyzed using the Bruker
Microflex MALDI-TOF MS running Biotyper v2. The database
used was Version 3.0.2.0. Results with a score value of <2.0
were discarded. A subset of isolates (including those which were
not identified by the MALDI-TOF) had their identity confirmed
by PCR amplification and DNA sequencing of their 16s rRNA
genes (Weisburg et al., 1991). Biochemical testing including
malonate assimilation and β-glucosidase activity were performed
as described elsewhere (Huys et al., 2010).

Antimicrobial Susceptibility Testing and
Determination of Minimal Inhibitory
Concentrations (MICs)
Susceptibility to 11 antibiotic agents including,
amoxicillin/clavulanic acid (30 µg), cephalexin (30 µg),
cefpodoxime (10 µg), imipenem (10 µg), gentamicin (10 µg),
streptomycin (10 µg), enrofloxacin (5 µg), nalidixic acid
(30 µg), chloramphenicol (30 µg), doxycycline (30 µg), and
cotrimoxazole (25 µg) were assessed in disc diffusion assays on
Mueller-Hinton agar (Oxoid, Basingstoke, UK). The Clinical
Laboratory Standards Institute (CLSI) breakpoints were used to
define resistance where available (Clinical Laboratory Standards
Institute, 2018). In the absence of guidelines for interpretation,
the CLSI guidelines for Enterobacteriaceae were used. The
minimum inhibitory concentrations (MICs) of colistin and
polymyxin B were determined by agar dilution.

Detection of MCR-like Genes
Genes encoding colistin resistance genes mcr-1, -2, -3,-4, and -5
were amplified using the polymerase chain reaction and primers
and conditions described elsewhere (Liu et al., 2016; Xavier et al.,
2016; Yin et al., 2017; Chen et al., 2018).

DNA Sequencing
Selected isolates were further investigated by DNA sequencing
using the Minion platform (Oxford Nanopore Technologies).
The Rapid Sequencing Kit (SQK-RAD004) was used as per the
manufacturer’s instructions and the resulting reads analyzed by
EPI2ME and the online AMR workflow.

Whole Genome Sequencing was performed on the Illumina
HiSeq platform (Illumina, Inc., San Diego, CA) and the closest
reference genome was identified using Kraken. The reads were
mapped to the reference genome using Burrows-Wheeler aligner
“mem” (BWA-mem) algorithm version 2. A de novo assembly
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of the reads was performed using SPAdes version 3.7.1, and the
reads were again mapped back to the resultant contigs using
BWA-mem. Annotation was performed by the NCBI Prokaryote
Genome Annotation Pipeline (PGAP) version 4.6.

RESULTS

A total of 213 birds from six different farms were sampled
at a chicken processing facility. From these specimens, 57
(26.8%) yielded colistin-resistant Gram-negative organisms
(Table 1). The most commonly (40/57; 70.2%) recovered
organism was identified as Hafnia alvei. Other organisms which
were recovered on CHROMagar COL-APSE media included
Aeromonas hydrophila (n= 9; 16.1%), Alcaligenes faecalis (n= 3;
5.3%), andMyroides odoratus (n= 4; 7.1%). A single isolate could
not be identified by the Bruker MALDI-TOF system. Sequencing
of the 16 rRNA gene identified the isolate as Pseudochrobactrum
spp. The growth characteristics of each of these organisms on
CHROMagar COL-APSEmedia is demonstrated in Figure 1.

The Hafnia isolates had an MIC90 for colistin and polymyxin
B of 8 and 16µg/ml, respectively (Table 2). Resistance to other
antimicrobials was low among the Hafnia isolates, with the
exception of AmpC mediated resistance to β-lactams (Table 3).
As others have documented, the Bruker MALDI-TOF system
cannot currently distinguish between the two Hafnia species:
H. alvei and H. paralvei (Jayol et al., 2017). To determine
which species these isolates belonged to, phenotypic testing using
malonate assimilation and β-glucosidase activity was performed.
These two tests have been shown to reliably discriminate between
the two Hafnia species (Huys et al., 2010; Abbott et al., 2011).
Based upon these biochemical tests all the Hafnia isolates were
determined to be H. paralvei. To verify this a single isolate
was submitted for whole genome sequencing which agreed with
the phenotypic identification. This Whole Genome Shotgun
project has been deposited at DDBJ/ENA/GenBank under the
accession JAAIKS000000000. The version described in this paper
is version JAAIKS010000000.

