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Plants have always grown and evolved surrounded by numerous microorganisms

that inhabit their environment, later termed microbiota. To enhance food production,

humankind has relied on various farming practices such as irrigation, tilling, fertilization,

and pest and disease management. Over the past few years, studies have highlighted

the impacts of such practices, not only in terms of plant health or yields but also on the

microbial communities associated with plants, which have been investigated through

microbiome studies. Because some microorganisms exert beneficial traits that improve

plant growth and health, understanding how to modulate microbial communities will help

in developing smart farming and favor plant growth-promoting (PGP) microorganisms.

With tremendous cost cuts in NGS technologies, metagenomic approaches are now

affordable and have been widely used to investigate crop-associated microbiomes.

Being able to engineer microbial communities in ways that benefit crop health and

growth will help decrease the number of chemical inputs required. Against this

background, this review explores the impacts of agricultural practices on soil- and plant-

associated microbiomes, focusing on plant growth-promoting microorganisms from a

metagenomic perspective.

Keywords: farming practices, PGPR, metagenomics, microbiome engineering, microbiota, soil microbial ecology

INTRODUCTION

For 10 millennia, humankind has continuously reshaped its environment for the purpose of food
production. With the green revolution, farmers began to intentionally reshape their microbial
niches through the massive use of chemical inputs such as pesticides. The intensification of farming
practices dramatically unbalanced crop-associated microbial communities. The emergence in the
1980s of plant growth-promoting rhizobacteria (PGPR) was designed to take account of microbial
communities and their beneficial traits for crops as a whole (Kloepper et al., 1980). Since then,
numerous beneficial microorganisms have been identified and broadly characterized.

Most PGPR or biocontrol agents are associated with rhizosphere and root endosphere
microbiota that may be considered derivatives of surrounding bulk soil microbiota. Understanding
the fate of such microbiota is fundamental to developing smart farming practices, although a
tremendous amount of work is required to determine how to achieve this. Rhizosphere microbial
communities are modulated by various abiotic and biotic factors. There are numerous underlying
mechanisms explaining the composition, structure, and fate of belowground microbiota, such as
the rhizosphere effect mediated by bipartite interactions (Hartmann et al., 2008; Mendes et al.,
2013). Some bacteria can be vertically transmitted from the seed to the next generation and thrive
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in the early stages of root development (Hardoim et al., 2012;
Liu et al., 2012). Aboveground microbial community assembly
is also strongly host- and compartment-dependent, suggesting
an important relationship between a plant and its epiphytic
microbiota, which can originate from seed, soil, and air (Vorholt,
2012; Hardoim et al., 2015). Despite the tremendous progress that
has been made in the study of crop-beneficial microbes, there has
been no successful development of field-effective bio-based plant
protection products. This highlights the need to consider the fate
of such microorganisms in the agroecosystems to which they
have been introduced and the biological functionalities effectively
provided by a crop-associated microbiome.

Amicrobiome was initially defined as the genome ofmicrobial
communities inhabiting specific ecological niches and interacting
through distinctive and specific functions (Whipps et al., 1988).
Recently, Berg G. et al. (2020) expanded this definition, enlarging
the concept of the microbiome to include all microbiota,
including prokaryote and eukaryote microorganisms, their
habitats, and their “theater of activity” mediated by microbial
structures, metabolites, and nucleic elements.

Addressing the diversity, composition, and structure of
a microbiome will provide deeper insights in the numerous
microbial functionalities supporting plant health and
growth (Lemanceau et al., 2017; Compant et al., 2019). Such
metagenomic studies have only been achievable following the
emergence of next-generation sequencing (NGS) technologies.
NGS also contributes to the development of other omics
technologies (transcriptomic and proteomic), enabling the
description of biological functions carried out by microbiota. In
the coming years, considerable progress in the understanding of
microbiomes will be achieved through a combination of NGS
technologies and descriptive approaches that equate more closely
to biological facts.

One can expect to decrease the need for chemical inputs
by modulating microbial communities in a way that benefits
crop health and growth. Against this background, the present
work reviews, from a metagenomic perspective, the impacts of
cropping practices on soil and plant microbiomes with a focus on
microorganisms promoting plant growth.

IMPACT OF TILLAGE PRACTICES ON SOIL

MICROBIOTA

For centuries, tilling has been helping farmers to prepare land for
crops. Plowing assists in incorporating crop residues, preparing
the seedbed, alleviating soil compaction in topsoil layers, and
decreasing weed, pest, and soilborne plant pathogen load (Tilman
et al., 2002; Hobbs et al., 2008). Although plowing is known
to increase soil fertility and yield in the short term, it leads
to a major soil structure disturbance. The destruction of soil
macroaggregates and networks of pores results in severe soil
erosion and ecological niche homogenization. Conservation or
reduced tilling as well as no-till practices emerged in the 1930s
to address the detrimental effects of conventional tillage. With
massive improvements in NGS technologies, tilling practices
are now increasingly investigated from a microbial perspective.

Indeed, most studies describe plowing as one of the major drivers
of soil microbiome diversity along with pedological context and
farming practices such as organic management or cover crops
(Hartmann et al., 2015; Wang et al., 2017; Alahmad et al., 2019;
Babin et al., 2019; Degrune et al., 2019). Tilling regimes impact
soil and plant microbial communities in terms of their diversity,
structure, and composition.

