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Cattle production systems are an important source of greenhouse gases (GHG) emitted

to the atmosphere. Animal manure and managed soils are the most important sources

of emissions from livestock after enteric methane. It is estimated that the N2O and CH4

produced in grasslands and manure management systems can contribute up to 25%

of the emissions generated at the farm level, and therefore it is important to identify

strategies to reduce the fluxes of these gases, especially in grazing systems where

mitigation strategies have received less attention. This review describes the main factors

that affect the emission of GHG from manure in bovine systems and the main strategies

for their mitigation with emphasis on grazing production systems. The emissions of N2O

and CH4 are highly variable and depend onmultiple factors, which makes it difficult to use

strategies that mitigate both gases simultaneously. We found that strategies such as the

optimization of the diet, the implementation of silvopastoral systems and other practices

with the capacity to improve soil quality and cover, and the use of nitrogen fixing plants

are among the practices with more potential to reduce emissions frommanure and at the

same time contribute to increase carbon capture and improve food production. These

strategies can be implemented to reduce the emissions of both gases and, depending

on the method used and the production system, the reductions can reach up to 50%

of CH4 or N2O emissions from manure according to different studies. However, many

research gaps should be addressed in order to obtain such reductions at a larger scale.

Keywords: global warming, climate change, nutrient excretion, nitrification, mitigation, nitrogen losses

INTRODUCTION

Greenhouse gas (GHG) concentrations in the world have increased rapidly since pre-industrial
times due to human activities, with negative effects on the climate(IPCC (Intergovernmental
Panel on Climate Change), 2013). Methane (CH4) concentrations have doubled while nitrous
oxide (N2O) concentrations in the atmosphere are 20% higher than pre-industrial levels (IPCC
(Intergovernmental Panel on Climate Change), 2013). Agriculture is considered one of the main
sources of CH4 and N2O, two high warming potential gases. Within the agricultural sector, animal
production contributes 14.5% of human-induced emissions (Gerber et al., 2013) and produces∼37
and 65% of global emissions of CH4 and N2O, respectively (Steinfeld and Wassenaar, 2007).
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Within livestock, cattle production systems can be broadly
classified into confined, mixed -in which cattle can be in-
house during part of the day or the year, and grassland-based
systems (Seré and Steinfeld, 1995). In confined and semiconfined
systems, manure can be stored and processed to be disposed
in the field, whereas in grazing systems, manure is deposited
directly on pastures and is degraded under environmental
and grazing conditions (Uchida et al., 2011). Manure (feces
and urine) managed and deposited on grasslands and pastures
is the second largest source of GHG emissions after enteric
methane and is responsible for ∼7% of agricultural emissions
of CH4 and N2O worldwide (Aguirre-Villegas and Larson,
2017).

Nitrous oxide is the third most abundant GHG and accounts
for 6% of all radiative forcing (Myhre et al., 2013). Despite
its low concentration in the atmosphere compared to CH4

and CO2, N2O has a significant effect on global warming,
as it has a lifespan of ∼120 years and 265 times higher
radiative potential than CO2 (IPCC (Intergovernmental Panel
on Climate Change), 2014; U. S. E. P. A and United States
Environmental Protection U. S. E. P. A. United States
Environmental Protection Agency, 2021). In addition, it
contributes significantly to the depletion of stratospheric ozone
(Myhre et al., 2013).

Grasslands around the world emit about 2.2 Tg of N2O–
N, 74% of which comes from anthropogenic sources (Dangal
et al., 2019). Deposition of animal feces and urine is the
biggest source of N2O emissions per year in grasslands (54%),
followed by manure application (13%), and nitrogen fertilizers
(7%) (Dangal et al., 2019). Nitrification and denitrification are
the main responsible mechanisms for the production of N2O
in soils, although nitrification-denitrification, codenitrification
and chemodenitrification can also lead to the formation of
N2O given a microbial community and suitable environmental
conditions (Hallin et al., 2018). Regarding methane, ruminant
manure is responsible for the emissions of 109 million tons
of this GHG to the atmosphere per year, of which 86%
comes from cattle. Three main factors affect the amount of
CH4 emitted by manure: the type of storage, the climate, and
the composition of manure (Opio et al., 2013). While most
of CH4 emissions from manure occur during storage under
anaerobic conditions, in tropical regions manure can also be
a generator of a considerable amount of emissions of this
gas at the grassland level (Montes et al., 2013; Cai et al.,
2017).

