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Adequate plant nutrition is essential for commercial crop production. There are 18

nutrients that are essential for proper crop development. Each is equally important

to the plant, although they are required in vastly different amounts. The absence

of any one of these nutrients has the potential to decrease crop yields and quality

by negatively affecting associated growth factors. Hence, early diagnosis of nutrient

imbalances or deficiencies is of crucial importance for farmers. In this work, we provide

compelling evidence that electrical potential variation in a commercial tomato crop

contains information, which can be modeled to detect iron (Fe) deficiency before visual

symptoms appear. The proposed supervised machine learning model showed accurate

prediction on test data of above 75%. A model built to classify normal conditions (full

nutrients) vs. strong Fe deficiency conditions (visible symptoms), enables early detection

of slight Fe deprivation i.e., 6 days prior to the appearance of the earliest visual symptoms.

Continuous real-time monitoring of crop electrical signals and deployment of predictive

algorithms could constitute a great practical tool to help and assist farmers in iron

deficiency detection.
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INTRODUCTION

Abiotic and biotic stresses provoke unfavorable environmental fluctuations, which require plants
to mount defenses reprogram and adjust metabolism, growth, and development to adapt and
survive. In particular, crop species are continuously challenged by inadequate supply of nutrients.
Plants require various ions as essential nutrients, which are taken up from the soil and distributed
throughout the whole plant (White and Brown, 2010; Maathuis and Diatloff, 2013). Each of these
nutrients, once they are transferred to their destination within plant tissues via corresponding
transporters/ion channels, plays diverse and critical roles in maintaining plant growth and
development (Hänsch and Mendel, 2009). For agricultural crops, iron (Fe) deficiency is a major
nutritional disorder that reduces vegetative growth and causes marked yield and quality losses
(Abadía et al., 2011). Even though Fe is the fourth most abundant element in the Earth’s crust
(Morgan and Anders, 1980), its chemical properties limit its availability for plant uptake due to soil
conditions that result in poor solubility (Abadía et al., 2011; Zhang et al., 2019). Fe is involved
in a variety of metabolic processes, including mitochondrial respiration, fatty acid and protein
synthesis, as well as plant photosynthesis (Kobayashi et al., 2019). It is of crucial importance for
CO2 fixation and therefore for biomass production (Zhang et al., 2019). With an essential role for
chlorophyll development and function, Fe-deficient plants exhibit reduced photosynthetic activity
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FIGURE 1 | (A) Hydroponic tomato plants in soilless culture grown in commercial greenhouse were submitted to different fertigation regimens: optimal nutrient

condition (+Fe) or without iron during 14 days (–Fe). First symptoms of iron deficiency appeared 8 days (D +8) after deprivation with pale green leaves on top. Plants

exhibit typical interveinal chlorosis after 10 days (D +10) becoming more pronounced after 12 days (D +12). (B) Representative long-term recordings of electric

potential (EP) used as training dataset for modeling. Plants were submitted to optimal nutrient condition (comfort, +Fe) followed by iron deprivation (deficiency, –Fe) in

fertigation. Colored arrows represent different stage of symptoms on young leaves from non-visible (green) to pale green (yellow) then chlorosis (red).
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and tend to have yellow coloration and interveinal chlorosis,
which affects young leaves. These visual symptoms appear several
days or even weeks after Fe deprivation commences, depending
on crop species (Chakraborty et al., 2015).

A well-developed and healthy crop is of paramount
importance to farmers. Plant fitness has a profound impact
on crop production, yield and quality. A variety of factors
influence crop production, a correct nutrient supply can be
highlighted among other. While most of the crop are subjected
to Fe deficiency, when chlorosis occurs, it can cause up to
30% of yield losses (Khan and Nguyen, 2020). Optimal crop
management relies on regular monitoring to scout and detect
problems before major crop stress occurs. We have previously
shown that an electrophysiological sensor allows continuous
and stable long–term monitoring of plant electrical signals for
several weeks without affecting plant functions, which can be
performed in a commercial greenhouse for crop production
without a Faraday cage (Tran et al., 2019). We hypothesized that
monitoring slow and long-term changes in electrical potential
(EP) with the help of machine learning algorithms can be
used as an agronomic tool to detect physiological plant state
modifications. It follows that this approach could potentially
support real-time crop supervision.

Tomato (Solanum lycopersicum) ranks third by weight
in global production of fruits and vegetables in the world
(FAOSTAT, 2019). It is cultivated in all five continent and is
of great economic importance. It has therefore been used as
model in our study. Here, we present results of machine learning
modeling using electrical signals to diagnose Fe deficiency before
visual symptoms appear in hydroponic tomato crops in soilless
culture grown in commercial greenhouse.