From a metagenomic perspective, the impact of tilling
on soil microbial diversity is usually investigated through α-
or β-diversity indexes describing respective differences within
and between communities. Conventional tillage has a low
impact on fungal α-diversity, while increasing prokaryotic α-
diversity has a significant impact on prokaryotic β-diversity
favoring opportunistic commensal and copiotroph microbes
(Degrune et al., 2017; Hartman et al., 2018; Sommermann et al.,
2018; Babin et al., 2019; Banerjee et al., 2019; Piazza et al.,
2019; Srour et al., 2020). Tilling facilitates fast organic matter
decomposition resulting in a sudden nutrient release that is
homogeneously distributed in tilled soil columns, thus increasing
the abundance of r-strategists or fast-growing microorganisms
(Degrune et al., 2017; Schmidt et al., 2018). A fall in α-diversity
under conservation tillage practices is common and attributable
to a reduction in evenness as much as in richness (Degrune
et al., 2016; Piazza et al., 2019; Tyler, 2019). Nevertheless,
conservation tillage and no-till practices favor slower organic
matter degradation and the establishment of less diverse but
more oligotrophic, complex, and stable microbial communities
(Degrune et al., 2017; Song et al., 2017; Wang et al., 2017; Tyler,
2019; Srour et al., 2020). Babin et al. (2019) consistently observed
a higher abundance of predicted genes involved in oligotrophic
lifestyles under low tillage conditions. On a long-term basis,
decreasing tilling intensity promotes a higher abundance of
microbes degrading more complex organic compounds, which
enhances soil fertility (Karlen et al., 1994; Souza et al., 2013).
Wang et al. (2017) reported concordant results indicating higher
soil organic carbon and nitrogen leading to higher nitrogen and
carbon plant accumulation under reduced tillage regimes. Low
soil disturbance farming systems appear to increase soil nutrient
content and stability as well as the number of oligotrophic and
structured soil microbiota (Srour et al., 2020; Wang et al., 2020).

The impact of tilling on the structure of microbial
communities is often evidenced through β-diversity analyses;
however, network analyses are required to investigate its
complexity in greater depth. The exploration of such networks
requires specific metrics describing their size (nodes and edges),
the degree of co-occurrence/exclusion of interacting operational
taxonomic units (OTUs), network cohesion (density), centrality,
and modularity (Schmidt et al., 2019). Hartman et al. (2018)
found that plowing to structure soil bacterial communities by
increasing network density also diminishes their size, modularity,
and stability. Higher density indicates a larger proportion of
interacting prokaryotic OTUs, whether through co-occurrence
or co-exclusion relationships. This is consistent with the
increases in prokaryotic α-diversity discussed above. A lower
modularity index suggests conventional tilling practices break
down the structure of soil prokaryotic communities (Newman,
2006). The effects of tilling on networks of fungal communities
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remain unclear but negatively impact the structure of fungal
microbiota. Banerjee et al. (2019) identified a significant negative
correlation between plowing intensity and fungal network
connectivity. They demonstrated that fungal networks were
larger and are more densely connected under no till while tilling
disrupted hyphal networks.

In addition to the impacts of soil inversion on the complexity
and stability of soil microbial networks, tilling has been shown
to noticeably affect the composition of microbial communities
(Wang et al., 2017; Hartman et al., 2018; Nelkner et al., 2019).
Historically, one of the reasons farmers used to plow land was to
decrease soilborne pathogen load (Tilman et al., 2002). In fact,
by burying crop residues, moldboard plowing helps to control
residue-borne or moist-dependent plant pathogens. Reduced
tilling or no tilling keeps crop residues in upper soil horizons
which favors plant pathogens belonging to Fusarium species
(Hartman et al., 2018; Sommermann et al., 2018). However, the
absence of soil disturbance promotes other fungi forming hyphal
networks such as plant-beneficial arbuscular mycorrhizal fungi
(AMF) (Degrune et al., 2017; Srour et al., 2020). Consistent with
this, Lienhard et al. (2014) suggest that Actinobacteria exhibiting
a mycelia-like growth habit are more sensitive to soil work.

Thus, taxonomical data generated through metagenomic
approaches should be considered cautiously depending on
the taxonomical level and specific biological and/or ecological
functions. While both conventional and conservation tillage
increase the abundance of Actinobacteria (Hartman et al.,
2018; Babin et al., 2019), Cania et al. (2020) demonstrated
that low tilling intensity favors those harboring a higher
potential to produce exo- and lipopolysaccharides. These
biomolecules are crucial in soil macroaggregate formation
and stability and, therefore, play crucial roles in preventing
severe erosion events and ecological niche homogenization.
Favoring heterogeneous soil microbial niches with overlapping
phylogenetic groups and redundant ecological functions
contributes to the creation of more resilient and sustainable
agroecosystems (Schmidt et al., 2019; Srour et al., 2020). The
sustainability of such agroecosystems also relies on disease-
suppressive traits favored under no tilth conditions as described
by Srour et al. (2020). However, among α-Proteobacteria,
Sphingomonads associated with disease-suppressive traits are
favored in tilth soils, while the abundance of Rhizobiales,
encompassing symbiotic nitrogen-fixing bacteria, increases
under conservation tilling (Souza et al., 2013; Wang Z. et al.,
2016; Degrune et al., 2017; Babin et al., 2019). These findings
illustrate the need to consider lower taxonomical levels when
investigating soil microbiomes. Ultimately, these studies are
paving the way for informed soil work decision-making that
will help in recruiting specific microbial guilds and building
healthier soils.

IMPACT OF SOIL COVER ON SOIL

MICROBIOTA

In addition to adaptation of the tilling regime, growing cover
crops, also known as catch crops, is another efficient way to

prevent soil erosion and increase long-term soil fertility. Abdalla
et al. (2019) recently reviewed the impacts of cover crops on the
leaching of soil nutrients and crop productivity. They concluded
that seeding catch crops significantly decreases nitrogen leaching
and increases soil organic carbon sequestration and grain yields
when favoring mixed legume–non-legume cover crops.