However, it is important to mention that although these
gases play an important role in global warming, as they
are predominantly flow pollutant gasses, they differ in their
impact from CO2 that is a stock pollutant with a very long-
term persistence in the atmosphere and consequently with
a greater cumulative effect on the climate (Lynch et al.,
2021). In addition, grasslands around the world also hold
a large mitigation potential for building and conserving soil
carbon and could capture as much as 0.5 Pg C per year to
1m depth, as they cover ∼52.5 million km2 equivalent to
40.5% of the land area (Gerber et al., 2013; Lorenz and Lal,
2018).

This article reviews the magnitude of typical N2O and CH4

emissions from manure, analyses the factors affecting them,
and discuss potential mitigation strategies in bovine production
systems, with an emphasis on tropical and subtropical regions
where grazing systems are predominant.

NITROUS OXIDE AND METHANE
EMISSIONS IN GRAZIN SYSTEMS

Nitrous Oxide Emissions
Ruminants are poor nitrogen converters, because only 5–
30% of ingested nitrogen are up taken by the animal and
the remaining 70–95% are excreted via feces and urine (Luo
et al., 2010). Therefore, nitrogen loads in animal excreta,
often exceed plant demands and are vulnerable to losses via
gaseous emissions and leaching (Selbie et al., 2015). This is
more critical as the proportion of nitrogen in animal urine
has increased with increasing nitrogen intake; although it
has remained relatively constant in feces (Jarvis et al., 1995).
According to Jaimes and Correa (2016) the efficiency in the
use of N by lactating cows varies between 8.96 and 27.82%
in Colombia, which, according to the number of animals per
unit area can generate the application of up to 374 kg of
N/ha/yr from manure (Correa et al., 2012). Likewise, Rivera
et al. (2018) found that cows excreted 72% of ingested nitrogen
in tropical dairy systems, generating the deposition of 46.8 kg
N/animal/yr from manure and 42.9 kg from urine when the
diet had on average 14% crude protein (CP). For this reason,
improving the efficiency in the use of this nutrient by ruminants
may be a viable alternative not only to increase animal
productivity but also to reduce GHG emissions by reducing N
excretion. It must be noted however that in extensive grazing
and pastoralist systems cattle can be undernourished, and
the scarce nutrients can be used more effectively by animals
(Manzano and White, 2019).

Grazed pastures are systems with a wide range of
environmental and management conditions that can result
in the emission of N2O (Wecking, 2021). A large proportion
of total farm N2O emissions in grazing systems often occurs
from relatively small areas (Luo et al., 2017). These sites can
be located where animals congregate (feeding bins, water
troughs and gateways), occur after additional irrigation or
result from soil compaction due to trampling and in the
soil underneath excreta patches (Roesch et al., 2019). The
magnitude of N2O emissions depends on the interplay
between prevailing soil microclimate, microbial activity, plant
composition, biomass, and excreta composition, that in turn
is defined by animal type and feed intake (Wecking, 2021).
All these factors can alter the spatial heterogeneity of soil
respiration and, hence, cause impact also on resulting N2O
emissions (Shi et al., 2019). Nitrous oxide emissions from a
single application of cattle urine and feces can be as high as
16.8 kg N2O–N/ha/yr and 5.57 kg N2O–N/ha/yr, respectively
(Luo et al., 2018). A meta-analysis by López-Aizpún et al.
(2019) showed that, when reporting urine derived N2O
emissions, it was important to account for differences in animal
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FIGURE 1 | Pathways of microbial driven nitrogen transformations in excreta patches in grassland ecosystems (Cai et al., 2017). The N2O can also be produced by

nitrifier denitrification, chemodenitrification and dissimilatory nitrate reduction to ammonium. The SOM and LON are soil organic matter and labile organic

nitrogen, respectively.

diet, sex and breed, in addition to urine composition and
nitrogen loads.