The level of polymyxin resistance varied among the
other bacterial species: A. faecalis isolates had colistin and
polymyxin B MICs of 1–4µg/ml and 0.5–2µg/ml, respectively.
M. odoratus and Pseudochrobactrum spp. isolates had higher
MICs of ≥128µg/ml for colistin and ≥64µg/ml for polymyxin
B. Polymyxin MICs for A. hydrophila were the most variable
ranging from 2 to≥256µg/ml for both colistin, and polymyxin B.
Among these bacteria, Aeromonas species have previously been
shown to harbor mcr-3 and mcr-5 like resistance genes (Ling
et al., 2017; Ma et al., 2018). All nine isolates were screened
by PCR for the presence of mcr-1, -2, -3,−4, and -5 genes
and all were negative. Two isolates (A17 and C17, from farm
A andC, respectively) were further investigated byMinIONDNA
sequencing. These isolates were chosen as they represent two
different polymyxin resistance phenotypes (colistin/polymyxin
B MICs of ≥256/≥256µg/ml and 64/8µg/ml, respectively).
This revealed the presence of an arnA-like gene, which encodes
a UDP-glucuronic acid (UDP-GlcUA) decarboxylase which may
contribute toward their polymyxin resistance. This was the only

gene identified in the AMR workflow that might contribute to
polymyxin resistance.

While polymyxins are not routinely used in poultry
production in Australia, several other classes of antimicrobial
are used, primarily for the control of coccidiosis (Australian
Pesticides Veterinary Medicines Authority, 2014). To assess
if intrinsic colistin resistance is associated with resistance to
other antibiotics, all isolates were tested against 12 unrelated
antimicrobials (Table 3). The isolates recovered were generally
susceptible to most other antibiotic classes (β-lactams,
quinolones, aminoglycosides), with the notable exception
of M. odoratus which was resistant to all the aminoglycosides
tested as well as cephalexin, cotrimoxazole and nalidixic acid.

DISCUSSION

Polymyxin resistant organisms were recovered from Australian
poultry samples, however all the organisms recovered have been
previously described as intrinsically resistant to polymyxins.
A notable exception is A. hydrophila, in which mcr genes
have been previously detected, however no mcr-like genes were
detected in the current study.

Colistin resistance, both acquired and intrinsic, is thought to
occur by modification of the Gram-negative cell wall. Acquired
colistin resistance encoded by mcr genes imparts resistance by
catalyzing the addition of phosphoethanolamine (PEtN) to lipid
A reducing the overall negative charge of the cell wall and
therefore the binding affinity to polymyxins. LPS modification
is also responsible for intrinsic polymyxin resistance in several
bacterial species due to 4-amino-4-deoxy-L-arabinose (L-Ara4N)
substitution (Olaitan et al., 2014). However, mechanisms of
intrinsic colistin resistance remain unelucidated for many
bacterial species.

CHROMagar COL-APSE media was successfully used for
the detection and isolation of polymyxin-resistant organisms
from veterinary specimens. Moreover, the media was suitable
for direct inoculation from veterinary swabs. This media
has been shown to be highly sensitive in the detection of
organisms with acquired colistin resistance (Abdul Momin et al.,
2017) and this current study further validates the utility of
CHROMagar COL-APSE as a media for detection of organisms
with intrinsic colistin-resistance.

CHROMagar COL-APSE performed well in the recovery
of colistin-resistant organisms, including swabs with heavy
fecal contamination. The ubiquity of Proteus, a bacterial
genus intrinsically resistant to polymyxins, within the samples
prompted the addition of the reagent PNPG. Proteus presents
as a characteristic brown colony on CHROMagar COL-APSE
media and its swarming motility quickly obscured other growth
on the media. PNPG abolishes the swarming behavior of
Proteus facilitating identification of other resistant organisms.
Recent formulations of CHROMagar COL-APSE have found the
addition of cefixime to be useful for the suppression of Proteus.

Of the polymyxin-resistant organisms recovered from
Australian poultry Hafnia spp. were predominant. This genus
is known to exhibit intrinsic resistance to polymyxins, and
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TABLE 1 | Distribution of polymyxin-resistant organisms recovered from Victorian poultry farms.