Indeed, mixing cover crops seems to favor more abundant and
specialized microbiomes (Finney et al., 2017). Overall, although
the α-diversity of soil microbial communities is not impacted,
specific microbial guilds seem to be recruited when catch crops
are implemented in crop rotation (Cloutier et al., 2020; Kim
et al., 2020). Cloutier et al. (2020) identified significant changes
in soil fungal microbiome with more abundant and distinct
arbuscular mycorrhizal fungal communities under cover crop
mixtures. Their findings corroborate previous work that shows
cover crop mixture and some specific cover crop species (oat
and cereal rye) increase AMF abundance in bulk soils (Finney
et al., 2017). By contrast, Detheridge et al. (2016) observed
lower levels of root endophytic fungi such as AMF under clover
cover crops. Because clovers are leguminous crops, the authors
argued that this finding might be due to the release of bacterially
fixed nitrogen as they identified a negative correlation between
high soil nitrate levels and root-associated fungal populations
such as AMF. The importance of considering the identity and
diversity of cover crops when attempting to benefit from fungal
microbiome management has been pointed out by Cloutier et al.
(2020). A recent study highlights a positive effect of cover crop
diversity on bacterial microbiota evenness. However, Garland
et al. (2021) showed this effect to be negligible when considering
environmental factors. The low impact of cover crop diversity on
microbial biodiversity might be attributed to the occurrence of
sampling when one crop is implemented in the field. The authors
suggest that diversifying crop systems in a space by intercropping
might have a significant impact on overall microbial diversity.
By contrast, this study evidences the proportion of time spent
using cover crops to be a determinant of taxa-specific and soil
microbial diversity.

Soil as much as plant bacterial microbiomes are impacted
by cover crops when implemented and destroyed (Fernandez
et al., 2016; Finney et al., 2017). As expected, cover crop
burial brings fresh organic matter into the soil and increases
bacterial diversity and abundance. Some oligotrophic microbes
among Acidobacteria and Verrucomicrobia phyla are promoted
along with fast-growing bacteria involved in rapid organic
matter decomposition among Actinobacteria and Firmicutes
(Ramirez et al., 2012; Pascault et al., 2013). Cover crops
also contribute to an increased functional redundancy and
complementarity in soil prokaryotic communities. The increased
functional redundancy derives from the larger soil heterogeneity
and niche partitioning provided by the implementation and
burial of catch crops (Alahmad et al., 2019). Remarkably,
Nivelle et al. (2016) observed that conventional tilling by
disrupting macroaggregates diminishes the beneficial impact
of cover crops and impairs microbial functional diversity.
Alahmad et al. (2019) demonstrated that bacterial communities
favored under cover crop regimes are specifically involved in
the metabolism of numerous carboxylic acids. Accordingly,

Frontiers in Sustainable Food Systems | www.frontiersin.org 3 March 2021 | Volume 5 | Article 624203

https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org
https://www.frontiersin.org/journals/sustainable-food-systems#articles


Delitte et al. Plant Microbiota Beyond Farming Practices

Nivelle et al. (2016) report faster catabolism of carbohydrate and
phenolic compounds within microbial communities associated
with cover crops. Both studies support the hypothesis advocated
by Alahmad et al. (2019) of a functional complementarity within
cover crop-associated bacterial microbiomes.

Beyond the beneficial traits harbored by cover crop-recruited
soil microbiota, Romdhane et al. (2019) considered how to
select an appropriate way to terminate cover crops. According
to Alahmad et al. (2019), Cloutier et al. (2020), and Garland
et al. (2021), farmers could eventually resort to cover crop
diversity and duration to induce shifts in both bacterial and
fungal microbiomes in order to reduce fertilization needs while
maintaining yields. There is still much work to be done with
regard to the low number of studies investigating the impact of
cover crops from a metagenomic perspective.

FERTILIZATION AND AMENDMENTS

Traditionally employed in agriculture, fertilization and
amendments have an important impact on soil and plant
microbiomes. By modulating the availability of nitrogen or
other minerals, carbon, or through modification of the soil
structure, these inputs affect the soil and plant life. On the other
hand, microbiome can increase the bioavailability of soilborne
nutrients. Most nutrients (N, P, S) are results from organic matter
degradation and have to be mineralized by telluric bacteria or
fungi in order to be available for plants (Van Der Heijden et al.,
2008). In natural conditions, microbial mineralization is the
key driver of plant growth (Schimel and Bennett, 2004). Plant
exudates are known to shape the microbiome and enhance
nutrient microbial conversion and bioavailability for plants
(Jacoby et al., 2017). Through this molecular dialog, plants
established a “microbial nutrient supply chain”. This relation can
be unbalanced by fertilization, especially chemical inputs.

Fertilization
It has been established that nitrogen supply can impact disease
development. Indeed, high concentrations of nitrogen, usually
in crops, are often positively correlated with an increase in the
susceptibility of plants to diseases (Agrios, 2005).

One notable study led by Fierer et al. (2012) investigated
soil communities across nitrogen gradients using genomic as
well as physiological tools. In terms of diversity, both sites
receiving the highest levels of nitrogen differed from others
(intermediate and low levels). The authors evidenced a shift to
copiotrophic bacterial communities. This shift was confirmed by
metagenomic analyses, with high-rate reproducing copiotrophic
bacteria exhibiting an increase in DNA, RNA, and protein
metabolism and a decrease in urea decomposition, suggesting
a diminishing reliance on organic forms of nitrogen. These
observations may have an impact on specific organisms such as
plant pathogens. Wei et al. (2015) suggested that the invasion
of plant roots by pathogens decreases when there is an overlap
between the resident communities and invading pathogens due
to intensified competition for resources. However, when the
results of Wei et al. (2015) and Fierer et al. (2012) are compared,
it can be inferred that N fertilization, by limiting resource

competition, enhances phytopathological disorders. Berg and
Koskella (2018) confirmed that N also decreases the protective
ability of phyllosphere microbiota. After evidencing that a
phyllosphere microbiome could prevent leaf colonization by
Pseudomonas syringae, the authors demonstrated that the use of
a fertilizer significantly decreased this protective effect.