Factors Conditioning Nitrous Oxide
Emissions From Manure
The two main processes that generate N2O: nitrification
and denitrification, are strongly influenced by climate and
soil factors (Chen et al., 2008). The production of N2O
depends on the availability of substrates for both processes,
i.e., NH+

4 for nitrification and NO−

3 for denitrification
(Zaman et al., 2007). The most important factors are the
presence of oxygen, temperature, pH, humidity, salinity,
and soil management; in the case of denitrification, it
also depends on the carbon available for heterotrophic
processes (Dalal et al., 2003). In addition, these factors are
regulated by climate, vegetation, chemical, and physical
properties of soil (apparent density, organic C, pH, and clay
content), and agricultural management practices (Uchida
et al., 2011). Each of these factors is discussed in more
detail below.

The process of nitrification was first described by Schloesing
and Muentz in 1877. Nine years later, Gayon and Dupetit
discovered denitrification (Elmerich and Newton, 2007).
An overarching framework capturing the production and
consumption of N2O and NO by nitrification and denitrification
within a conceptual model was published by Firestone and
Davidson (1989) and has been acknowledged as the “hole in the
pipe model” (Wecking, 2021). However, recent research suggests
that a range of other biotic and abiotic pathways might also lead
to the emission of N2O e.g., heterotrophic nitrification, nitrifier
denitrification, chemodenitrification, coupled nitrification-
denitrification, co-denitrification, and anaerobic NH3 oxidation–

apart from potential other yet still undiscovered processes in the

nitrogen-cycling network (Kuypers et al., 2018). Figure 1 shows
the pathways of microbial driven nitrogen transformations in
excreta patches in grassland ecosystems.

Irrespective of the underlying process, most nitrification
and denitrification pathways in soil lead to the net emission
of N2O (Myrold, 2005). Only under certain conditions
denitrifier activity, and to some extent that of nitrifiers,
stimulate the uptake of atmospheric N2O. Soils are more
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likely to act as a sink for N2O when the soil mineral
nitrogen is low and when high soil moisture or other
factors prevent microbial access to alternative oxygen (O2)
sources (Philippot et al., 2009).

Among the factors affecting N2O emissions, the availability
of C and N is critical, particularly when these elements are
in labile organic form (van Groenigen et al., 2005). There is
a linear relationship between the N input, either by fertilizer
or by manure, and the emission of N2O in agricultural areas
(Dobbie et al., 1999); although, according to Zebarth et al.
(2008), this relationship can also be exponential. In relation
to soil properties, the moisture content is perhaps the variable
with greatest influence on N2O emissions (Saggar et al., 2004).
Saturation values of 60–70% moisture promote the generation of
N2O since they limit the O2 diffusion, resulting in denitrification
processes (Saggar et al., 2004). Nitrous oxide emissions are
therefore higher in wet soils and after dry conditions, N2O
production begins immediately after applying water to the soils
(Chirinda et al., 2019).

Temperature is another factor influencing the level of
emissions. When soil water content is close to the maximum
retention capacity, N2O emissions respond to temperature
changes (Machefert et al., 2002). However, some studies
have shown no significant relationships between emission and
temperature variations mainly due to the higher influence of
moisture content in the flow of gases (Singurindy et al., 2009).
Soil type can also influence N2O emissions, mainly through
their effect on drainage level and moisture content (Luo et al.,
2010). Poorly drained soils have higher N2O emissions than
well-drained soils (Oenema et al., 2007). Poor drainage and
changes in the physical properties of soil such as compaction can
affect transformations from N to N2O because they affect the
soil oxygen diffusion (Oenema et al., 1997) and can increase N
gaseous losses (van der Meer, 2008).

Animal grazing with its trampling can favor this condition
compared with grasslands without animal occupation.
Compaction can also be increased when grazing takes place
during winter and/or when there is inadequate management of
animal stocking rates as this causes loss of structure and drastic
decrease of porous space (Luo et al., 2010). pH can also affect the
mechanisms that control N2O emissions. A study of denitrifying
enzymes found a link between soil pH and soil emission rate (van
der Weerden et al., 1999), as denitrification processes decrease
as soil pH tends to acidity. According to Dalal et al. (2003), the
optimal pH for nitrification activity is 7, while for denitrification
the optimal pH is 7.0–8.0.