Farm A Farm B Farm C Farm D Farm E Farm F Total

Birds sampled 29 33 40 40 35 36 213

Organisms recovered

Aeromonas hydrophila 5 (17%) 2 (6.1%) 2 (5.0%) – – – 9 (4.2%)

Alcaligenes faecalis – – – – – 3 (8.3%) 3 (1.4%)

Hafnia paralvei 2 (6.9%) 5 (15%) 10 (25%) 9 (23%) 10 (29%) 4 (11%) 40 (19%)

Myroides odoratus – – – – – 4 (11%) 4 (1.9%)

Pseudochrobactrum spp. – 1 (3.0%) – – – – 1 (0.5%)

Birds with colistin resistant organisms 7 (24%) 8 (21%) 12 (30%) 9 (23%) 10 (29%) 11 (30%) 57 (27%)

FIGURE 1 | Colistin-resistant organisms grown on CHROMagar COL-APSE agar for 48 h; (A) Aeromonas hydrophila isolate C17; (B) Alcaligenes faecalis isolate F12;

(C) Hafnia paralvei isolate E14; (D) Myroides odoratus isolate B27; (E) Pseudochrobactrum spp. isolate F17; (F) E. coli ATCC 25922.

sequencing of 16S rRNA genes has revealed Hafnia to be
phylogenetically related to other intrinsically colistin resistant
members of the Enterobacteriales including Serratia spp. (Jayol
et al., 2017). H. alvei was found as the most commonly isolated
colistin-resistant organism from livestock in Switzerland,
although it was not recovered from poultry, only from pigs
and calves (Buess et al., 2017). Hafnia paralvei was only
recently recognized as a distinct species (Huys et al., 2010). The
H. paralvei isolates in the current study had median colistin and
polymyxin B MICs of 8 and 16µg/ml, comparable to what has
been determined for the wild type population of this species
elsewhere (Jayol et al., 2017). Little is known of the importance

of H. paralvei as a veterinary pathogen. The biochemical
characteristics of H. paralvei match those previously described
as H. alvei genetic group 2: the same study, examining the
ecology of Hafnia in Australia, found genetic group 1 was most
commonly associated with birds (Okada and Gordon, 2003).

Aeromonas is a bacterial genera also considered intrinsically
resistant to polymyxins. One Australian study found 44.5%
of 193 Aeromonas isolates to have a colistin MIC ≥2µg/ml
by agar dilution testing (Aravena-Roman et al., 2012). More
recently, Aeromonas spp. have been reported to carry acquired
colistin resistance gene variants: mcr-3 has been detected in
several Aeromonas species (Ling et al., 2017; Shen et al., 2018)
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TABLE 2 | Colistin and polymyxin B MICs of colistin-resistant organisms recovered from Victorian poultry farms.

Organisms recovered Number of isolates Colistin (µg/ml) Polymyxin B (µg/ml)

MIC range MIC50 MIC90 MIC range MIC50 MIC90

Aeromonas hydrophila 9 2.0 – ≥ 256 64 ≥ 256 2.0 – ≥ 256 16.0 ≥ 256

Alcaligenes faecalis 3 1.0 – 4.0 1.0 4.0 0.5 – 2.0 1.0 2.0

Hafnia paralvei 40 8.0 – 16.0 8.0 8.0 4.0 – 16.0 16.0 16.0

Myroides odoratus 4 128 – ≥ 256 128 ≥ 256 64 64 64

Pseudochrobactrum spp. 1 ≥ 256 – – ≥ 256 – –

TABLE 3 | Susceptibility to non-polymyxin antibiotics among polymyxin-resistant organisms recovered from Victorian poultry farms.