Another study found that N fertilization drastically reduced
phagotrophic protists in different soil types. These protists are
microbial predators and could play a role in the modulation of
soil microbial communities (Zhao et al., 2020).

Nitrogen fertilization can also have an impact on the
phosphorus cycle. Dai et al. (2020) demonstrated that the long-
term use of N fertilization decreased microbial P-solubilizing
and mineralizing capacity by modulating microbial communities
while P fertilization favored immobilization by microorganisms
by altering the functional profiles of soil microbiota. Another
study focusing on phosphorus inputs alone also found that acid
phosphatase activity was reduced along with the solubility of
mineral P (Pantigoso et al., 2018). Similar to the findings of Dai
et al. (2020) for N inputs, the authors suggested that P fertilization
decreases the P-solubilizing abilities of soil microbiomes.

Few studies have been conducted on K fertilization alone.
Although Pan et al. (2014) showed that K fertilization shapes
the soil communities but not the functions in grasslands, no
other study was found to be relevant in this context. Studies
on NPK fertilization in combination revealed the same trends
in soil microbiomes (Pan et al., 2014; Chen et al., 2020). Based
on such findings, Zhang et al. (2017) suggested that the affected
pH rather than the nutrients was responsible for these shifts in
microbial communities.

Organic Amendments
Bonanomi et al. (2018) reported that the suppressive effects
of organic amendments have been exhibited in 78 plant
pathogens since the 1940s. Although the authors recognized
that the results were often inconsistent and difficult to adapt
in prediction tools, the comprehension of chemical actions
such as glucosinolates in suppressiveness (Larkin and Griffin,
2007) or the link between amendment, suppressiveness, and
bacterial communities (He et al., 2012) paves the way to a
better management of beneficial microbes through amendments.
Nevertheless, numerous studies concerning amendments and
microbiomes focus on a single pathology or a single crop
(Cesarano et al., 2017; Inderbitzin et al., 2018) or describe
microbiomes in different conditions (Bonanomi et al., 2016),
without successfully identifying guidelines for microbiome
management. A notable point of view on this issue was presented
by Bonanomi et al. (2010) in a meta-analysis of 252 papers.
The authors primarily explored the characteristics of organic
soil amendments linked to a suppressive effect in soilborne
diseases. They found that multiple characteristics can apparently
be discarded and that six parameters are particularly useful for
predicting suppressiveness prediction. These parameters, both
enzymatic and microbial, are the FDA (flurorescein diacetate),
enzymatic activity, substrate respiration, microbial biomass,
total culturable bacteria, and populations of Pseudomonads and
Trichoderma spp.
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Another potentially notable mechanism is the determination
of the feeding preferences of microbes. Bonanomi et al. (2018)
compiled an analysis of recent studies based on 13C cross-
polarized magic angle spinning nuclear magnetic resonance (C-
NMR) and evidenced several differences in substrate preferences.
Although these data provide valuable insights, the authors
insist on the need for an in-depth study in collaboration
with laboratories worldwide. Although studies demonstrate the
positive effect of a combination of organic amendment and
beneficial microorganisms (Latha et al., 2011; Shen et al., 2015),
these current solutions cannot be generalized.

Fertilization and organic amendments shape the soil
microbiome, principally through nutrient availabilities, but also
through pH or modulation of other soil parameters. Although
chemical fertilization seems to make the soil microbiome
“dependent” of these nutrients, favoring copiotrophic bacteria,
and decreases the solubilizing and mineralizing abilities of
bacteria of N and P cycles, organic amendments offer more
possibilities. In this respect, Ling et al. (2016) found that long-
term organic amendments support stronger functional potential
and more interactions within soil communities than chemical
fertilization, most likely due to better soil stabilities and a good
buffering capacity.

PLANT GENOTYPE AND MICROBIOME

Several factors can influence the composition of plant
microbiomes, including genotypes, plant developmental
stage, and plant health (Berg et al., 2015). Characteristic root
exudates are usually considered the causative factor underlying
the recruitment of specific microbial communities and are
influenced by plant genotype. The recruitment of the plant-
associated microbiome can vary in terms of structure and
functionality and depends to a great extent on the physical
properties of soil and nutrient availability (Berg and Smalla,
2009).

Numerous studies have linked microbial diversity with a
reduction in the incidence of disease (Keesing et al., 2010;
Kopecky et al., 2019). A low potato common scab is observed,
even in favorable conditions, when high bacterial diversity is
present in the soil (Latz et al., 2012; van Elsas et al., 2012).
Higher soil microbiome diversity offers better odds of finding a
higher abundance of rare species able to bring specific protective
functions against pathogens (Latz et al., 2012). As reported by
Mendes et al. (2018), the exclusive and abundant presence of a
bacterial taxon is a poorer indicator of disease suppression than
the relative abundance of bacterial taxa.

The breeding of cultivars resistant to pathogens is a well-
known practice in the control of diseases. In some cases, the
genetic background of the plant may not be the only driver of
such resistance. Wei et al. (2019) demonstrated that the apparent
resistance of cotton cultivar to Verticillium wilt is partially due
to the plant microbiome. An abundance of beneficial microbes
in the cotton rhizosphere offers a complementary protection
against this soilborne pathogen. Similar findings were reported
for cucumber resistance to Fusariumwilt (Yao andWu, 2010) and
tomato resistance to Ralstonia solanacearum (Kwak et al., 2018).

The relative abundance of well-known beneficial rhizospheric
and root endospheric microbial groups can vary significantly
between resistant and susceptible cultivars (Wei et al., 2019).