Nitrous Oxide Emissions in Feces and
Urine
Most studies comparing N2O–N emission factors of feces and
urine under grazing conditions suggest higher values for urine
(van Groenigen et al., 2005; López-Aizpún et al., 2020). However,
authors such as Sherlock et al. (2003) have reported similar values
for both components, while Wachendorf et al. (2008) found
higher emissions of N2O–N in livestock feces, suggesting the
need of disaggregating emission factors based on the type of

excreta (Luo et al., 2010; López-Aizpún et al., 2020). According
to Meng et al. (2014) and Sordi et al. (2014), the fraction of N
lost as N2O–N in the urine is greater than that of feces because
only a relatively small fraction of N in manure is in an unstable
condition and this depends on the diet of the animals.

According to the Intergovernmental Panel on Climate Change
(IPCC) guidelines, it is estimated that the generation of N2O by
manure deposited in the grasslands corresponds to 2% of the
total excreted N (IPCC (Intergovernmental Panel on Climate
Change), 2006). However, some studies have found that this
value may be considerably lower, to such a point that by 2019
this same body changed that value to 0.4% to estimate direct
emissions and another 0.27% for indirect emissions by leaching
and volatilization (IPCC (Intergovernmental Panel on Climate
Change)., 2019). In a study carried out in New Zealand, Luo
et al. (2008) reported emission factors (EF) for urine applications
between 0.2 and 1.59%, depending on the season. This variability
in EF highlights the importance of determining country-specific
or climate region emissions. This variability can be caused by
multiple factors such as: (i) moisture, carbon content, pH and
soil structure; (ii) environmental conditions such as temperature
and rain (due to its influence on soil moisture); (iii) quantity
and availability of nutrients in soil and excreta; (iv) plant species
present; and (v) soil management (Oertel et al., 2016; López-
Aizpún et al., 2020).

Countries like New Zealand have advanced in disaggregating
EF by type of livestock (bovines and sheep), type of excreta (feces
and urine) and climate (wet and dry). In this country, EF for
urine and feces are 1 and 0.25% respectively, and both have been
implemented in the national inventory of agricultural greenhouse
gases (van derWeerden et al., 2020). New Zealand values, applied
to all major classes of livestock (sheep, cattle, and deer), are
similar to those found by Chadwick et al. (2018) in studies in
the United Kingdom (average urine and feces of 0.69 and 0.19%,
respectively) and Ireland where EF of 1.18 and 0.31% have been
found for these two emission sources, respectively (Krol et al.,
2016). Similarly, Rivera et al. (2018) found EF between 1.37 and
1.77% for feces, and between 0.3 and 3.47% for urine in tropical
conditions of Colombia, which are higher than those reported
by Sordi et al. (2014) in Brazil who found values from 0.19
to 0.33% and 0.12 to 0.19% for urine and feces, respectively.
Figure 2 represents the final distribution of N in urine and feces,
showing higher amounts of N leached and higher amounts of
NH3 in urine than in feces, which could lead to higher emissions
in urine patches.

Methane Emissions
The production of CH4 occurs via the microbial degradation
of the proteins, organic acids, carbohydrates, and soluble lipids
present in excreta (Khan et al., 1997). According to the IPCC-Tier
1 (2006), 1 kg of CH4 is emitted from dung annually per adult
head of cattle in grazing systems, but according to others reports
these values may be lower (0.45–0.67 kg/animal/day), and can
be highly variable (IPCC (Intergovernmental Panel on Climate
Change)., 2019).

In the soil, CH4 is produced under anaerobic conditions by
methanogens and is converted to CO2 by methanotrophs under
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FIGURE 2 | Fate of nitrogen losses from cattle urine and feces patches distinguished into a leaching (blue), gaseous (orange) and plant uptake (green) component.

DON stands for dissolved organic nitrogen. The size of the circles can be put into perspective compared to the two large black circles that reference a patch nitrogen

load of 1,000 g. Figure adapted from Cai and Akiyama (2016) and Wecking (2021).

both aerobic and anaerobic conditions, and the net CH4 flux in
the soil-atmosphere system represents the balance between these
two microbial processes (Le Mer and Roger, 2001). The impact of
excreta deposition on CH4 emission thus mainly depends on its
relative impact on CH4 production and CH4 oxidation activities
in the patch (Cai et al., 2017).