MATERIALS AND METHODS

Plant Material
The experiment was conducted during the growing season
2019 in greenhouse at Agroscope research station (Conthey,
Switzerland). The compartment measured 370 m2 floor
area and was equipped with technology comparable to
commercial greenhouses.

Tomato plants (Solanum lycopersicum), variety Admiro (De
Ruiter), grafted on Beaufort (De Ruiter) were used in the present
study. Plants were grown in rockwool cubes, transplanted at four-
leaf stage end of January 2019 on organic slabs composed of
compost of bark (35%), a peat substitute (30%), Coco peat (20%)
and topsoil 15% (Substrate 127, Ricoter, CH), located on hanging
and elevated gutters. Plants were cultivated with two-truss with a
planting density of 3.8 truss per m2.

Fifteen tomato plants were used from April to May 2019 (4–
5 month old, four meters high). Irrigation water and nutrients
were supplied with drippers operated by a valve. Iron was
specifically removed from nutrients premixed at the beginning
of deprivation experiment.

Electrophysiology
Electrical signals produced by plants have been recorded
using PhytlSigns devices from Vivent SA (Crans-près-Celigny,

Switzerland) as previously described (Tran et al., 2019). For each
plant, we obtained a 3 weeks’ time-series of data representing
315 daily cycles; the PhytlSigns device recorded the difference in
electric potential between the main stem and a leaf petiole of the
plant. The signal is sampled at 500Hz with a notch filters at 50
and 100Hz are applied. To reduce the sample rate of the dataset,
raw electrical signal data are decimated at 2, 10, and 500 to obtain
250, 50, and 1Hz, respectively. The signal has been recorded in
mV as a function of time. Digitized signal data were extracted
and customized using Matlab software (Matlab, R2020a).

Data Pre-processing and Classification
For the modeling of the classifiers, several pre-processing steps
were applied as previously described (Tran et al., 2019) with
reduced time windows size namely 30 s, 1, 5, and 15min. We
developed gradient boosted tree (GBT) supervised machine
learning algorithms to model a plant state (healthy or stressed)
classifier and evaluate its performance. The training dataset was
split randomly into a learning set (80% of data) and a validation
set (20%). Among the 15 plants, 12 plants were used to train
the classifier with 3 days in full nutrient conditions (comfort)
and 3 days in iron deprivation condition with visible chlorosis
(stressed) leading to 1,728 hours of recorded data. The test dataset
were used to evaluate the model performance. It is composed of
three other independent plants.

The 338,688 normalized and labeled samples compose the
training dataset used for the supervised classification. The
test dataset is composed of 84,672 samples. The classes’
balance of both datasets is half iron-stressed and half normal
comfort conditions.

RESULTS AND DISCUSSION

Puzzled With Nutrient Deficiency: Case of
Iron
Upon Fe deprivation, agricultural crops develop typical
symptoms such as interveinal chlorosis on leaves. These
symptoms are usually visible several days after removal of
the nutrient. In growing condition similar to those used by
commercial growers, hydroponic tomato crops in soilless culture
grown under Fe deprivation exhibit these visible symptoms first
at the top of the stem after 8 days (D +8) with pale green or
slight yellowing leaves. At this stage, this can be due to sulfur,
zinc, manganese or iron deficiencies. After 10 days (D +10),
interveinal chlorosis started to appear at the top of the plant
removing the sulfur possibility. The chlorosis become more
pronounced after 14 days (D+12) with shortened stems refining
the diagnosis to iron or manganese (Figure 1A). From these
observations, one can note that specific nutrient deficiencies
are hard to diagnose at the earliest stage since deprivation of
different nutrients causes common symptoms (Graham, 2008;
Jones, 2020). Moreover, interactions between nutrients can
influence uptake. Too much of one nutrient can restrict the
crop’s ability to take in another. For instance, excess nitrogen,
phosphorus or manganese can lead to Fe deficiency (Panda
et al., 2012). Development of an early diagnosis tool could help
growers to rapidly correct the imbalance.
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TABLE 1 | Accuracy, Precision, Recall and Validation values for all prediction models at different sample rate to determine iron deficiency.

Sample rate (Hz) Accuracy (%) Precision (%) Recall (%) Validation on test dataset (%)

500 60.9 83.1 79.2 51.8

250 70.7 85.6 84.5 53.3

50 79.0 87.5 87.5 67.8

1 79.3 87.3 74.8 76.0

For all models tested, a sample rate of 1Hz shows better performance.

Modeling Electrical Signal for Early
Detection
Long-term EP monitoring were carried out on hydroponic
tomato crops in soilless culture in response to Fe deprivation.
Upon optimal growing and full nutrient conditions, EP showed
typical cyclic variations (Tran et al., 2019) with a higher EP
amplitude during day time compared to night time (Figure 1B).
During Fe deprivation, EP variations showed a modification
of the baseline and the amplitude. The slight and long-term
modifications of electrical signal patterns probably reflect the
adaptation of plant metabolism in order to cope the lack
of Fe.