However, plant genotype is not the major driver of the early
establishment of a rhizospheric microbiome. Several studies
indicate that soil type rather than cultivar determines the
composition of the rhizospheric microbiome (Van Overbeek and
Van Elsas, 2008; Xu et al., 2009; Chen et al., 2019). This feature
has been specifically evidenced for fungi (Nallanchakravarthula
et al., 2014), bacteria (Schlemper et al., 2017), and arbuscular
mycorrhizal fungi (Santos-González et al., 2011).

Plant genotype becomes an obvious determinant of root-
associated microbiomes as plants mature (Inceoglu et al., 2010;
Schlemper et al., 2017). For a particular growth stage, different
cultivars can have different dynamics in their exudate release
dynamics (Micallef et al., 2009; Mönchgesang et al., 2016;
Sasse et al., 2018), thereby affecting rhizosphere microbial
communities in a particular way.

The effect of the host genotype on microbial populations
is much more important in the endosphere (Urbina et al.,
2018). This is not surprising as co-evolution processes have
selected populations that are well-adapted to this niche. In
the very early stages of a plant’s life, i.e., around germination,
the microbial community of the spermosphere is composed of
microbes originating from inside and outside the seed as well as
microbes recruited from the soil during imbibition (Lemanceau
et al., 2017). At this point, the main factor affecting the colonizer
communities of the spermosphere is the seed genotype (Adam
et al., 2018; Sahadevan et al., 2019). Microbial communities
associated with germinating seeds can have a direct impact on
the promotion of plant growth, nitrogen fixation, and disease
control (Walitang et al., 2017; Rahman et al., 2018; Sabu et al.,
2019). With the transformation of rootlets in the spermosphere
into roots creating the rhizosphere, the plant genotype becomes
of minor importance in community shaping compared with
soil type.

A recent study on tomato root endospheric fungi evidenced
a clear difference in the phytohormone profiles between two
cultivars harboring different endophytic communities (Manzotti
et al., 2020). More work is needed to determine whether the
hormonal profile determines the composition of endophytic
communities (as with root exudates) or whether it is a
consequence of mycobiome composition. For bacteria, it has
been shown that most endophytic bacteria can interfere with
plant hormonal systems (Jasim et al., 2015, 2016).

Plant genotype can also play a critical role under mixed
cropping conditions. It has been shown that two varieties of pea
can influence each other in terms of root-associated bacterial
and fungal populations (Horner et al., 2019). In this particular
study, the root bacterial community of one cultivar remains
stable (similar to single-crop community) in response to mixed
cropping, whereas the bacterial community of the second cultivar
shifts toward the first. Conversely, the root fungal community
of the second cultivar remains stable when mixed-cropped,
whereas the fungal community of the first cultivar shifts toward
the second.

Polyculture has been identified as a way to enhance
rhizospheric fungal diversity (LeBlanc et al., 2015), which can be
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modulated by the identity of plant species (LeBlanc et al., 2017)
and by environmental parameters that can also have a significant
influence (Schlatter et al., 2015).

Differential shifts in bacterial and fungal communities can be
attributed to microbial interactions, a change in soil attributes or
a change in root exudates resulting from competition between
intervarieties, plant communication, or a better mineralization of
organic matter enhancing nutrient availability (Hinsinger et al.,
2011; Reiss and Drinkwater, 2018).

BIOSTIMULANTS AND MICROBIOMES

Biostimulants can be defined as substances or microorganisms
that stimulate natural processes to enhance tolerance to abiotic
stress, crop quality, and nutrient uptake and efficiency (du Jardin,
2015). The effect of biostimulants can be attributable to the direct
effects of carbon or nitrogen metabolism (Calvo et al., 2014) but
also indirectly through the modulation of plant microbiomes
through the enhancement of microbial activity (Colla et al.,
2015).

Biostimulants are relatively new products and their effects
on microbiomes are not well-known, partly due to the great
diversity of biostimulant origins. In this paper, we focus on
biostimulants obtained from protein hydrolysates from seaweed
and on microbial biostimulants.

Biostimulants Based on Protein

Hydrolysates
Tejada et al. (2011) tested four biostimulants on degraded soils.
They identified an alteration in microbial community structure
and higher microbial activity, which facilitates better plant
development on degraded soils. The biostimulant with the best
effect in terms of microbial activity and plant development was
the one derived from rice bran extract. The authors hypothesized
that the effect of this biostimulant was due to its richness in
little peptides (<3 kDa), easily assimilable by microorganisms.
Other studies focused on the phyllosphere microbiome. Luziatelli
et al. (2016) found that a biostimulant from protein hydrolysates
modulated the leaf microbiome on lettuce. Notably, microbes
isolated from lettuce leaves treated with biostimulant indicated
the presence of bacteria enabling phosphorous solubilization or
producing phytohormones (IAA). Moreover, the biostimulant
favored the presence of Bacillus species exhibiting an inhibitory
activity against leaf lettuce pathogens Erwinia amylovora and
Fusarium oxysporum. The biostimulant could thus shape the
phyllosphere, promoting plant growth.

Regarding protein hydrolysate (PH) biostimulants, Colla
et al. (2017) concluded that this kind of biostimulant can
help provide better resilience to biotic and abiotic stresses by
modulating the microbiome. Given that PH biostimulants can
only select beneficial microorganisms present in the rhizo- or
phyllosphere, the authors proposed their use in synergy with
beneficial microbes.

Biostimulants Derived From Seaweed
Most investigations of seaweed-derived biostimulants have been
conducted under the scope of the functional diversity of the

microbiome, through enzyme activity research rather than an
analysis of the microbial community diversity. Ji et al. (2017)
reported that the P solubility was higher after a seaweed
biostimulant application but without affecting the microbial
communities. The positive action of seaweed biostimulants
indicated greater activity of hydrogenase (Onet et al., 2019),
invertase, urease, proteinase, and phosphatase (Wang Y. et al.,
2016). These enzymes, involved in the carbon, nitrogen, and
phosphor cycles, explain the better nutrition status of the plants.