Around 15–30% of total global CH4 emissions could be
derived from soil source (Yanan et al., 2018). Ruminant manure is
responsible for the emissions of 109 million tons of this GHG to
the atmosphere per year, of which 86% comes from cattle. Three
main factors affect the amount of CH4 emitted by manure: the
type of treatment, the climate, and the composition of manure
(Opio et al., 2013). While most of CH4 emissions from manure
occur during storage under anaerobic conditions, in tropical
regions manure can also be a generator of a considerable amount
of emissions of this gas at the grassland level (Montes et al., 2013;
Cai et al., 2017).

Even though pastures can emit CH4, under certain conditions,
upland soils including those covered by grasslands are also an
important sink for atmospheric CH4 as they can oxidize it at a
faster rate than croplands (between 3 and 6 kg of CH4/ha/yr),
although at a slower rate than uncultivated soils (Boeckx and
Van Cleemput, 2001). This is caused by the oxidative activity of
methanotrophs and ammonium oxidizing bacteria (Shukla et al.,
2013). The oxidative capacity is nevertheless affected, among
other factors, by water content and inorganic N in the soil, by
the use of inorganic fertilizers and by the NH+

4 released during
urine urea hydrolysis (Le Mer and Roger, 2001; Saari et al., 2004).
During the rainy season CH4 emissions rise due to increased
anaerobic conditions caused by water saturation but, when soil

moisture is reduced due to decreased rainfall, these are replaced
by oxidative processes with predominance of aerobic bacteria
that generate negative methane flows and act as CH4 sinks
(Visscher et al., 2007).

Factors Conditioning Methane Emissions
As for N2O, microbial processes that determine methane
emissions into the atmosphere in grazing systems are
conditioned by soil factors such as redox potential, pH,
temperature, organic carbon and nitrogen content (Towprayoon
et al., 2005). These factors can affect the proliferation of some
soil microorganisms and, in turn, promote or limit bacterial
metabolism through its impact on synthesis and enzymatic
activity. The process of methanogenesis is regulated by the
concentration of O2, the content of organic matter as a substrate,
and the factors that determine its redox potential (Conrad,
1996). Organic matter is the main input for triggering methane
production processes. The increase of available organic matter,
and its subsequent decomposition in soils under anaerobic
conditions, stimulates methanogenesis by providing a substrate
for the production of acetate and hydrogen and causing soil
reducing conditions (Sass et al., 1991).

In pastures, most of the organic matter comes from plants
through leaves senescence and root decomposition, and the
transformation and deposit by animal excreta (Waschütza
et al., 1992). For this reason, forage species and their
physiological status can also influence methane emissions
(Kerdchoechuen, 2005). The strictly anaerobic methanogens,
mainly Methanobacteria, Methanococci and Methanopyri, are
sensitive to changes in soil water content (Malyan et al., 2016).
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Methanogenic activity may be stimulated by urine deposition
that create anaerobic conditions. Furthermore, increased soil pH
resulting from hydrolysis of urine urea and decreased redox
potential may also favor methanogenic activities (Le Mer and
Roger, 2001). Emissions of CH4 from excreta deposited by
animals on pastures range from 7 to 27% of total emissions
by ruminants (Kreuzer and Hindrichsen, 2006). However,
these emissions may become less significant depending on
environmental conditions and manure management (Oenema
et al., 2007).When anaerobic conditions occur, ruminant manure
in pastures release significant amounts of CH4 (Misselbrook
et al., 2001).

Methane Emissions in Feces and Urine
In an evaluation of methane fluxes of an intensive silvopastoral
system (iSPS) with high density of Leucaena, an intensive pasture
monoculture system and a secondary dry forest, Rivera et al.
(2018) found that both the forest and the iSPS had negative CH4

flows of−0.56 and−0.02 kg of CH4/ha/yr respectively, probably
due to the biodiversity of microorganisms found in their soils
(Vallejo et al., 2010). Negative flows of CH4 were also found
during the dry season in three pasture systems in the north of
Colombia (Espinosa-Carvajal et al., 2020). Methane flows are also
influenced by the grass species and fertilization level. Pastrana
et al. (2011) in a study evaluating three accessions of Brachiaria
humidicola (Rendle) Schweickerdt found that methane emissions
were increased from sink (−23.6 µg m2/h) when nitrogen
fertilization was zero, to emit 107.9 µg m2/h with application of
150 kg of N/ha/yr and 59.7 µg m2/h with 300 kg of N/ha/yr. CH4