We then investigate whether recorded EPs provide
information for early diagnosis of Fe deficiency through
the use of machine learning-based algorithms. For predicting
Fe deficiency, gradient boosted trees (GBT) model showed an
accuracy of 70.85% with a recall and precision value of 83.1 and
79.2%, respectively (Table 1). In order to improve processing
computer speeds, we assess the effect of sample rate on model
performance. Reducing the sample rate from 500Hz to 250,
50, and 1Hz lead to an accuracy of 76.0, 79.0, and 79.3%,
respectively (Table 1). The more the sample rate is reduced,
the more the model performance is increased. In the same
manner, the model performance with the test dataset (e.g., not
used for the training) improved with a decrease of the sample
rate. Overall, model on data processed at 1Hz showed the best
performance with an accuracy reaching 76.0% with test dataset.
The effect of sampling rate has been shown in different modeling
approaches leading to better performance of classification
(Branco et al., 2018; Dirand et al., 2019). This down sampling
approach would allow reduced computing power and enable
implementation in actual commercial greenhouse set-ups for
fertigation management.

We undertook a prediction with unseen data (test dataset)
starting from the beginning until the end of iron deprivation.
The model predicted a control state over 70% during full nutrient
irrigation condition and during the first days (D +1) of Fe
deprivation (Figure 2). On the contrary, model predicted a
strongly stressed state, when the first visible chlorosis appears
at D +10 of Fe deprivation, which is reflected by a control
state predicted below 30%. These results demonstrate that both
full nutrient and Fe deprivation condition can be efficiently
predicted using the developed algorithm. It is noteworthy
that the prediction rate dropped from D +2 until D +9
with a control state value around 50% showing that model

prediction is oscillating between a control and stressed state. This
oscillating behavior probably reflect the transition state between
normal to visible symptoms state, representing the nutrient
imbalance caused by iron. Moreover, in our conditions, long-
term iron deprivation in hydroponic soilless tomato induced
a yield loss of around 23 ± 8.8% (data not shown). Further
investigations are required to assess how early detection of iron
deficiency will translate into higher fruit yield and quality of
fruit. Altogether, these results support the idea that electrical
signals provide information for early diagnosis of the lack of Fe
in fertigation.

CONCLUSION

In the present study, we provide compelling evidence that
assessment of plant EP in commercial tomato crop contains
information to predict Fe deprivation in fertigation. Electrical
signal patterns can be modeled to detect iron deficiency prior
to visual symptoms appearing in tomato plants. The proposed
classification model showed classification accuracy of 79.3% with
an efficient prediction rate on unseen data reaching 76.0%. With
a model built to classify normal (e.g., full nutrient) vs. strong
Fe deficiency condition (e.g., visible chlorosis), the approach
allows early detection of slight Fe deprivation. Indeed, the Fe
deficiency was detected 2 days (D +2) after deprivation whereas
the very first symptoms (pale green young leaf) appeared 6 days
later (D+8).

Signal transduction for various nutrients mediate through
the xylem and phloem. When investigating plant nutrition, a
sensor monitoring electrical variations in conductive tissue,
could provide clues in understanding the underlying principles
of nutrient stress-induced warning mechanisms. Further
investigations are required to define the specificity amongst
other nutrient deficit responses. This study represents a potential
application of EP monitoring combined with machine learning
and opens avenue of research that can be extended to others
essentials nutrient for crop. Algorithms should be developed
further to be deployed and then tested allowing real-time
diagnosis and act as an early detection system for identifying
any nutrient deficiency. In turn, this enables implementation in
actual commercial greenhouse set-ups. This would potentially
be a useful tool to enable efficient crop production and
provide assistance for fertilizer management to farmers in
the future.
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FIGURE 2 | (A) Representative long-term recording of electric potential (EP) used as the test dataset to evaluate model performance. Tomato plants were submitted

to optimal nutrient condition (Comfort, +Fe) followed by iron deprivation (Deficiency, –Fe) in fertigation. Colored arrows represent different stages of visible symptoms

on young leaves from non-visible (green) to pale green (yellow) then chlorosis (red). (B) Model prediction of healthy plant state on hydroponic tomato plants during

different fertigation conditions i.e., with (+Fe) or without (–Fe) iron. Different physiological states were defined depending on prediction rate: above 0.6, considered as

control or healthy (green), between 0.4 and 0.6, considered as transition state from healthy to stressed (orange) and below 0.4 as stressed (red). Results represents

mean ± s.e.m (n = 3). Asterisk (*) indicates significantly different from comfort condition (Mann–Whitney Rank Sum Test, p < 0.05).
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