Microbial Biostimulants
Despite the fact that microbial biostimulants are relatively
common in agriculture, usually through PGPR products
or vermicomposts, their effect on microbiomes is poorly
documented. Berg S. et al. (2020) studied the effect of microbial
biostimulants on soil and root microbial communities. Although
no significant differences were found in the diversity of these
communities, except for the fungi, the tested biostimulants did
not increase the yield.

Mahnert et al. (2018) studied the impact of vermicompost on
leaf and environment microbiomes under controlled conditions.
It appeared that the biostimulant reshaped the microbiomes of
the leaves, with an increase in Bacteroidetes and other phyla such
as Verrucomicrobia, Acidobacteria, and Thaumarchaeota. Other
groups containing beneficial microorganisms also increased. The
authors demonstrated that the effect of the biostimulant on
microbiome composition could be predicted with an accuracy of
87%. To the best of our knowledge, no other significant research
has been conducted on this theme. The two research papers yield
different results, maybe lightening the impact of field conditions
on plant biostimulation, and that a stronger impact of plant
biostimulant products are observed under controlled conditions
or synthetic substrates.

IMPACT OF IRRIGATION/WATER ON

MICROBIOME

Irrigation can have an impact on microbial communities and
plant microbiomes through the frequency of irrigation or the
quality of irrigation water. Due to climatic changes, the irrigated
area is predicted to increase to 62% from 2020 to 2070, with
an impact on soil and, therefore, microbial communities (Döll,
2002). Without irrigation, soils will alternate between drying and
rewetting periods. In these conditions, more active microbes are
known to be affected more by these drying–rewetting stresses
(Van Gestel et al., 1993). For an active microbial rhizosphere,
drying and rewetting periods could be damaging. Fierer et al.
(2003) focused on the impact of this alternation on soil bacterial
community structure. They found that microbial communities
in annual grasslands were less affected in terms of biodiversity
by these events than forest (oak) soils. Nonetheless, Wu and
Brookes (2005) reported a 44% decrease in microbial biomass in
a single dry–rewet cycle in grassland. It is unclear whether these
impacts on microbial structure are direct effects of the dry–rewet
cycle or indirect effects through the perturbation of physical or
biochemical soil processes, such as the C cycle (Schimel, 2018).
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Long-term monoculture irrigation has been relatively poorly
studied. Nevertheless, Mavrodi et al. (2018) studied the
effect of long-term irrigation on wheat. They reported that
beneficial phenazine producing (Phz+) Pseudomonas spp. were
less abundant or detectable in irrigated fields or in higher
rainfall areas. Irrigation should alter rhizodeposition and soil
properties, disturbing microbiomes. Mavrodi et al. (2018) found
that irrigation had a slight effect on the diversity of the
wheat rhizosphere microbiome. However, some taxa displayed
strong positive and negative responses to irrigation such
as Bacteroidetes and Proteobacteria. Some genera, previously
identified as phytopathogen antagonists such as Chryseobacter
spp., Pedobacter spp., or Brevundimonas spp., were among
the bacteria with the highest relative increase in abundance
under irrigation.

The quality of irrigation water also seems to have an important
impact on plant microbiomes. Cui et al. (2019), from the
perspective of water management, tested different water qualities.
They found that reclaimed water and piggery wastewater use
increased the abundance of Bacteroidetes while decreasing
Acidobacteria abundance. Although PGPR were logically more
abundant in the rhizosphere microbiome, their response to the
different water qualities (distilled, reclaimed, piggery wastewater)
was quite variable. Finally, no increase in (phyto)pathogenic
bacteria was evidenced after irrigation with reclaimed water or
piggery wastewater.

Gu et al. (2019) also evidenced a modulation of the
spinach microbiome according to the quality of irrigation
water. Although they did not find any increase in foodborne
pathogens, they evidenced an increase in potential opportunistic
(phyto)pathogens. These two publications highlight the
importance of a quality of irrigation water survey for plant and
consumer health.

Some authors have studied the resilience of soil microbial
communities after irrigation with water of different quality.
It appears that a soil microbiome—and to the same extent
plant microbiome—is not resistant to irrigation with treated
wastewater. Differences have been observed between irrigation
with freshwater and treated wastewater. Nevertheless, during
the rainy season, the baseline state of microbiomes is recovered,
evidencing the resilience of soil and plant microbiomes in the
long term (Frenk et al., 2014). Frenk et al. (2018) showed that
under conditions of high mineral and organic carbon activities,
bacterial communities can change drastically, exhibiting
proteobacterial dominance. These changing communities
displayed less resistance to environmental stress such as
heat disturbance as they have less diversity than soils with
low resource availability. However, the authors evidenced a
functional resilience after the end of the stress, probably due to
the high growth rates of certain groups such as Bacteroidetes
or Proteobacteria.

In conclusion, if irrigation and quality of irrigation have a
relative impact on diversity, the impact on biomass of different
groups can be important. If populations are resilient in the long
term, thanks to microbial seed banks (bacteria in dormancy)
(Lennon and Jones, 2011), the impact of irrigation and the
quality of irrigation have to be considered in the short term,

during one agricultural season. In this respect, observations
have been nuanced. Some studies evidenced the positive role of
irrigation on PGPR (Mavrodi et al., 2018), while others obtained
variable (Cui et al., 2019) or negative results (Phz+ not present
in irrigated soils, Mavrodi et al., 2018). Ultimately, even if
wastewater did not seem so harmful when applied in the short
term, repeated applications of this kind of wastewater have to
be studied for a longer period. According to the observations
of Frenk et al. (2018), the use of high availability resource
irrigation water in the longer term could probably and durably
reshape agricultural soil microbial communities. Conversely,
plant microbiome management will probably be a future tool
employed to better exploit limited water resources (de Vries et al.,
2020).