emissions were also affected by the B. humidicola accession.
CH4 emissions from excreta deposited by animals on pastures

range from 7 to 27% of total emissions by ruminants (Kreuzer
and Hindrichsen, 2006). However, these emissions may become
less significant depending on environmental conditions and
manure management (Oenema et al., 2007). According to
recent IPCC estimates, 0.49 ± 0.43 g of CH4 per kg of
dry matter (DM) of manure can be generated on average
(IPCC (Intergovernmental Panel on Climate Change)., 2019).
In addition, urine deposited directly in the grasslands increases
emissions of this gas by up to 100 times compared to grasslands
without urine patches (Oertel et al., 2016). The diversity of
conditions that change CH4 emissions has generated great
dispersion in the results (Andueza et al., 2017), as there are
reports of up to 1 g of CH4 per kg of DM of manure generated,
value that can be up to five times higher when manure is
incorrectly stored under anaerobic conditions (Sneath et al.,
2006). According to Chadwick (2005) manure emissions can
range from 0.4 to 9.7% of the total C content deposited
by manure.

Finally, Life Cycle Analysis (LCA) studies have identified that
manure emissions (CH4 and N2O) can be considerable under
different production conditions. For example, Rivera et al. (2014),
who evaluated the LCA in two dairy systems in Colombia, found
that manure emissions accounted for 30% as CO2-eq of the total
emitted on the farm and 22% of the total emitted throughout
the LCA. In another study in dairy production systems, Rivera
et al. (2016) found that manure emissions accounted for 6.5% of

all farm-level emissions. According to this study, emission levels
from manure depend mainly on the amount of excreted N given
by the consumption of this nutrient in the diet, by the type of
manure management, and by the rainfall regimen and use (or
not) of irrigation in the grasslands.

NITROUS OXIDE AND METHANE
EMISSION MITIGATION STRATEGIES

Opportunities and Tradeoffs
Opportunities to reduce N2O and CH4 emissions from
livestock manure are diverse and can be addressed to
different parts of the animal production cycle to control
the production and emission of these two gases (Montes
et al., 2013). Given the different environmental and metabolic
conditions that influence N2O and CH4 flows from soil
and manure, it is difficult to implement efficient mitigation
alternatives that target both gases simultaneously (Montes
et al., 2013). However, as presented in Table 1; Figure 3,
measures related to improving production efficiency
and improving soil protection with adequate cover and
introduction of trees can contribute simultaneously to
reduce emissions of both gases and, in addition, improve
carbon sequestration.

The success of mitigation measures can be estimated
based on the optimal conditions under which nitrification
and denitrification processes occur, in the case of N2O
and from the dry matter degradation processes of
manure for CH4. Since CH4 is produced under anaerobic
conditions, while N2O production requires sufficient
oxygen levels, some practices that reduce CH4 production
tend to increase N2O emissions. Table 1 presents a list
of mitigation alternatives with their potential impact
and limitations.

According to de Klein and Eckard (2008) and Wecking
(2021), strategies to mitigate N2O emissions from grazing
systems should include two complementary approaches: (1) to
manage the sources of nitrogen uptake at the animal level,
and (2) to control N2O production in situ through soil and
pastoral management. Beukes et al. (2010) determined that
measures such as improved animal genetics, reduction of
nitrogen fertilization, and improved grazing management had
the potential to decrease GHG emissions from pasture-based
systems by 27–32%. Future mitigation should ideally be focused
on finding combined strategies that avoid any offsetting effect
of the desired mitigation benefits and also, help to improve
the efficiency of nitrogen cycling through the soil-plant-animal
system while, at the same time, reducing emissions (Cai et al.,
2017).

The first approach includes improving management
and feeding practices, supplying nutrients, in particular
protein sources, according to animal requirements, and
increasing animal productivity and nitrogen efficiency per
kilogram of animal product through breeding and genetic
manipulation (de Klein and Eckard, 2008; Wecking, 2021).
For the second approach, mitigation strategies addressed
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TABLE 1 | Mitigation alternatives and potential for reducing CH4 and N2O emissions in grazing systems.

Strategy Mitigation

potential

Possible

negative/Limiting aspect

GHG

mitigated

References

Urease and nitrification

inhibitors

15–45% Labor cost, economic cost,

difficult to use, and

production of other GHGs.