Organisms recovered AMC CL CPD IPM CN S ENR NA C DO SXT

Aeromonas hydrophila (n = 9) Resistant 4 2 – – – – – – – – –

Intermediate 3 5 – – – 1 – – – –

Susceptible 2 2 9 9 9 9 8 9 9 9 9

Alcaligenes faecalis (n = 3) Resistant – – 2 – – 3 – – – – –

Intermediate – – 1 – – – – – 2 – –

Susceptible 3 3 – 3 3 – 3 3 1 3 3

Hafnia paralvei (n = 40) Resistant 31 39 3 – – – – – – 4 1

Intermediate 8 1 13 – – – – 1 – – –

Susceptible 1 – 24 40 40 40 40 39 40 36 39

Myroides odoratus (n = 4) Resistant – 4 1 – 4 4 – 2 – – 4

Intermediate – – – – – – – 2 – – –

Susceptible 4 – 3 4 – – 4 – 4 4 –

Pseudochrobactrum spp. (n = 1) Resistant – 1 – – – – – – – – 1

Intermediate – – – – – – – – 1 – –

Susceptible 1 – 1 1 1 1 1 1 – 1 –

Antibiotics tested included: AMC, amoxicillin/clavulanic acid; CL, cephalexin; CPD, cefpodoxime; IPM, imipenem; CN, gentamicin; S, streptomycin; ENR, enrofloxacin; NA, nalidixic acid;

C, chloramphenicol; DO, doxycycline; SXT, cotrimoxazole.

and mcr-5 has been detected in A. hydrophila (Ma et al.,
2018). Additionally, A. hydrophila appears to encompass a wide
distribution of colistin MICs, with one collection of (78 isolates)
ranging from <0.25 to >256µg/ml by microbroth dilution
testing after low-dose colistin induction (Fosse et al., 2003).
The isolates described in our study fall within this MIC range,
but were not shown to harbor any mcr-1, -2, -3,-4, or -5 like
genes. DNA sequencing of two isolates identified the gene arnA,
which may play a role in the polymyxin resistance observed in
these isolates. ArnA is the first enzyme specific to the pathway
which imparts polymyxin resistance by modification of lipid A
of the outer membrane LPS with a 4-amino-4-deoxy-L-arabinose
moiety (Breazeale et al., 2005). ArnA is bifunctional enzyme
which catalyses firstly the decarboxylation of UDP-Glucuronic
acid (UDP-GlcA) and subsequently formylates UDP-Ara4N
(Gatzeva-Topalova et al., 2005).

Little has been documented about the MIC range and
mechanisms of polymyxin resistance in the three other Gram-
negative species identified: A. faecalis, M. odoratus, and
Pseudochrobactrum. A study by Jacquier et al. found six of seven
(86%) French isolates of A. faecalis had a colistin MIC ≥2µg/ml
(Jacquier et al., 2012), consistent with the susceptibility of the
strains recovered here. M. odoratus (formerly Flavobacterium

odoratum) is a Gram-negative non-fermentative opportunistic
pathogen reportedly intrinsically resistant to many antibiotics,
including polymyxins (Holmes et al., 1979). Colistin MICs
for wild-type M. odoratus have previously been quantified at
32–256µg/ml, although the mechanism of resistance has not
been elucidated (Holmes et al., 1979; Gunzer et al., 2018). The
genus Pseudochrobactrum was only described in 2006 (Kämpfer
et al., 2006), and little is known of its clinical significance and
associated antibiotic susceptibility.

The majority of the intrinsically polymyxin-resistant
organisms identified in the current study have also well
documented as meat spoilage organisms. Hafnia spp. in
particular are important in spoilage of many different meat
products including chicken meat (Säde et al., 2013; Höll et al.,
2016), beef (Doulgeraki et al., 2011), and lamb (Kaur et al.,
2017). Aeromonas spp. have also been associated with spoilage
of poultry meat (Zhang et al., 2012). This implies that the
polymyxin-resistant organisms survive poultry processing and
will disseminate down the food chain, where traits could be
passed on to human pathogens (Teale, 2002). Importantly,
little is known about the mechanism of resistance in these
organisms, and therefore the potential for the “escape” of
resistance genes by horizontal gene transfer. There is a
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precedent for this: it has been hypothesized that the mcr-3
gene, for example, may have originated in Aeromonas species,
and is now widespread in Enterobacteriaceae (Shen et al.,
2018).

Colistin is not registered for use in any species of animal
in Australia (Animal Health Australia, 2017; Australian
Chicken Meat Federation, 2018). Acquired polymyxin-
resistance remains rare in Australia with only a single
report in humans (Ellem et al., 2017) and another in silver
gulls (Mukerji et al., 2019). Despite this, the current study
shows that intrinsically colistin resistant organisms are
present in the food chain, particularly in food spoilage
organisms. CHROMagar COL-APSE was a useful media
for the recovery of these organisms. It remains to be
determined if these pose a significant threat to human
health. However, experience in other countries suggests
that continued surveillance of the food chain is necessary to
detect emerging resistances.
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