CROP PROTECTION

The application of pesticides in fields influences microbial
populations inside aerial and belowground plant parts, as well
as in the soil. The effects can be due to the applied molecule
itself, but also the degradation products of the molecule.
Degradation can occur through multiple processes: degradation
by microorganisms, hydrolysis, photolysis, sorption and binding
to organic and soil components, plant uptake, and volatilization
(Srivastava et al., 2020). If microorganisms are able to survive in
the environment contaminated by the molecule, they can then
metabolize and degrade the pesticides (Wołejko et al., 2020).
Therefore, microorganisms can play a significant role in plant
tolerance to herbicides (Tétard-Jones and Edwards, 2016).

Depending on the chemical, the active ingredient can be a
racemic mixture or enantiomer-enriched solution. Sometimes
only one of the two enantiomers has a desired effect, with the
other having an indirect effect on non-target organisms (Asad
et al., 2017). When a pesticide is applied, it usually leads to
the eradication of groups of microorganisms sensitive to the
active ingredient. Niches are consequently freed and colonized
by microbes previously of minor abundance in the community
(Chen et al., 2001) or thriving as a result of the release from
competition (Roesti et al., 2005; Nettles et al., 2016). It is also
possible that treatment has no significant effect on some parts
of the community, such as an effect on the fungal rhizosphere
community but not on bacterial communities (Nettles et al.,
2016). If a microbial population is well-adapted to the pesticide,
the treatment can induce a short-term increase in microbial
carbon, indicating increasing biodegradation (Astaykina et al.,
2020).

In the presence of pollution, microorganisms can enhance
their adaptation to the prevailing conditions by altering their
metabolism (Sun et al., 2004; Rangasamy et al., 2018). Therefore,
groups of microorganisms can take advantage of an active
ingredient in the environment (Webber et al., 2015). For
example, Newman et al. (2016) showed a shift in a bacterial
community toward a tolerant community after long-term
glyphosate adaptation. With the destruction of certain groups of
microbes involved in the degradation of another molecule, the
stability of this second product can increase (White et al., 2010).
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A long-lasting product in the environment can be important in
ensuing long-term protection for the crop. This can also increase
the likelihood of unintended effects on non-target microbiomes
(Nettles et al., 2016). Plants are also capable of exuding pesticides
absorbed on their aerial parts with their roots, in addition to
endogenous exudates (Dinelli et al., 2007). All these mechanisms
can influence the microbiota. Regarding the effects of a pesticide
application, as reviewed by Wołejko et al. (2020), the effects of
fungicide, insecticide, or herbicide on microbial communities
varies greatly according to the molecule used and the microbial
group studied. Although most studies agree on the lack of
impacts on α-diversity in the rhizosphere (Lupwayi et al., 2004,
2009; Nettles et al., 2016), the effects onmicrobiome functionality
(Fournier et al., 2020), or structure (Nettles et al., 2016) have
been reported with shifts in relative abundance and community
composition. In the phyllosphere, microbial diversity can even
increase after a foliar treatment (Katsoula et al., 2020). Seed
treatments can have a more pronounced and dynamic impact on
microbial diversity. As shown by Li et al. (2018), the richness of
bacteria and fungi species at the seedling stage decreased with a
neonicotinoid seed coating. With a decreasing concentration of
neonicotinoids when reviving, the growth ofmicroorganismswas
stimulated. Overall, general microbiomes recovered at the end of
the cultural season.

DISCUSSION

From this work, a major trend appears to dictate the
process followed when investigating microbial communities
from a metagenomic perspective. DNA extractions are almost
exclusively performed using a FastDNA Soil SPIN Kit (MP
Biomedicals, USA) or PowerSoil DNA Kit (MoBio, Qiagen,
USA). Consideration of the extraction procedures implemented
remains relevant andmay induce bias when comparing one study
to another (Kennedy et al., 2014).

When studying prokaryotes, most authors target the 16S RNA
gene, focusing on the V4 region or a wider region including V4.
Overlapping between V2 and V3 regions is also commonly used.
The diversity of eukaryotic communities is often investigated
via the sequencing of an internal transcriber region (ITS) or
28S ribosomal unit. Ideally, several genetic markers should be
considered (Sommermann et al., 2018).

Currently, sequencing usually relies on Illumina technology
when 454-pyrosequencing tends to become more anecdotal.
When Illumina technology is used, a large majority of researchers
make use of the MiSeq platform and, more recently, the HiSeq
platform. Third-generation technologies such as PacBio or Ion
Torrent continue to be marginal when investigating soil and
plant microbiomes but are expected to become a gold standard in
metagenomic approaches (Lee et al., 2016; van Dijk et al., 2018).

Most of the studies presented in this paper used barcoded
rRNA sequences. Although this approach enables researchers to
assess the impact on microbial composition and diversity, it is
notable that when shotgun or enzymatic analyses are applied,
authors gain better insight into the networks, relationships inside
the communities, and the functional aspects of the microbiome.

The interpretation of metadata produced by next-
generation sequencing technologies depends mostly on the data
management methodologies implemented. Several best practices
are required, such as choosing an adapted normalization strategy
(Schlatter et al., 2017; Knight et al., 2018). The normalization
process should be selected to fit the size and organization of the
datasets, as suggested by Weiss et al. (2017). Sufficient technical
replicates should be performed in order to quantify sequencing
error rates within an assay and between assays (Nguyen et al.,
2015; Schloss et al., 2016).

In almost every paper reviewed, the composition and
diversity of microbial communities are affected by the agronomic
parameters investigated. Networks and functionalities are nearly
always impacted, although these attributes have been poorly
studied. Of 54 papers, only 14 studies describe networks, 14
consider biological functionalities, and only three address both
aspects simultaneously.