N2O de Klein and

Monaghan, 2011; Di

and Cameron, 2012

Time of application of

manure in the field

17% Labor cost, economic cost. N2O VanderZaag et al.,

2011

Use of plant species that

can inhibit nitrification

60% Labor cost, economic cost. N2O Byrnes et al., 2017

Use of SPS as a strategy to

improve soil conditions in

terms of cover and

biodiversity

57% Labor cost, economic cost. N2O Chirinda et al., 2019

Integrate manure with

fertilizer and crop rotation

60% Labor cost, productivity

decline.

N2O Nguyen et al., 2017

Dietary manipulation 35–55% Economic cost, productivity

decline, and difficult to use

in non-intensive systems.

CH4 and N2O Klausner et al., 1998;

Hristov et al., 2011;

Lee et al., 2012;

Lombardi et al., 2021

Legumes as an alternative

to N fertilizer

15–45% Productivity decline, Limited

forage species in some

places or climates.

N2O Li et al., 2013

Improved soil cover and

biological integrity

25–65% Economic cost, labor cost. CH4 and N2O Chirinda et al., 2019

Application of biochar and

liming material

54% Economic cost, labor cost,

economic cost, and difficult

to use in non-intensive

systems.

N2O Cayuela et al., 2014

at soil and grazing management are manifold and include
managing the intensity and timing of grazing events (van der
Weerden et al., 2018), increasing pasture productivity and
soil carbon storage (Whitehead et al., 2018), and improving
nutrient, fertilizer, and manure management (Kim and
Giltrap, 2017). Removing animals from pasture areas can
reduce treading damage, prevent leaching and gaseous losses
of N, and thus preserve soil conditions (Luo et al., 2017).
However, negative side effects of stand-off pads can be
the accumulation of manure and reduced production that
might outweigh the mitigation benefits. van der Weerden
et al. (2018) showed that controlled grazing was beneficial
on poorly drained soils where it contributed to reducing
N2O emissions, whereas the approach was not suitable on
imperfectly-drained pasture.

Nitrous oxide and CH4 emissions differ between intensive
and non-intensive systems. Intensive systems can emit more
GHG because they have a higher stocking rate, offer commercial
feed, use fertilizers and irrigation. However, under tropical
and subtropical conditions extensive systems are predominant;
non-intensively managed pastures occupy 66% of the total
grassland area around the world (Klein Goldewijk et al., 2017).
Mitigation strategies must be in accordance with the type
of system to achieve cost-effective reductions under grazing
conditions. The main mitigation strategies are presented in more
detail below:

Dietary Manipulation
The most promising options for reducing GHG emissions
at the livestock management level include improving animal
production through dietary changes. Nitrogen (N) excretion
rates, which affect N2O emissions from manure, are based
on dry matter consumption (DMC) and its N content (Vergé
et al., 2012). Therefore, dietary manipulation to optimize
protein consumption, and thus improve the efficiency of N
utilization, is one of the most effective measures to reduce
emissions from manure (Novak and Fiorelli, 2010). The more
nitrogen used by an animal, the less will be excreted; it is
recommended that an adjusted amount of nutrients be offered
in the diet to meet the animal’s requirements, thus, avoiding
increased excretion (Schils et al., 2008). This condition can
occur in both high-supply N systems such as dairy production,
as well as in tropical systems where the N supply in the
feed is reduced. According to Klausner et al. (1998), in dairy
systems, feeding of lactating cows with rations based on
their production decreases the excretion of N by up to 34%.
According to these authors, the reduction occurs by optimizing
microbial fermentation in rumen which significantly improves
the use of N.

Since urine is the main source of volatile N emissions,
manipulating the N excretion pathway becomes an important
N2O and NH3 mitigation tool. Urea is the main nitrogenous
component of ruminant urine reaching 60–80% of total urinary
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FIGURE 3 | Mitigation strategies classification, limitations and potential for reducing CH4 and N2O emissions in grazing systems.