A deeper understanding of crop-associated microbiomes and
their functionalities requires a more holistic approach that
combines data not only from omics technologies. Investigating
the fate of microbial communities requires a four-dimension
perspective that examines microbiomes in terms of their
diversity, structure, composition, and biological functions.
Functionalizing microbial communities not only through
prediction tools but also through quantification technologies
such as qPCR or enzymatic assays will provide relevant insights
that illustrate how those microbial communities and the services
they provide are affected by farming practices.

Before studying the impacts of any agricultural parameter
on microbiota, environmental features should be systematically
considered with greater concern when interpreting the results
of such studies. Organic carbon content, nitrogen content, pH,
soil structure, soil classification, and moisture content are several
parameters that vary from field to field and significantly impact
microbiomes. Moreover, some authors highlight the indirect
activity of certain practices through pH change (e.g., Zhang et al.,
2017). For instance, in 2006, Fierer and Jackson found that soil
pH is the main parameter influencing microbiome structure
(Fierer and Jackson, 2006). This has since been confirmed by
numerous studies (Lauber et al., 2009; Rousk et al., 2010; Geyer
et al., 2014; Qi et al., 2018; O’Brien et al., 2019; Schlatter et al.,
2020; Tan et al., 2020).

Soil pH determines the chemical forms of element in the soil,
therefore affecting their bioavailability for plants. This would
also be an indirect limiting factor for microbial life, as suggested
by Zhalnina et al. (2015). In addition to nutrient availability,
pH also exerts effects on catabolic activities, soil structure, and
biomass activities (Wakelin et al., 2008). Low pH can have
direct toxic effects on microbe cells. Some organisms, better
adapted to acidophilic conditions, possess a special membrane
structure, proton pumps, or special transporters (Lehtovirta-
Morley et al., 2016). The relationship between soil pH and
microbial diversity can also be explained by the wide range of
optimal pH tolerance for a community in contrast with the rather
narrow pH optima for individual species (Fernández-Calviño
and Bååth, 2010). Therefore, a shift in pH will affect the survival
of some but not all microbials (Santoyo et al., 2017). Numerous
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studies also link pH with microbial activities, such as phosphate
solubilization or ammonia oxidation (Nautiyal et al., 2000; Hu
et al., 2013; Sharma et al., 2013). Indeed, pH is thought to drive
the community composition of ammonia-oxidizing organisms
by modifying the ammonia to ammonium ratio (Gubry-Rangin
et al., 2011; Stempfhuber et al., 2015).

A recent study demonstrated the influence of pH and depth
on microbiomes in an agricultural soil configuration (Schlatter
et al., 2020). The authors showed that pH decreases from the
surface to a 10-cm depth and so do bacterial richness and
diversity. Notably, they observed that bacterial richness and
diversity did not recover with increasing pH at depths below
10 cm. These results suggest that pH is the main factor affecting
diversity at near-surface depths, while other factors (dispersal,
nutrient availability) become prevalent at greater soil depths. This
lower microbial diversity at around 10 cm deep could reduce the
functional redundancy and resilience of the communities in the
seed zone (Shade et al., 2012).

Land use history is also an important parameter to consider
when investigating soil-associated microbiota. Although the
underlying mechanisms are not well-understood, it is known
that plants can recruit specific root microbiomes through root
exudates, enabling them to select beneficial microbial traits. Time
after time, the soil microbiome is enriched in certain specific taxa,
as suggested by the concept of a soilborne legacy (Bakker et al.,
2018). Recruited microbiomes produce bioactive metabolites
or useful resources for plants. Once the crops are harvested,
molecular signals and other plant-beneficial compounds might
remain in the soil and benefit the next generation. This
phenomenon was proposed by Lapsansky et al. (2016) and is
called the soil memory effect.

Considering the duration of assays is therefore of
tremendous importance as is the implementation of cover
crops, intercropping, and crop rotation composition, all of which
are among the numerous parameters to examine when studying
crop-associated microbiomes. The long-term studies reviewed in
this work reported a certain resilience or results different from
those in the short term (Mavrodi et al., 2018), probably due to
microbial seed banks (Lennon and Jones, 2011).

In this review, we investigated the impacts of farming practices
on soil and plant microbiomes. Within the heterogeneity of the
reviewed studies, as previously noted, supplementary approaches
to omics facilitated a strong comprehension of underlying
mechanisms. Levy et al. (2018) reviewed the different advantages
and limitations of -omics techniques. They conclude that no -
omics approaches provide the necessary causality and argue that,
more than amplicon-based studies, a functional metagenomic

approach is needed and can be supplemented by synthetic
communities or reverse genomics approaches. Vorholt et al.
(2017) also advise using synthetic communities for a better
understanding of microbiomes. They argue that the factors
shaping microbial communities in soil matrices are not well-
understood because of the complexity of environmental samples.
For a better understanding of plant microbiome interactions,
they recommend the use of multispecies synthetic communities.

If the impact of agricultural practices on microbiomes
exists, we wonder whether the microbiome could be farmed
as “collaborative crops.” “Seeding” practices through microbial
or consortia inoculation, or a selection of varieties promoting
positive microbiomes, are likely to be the future of microbiome
management (Compant et al., 2019). These inoculations of
strains or microbiome engineering in plants can be obtained
in different ways. They can occur through host-mediated and
multigeneration microbiome selection; inoculation into bulk
soil, rhizosphere, seeds, or seedlings; atomization into tissues
such as stems, leaves, and flowers; and direct injection into
tissues or wounds. Some recent relevant studies involving
the aforementioned techniques are reviewed below. Given
the lability of existing microbiomes and the fact that soil
memory is more active in a low nutrient environment and
thus less adapted to conventional agricultural soils (Lapsansky
et al., 2016), microbiome engineering consisting of community
inoculation and host-mediated “microbiome maintenance” in
single (Orozco-Mosqueda et al., 2018) or associated crops
(Horner et al., 2019) could be a useful tool for future pest
integrated management.
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