N in high-production dairy cows (Montes et al., 2013) and
decreasing proportionally as dietary CP decreases (Colmenero
and Broderick, 2006). In low-protein diets, ureic N may drop
to 46–53% of total urinary N (Hristov et al., 2011; Lee et al.,
2012). For this reason, decreasing the concentration of CP in the
diet is an effective method to mitigate N emissions from manure
(Hristov et al., 2013). Similarly, emissions of manure deposited in
the soil are reduced because low CP diets generate manure with
a slower N mineralization rate (Powell et al., 2011). Optimizing
N supply to animals can achieve between 12 and 21% less N
excretion and 15–33% less N volatilization losses in livestock fed
according to the physiological status of the animals (Erickson and
Klopfenstein, 2010).

de Klein and Eckard (2008) concluded that N2O reduction
should be part of an integrated approach to improving efficiency
in the use of N in animal production systems. According to these

authors, current technologies could offer up to 50% reduction
in N2O emissions from a confinement system, but only up to
15% of a grazing system. In intensively operated pastoral systems,
supplementation of cattle with N-low foods such as maize or
silage, which generally reduce the concentration of N in the diet,
can reduce urinary N losses and, consequently, NH3 and N2O
emissions inmanure and soil by 8–36% (de Klein andMonaghan,
2011).

Also, plants species such as Lolium perenne, Trifolium repens,
and Plantago lanceolata, that may exhibit diuretic properties
have the potential to reduce the urinary-N loading in individual
urine patches by increasing the urination frequency of grazing
animals (de Klein et al., 2019; des Roseaux et al., 2020). Although
the increased urination frequency results in greater coverage
of urine-affected soil, total paddock-scale N2O emissions from
urine patches are not likely to be higher if the total amount of
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urinary-N excreted remains the same. In fact, they could be lower
if the N2O emission factor reduces with N loading rate (de Klein
et al., 2019).

Diet manipulation can also reduce CH4 emissions from
manure. In a study by Lombardi et al. (2021) the supplementation
of grazing beef steers with maize grain lowered CH4 emissions
of dung from 4.0 to 1.7 g CH4-C/m

2. Dung from supplemented
animals had higher N, starch, and DM content, which resulted
in lower CH4 emissions compared with dung from non-
supplemented animals. Results from this study indicated that
the initial water content may control the CH4 emissions, since
rainfall events after dung crusting did not increase the CH4

fluxes from dung patches (Zhu et al., 2018). On the other hand,
these authors state that supplementation with maize grain can
thus have dual benefits in cattle production, through maximizing
body weight gain in grazing steers (18% more) by improving
the efficiency of utilization of nutrients (dietary N in particular)
and through decreasing the total amount and/or the intensity of
GHG emissions. In addition, the improvement in N utilization
efficiency may reduce N2O emissions from urine deposition (Cai
et al., 2017).

This mitigation route can be used especially in grazing systems
with daily rotation, where there is a greater control in feeding. In
these systems animals are usually supplemented during milking
or at certain times of the year (for example in summer or
winter, according to the area). Also, the manipulation of the
diet can be done to certain groups of animals that may demand
more nutrients or simply by using pastures with various forage
species that can be supplemented or whose nutrient supply is in
accordance with the physiological state of the animal. This could
be applied to both intensive and non-intensive systems (use of
species that favor an adequate energy:protein balance).

Although diet supplementation might be difficult under very
extensive systems, it is possible in more managed systems such as
those under rotational grazing.

Improved Soil Cover and Biological
Integrity
Maintaining a more diverse environment with healthy soils and
good pasture cover is another strategy that can help reduce
emissions. Chirinda et al. (2019) found lower urine patch
emission factors in seven locations in South America (0.42 vs.
0.18%) when the grasslands had greater plant cover compared to
areas with poor cover or degraded pastures. The results indicate
that, under rainy conditions, adequate plant cover, through
good pasture management, helps reduce urine-induced N2O
emissions. According to these authors, higher emissions in low-
covered soils are due to grass degradation that can stimulate or
restrict N losses. For example, low plant cover can reduce N
sinks for deposited excreta and therefore increase N vulnerability
and loss through microbial soil and leaching processes (Chirinda
et al., 2019). However, low plant cover may also be associated
with fewer exuded plant roots that decreasemicrobial activity and
N2O emissions (Henry et al., 2008).

Improved soil cover and pasture management also contributes
to maintain or increase soil organic matter (SOM) (Aryal et al.,

2018), which plays a critical role in determining the N2O
emission response to urea deposition (Clough et al., 2020).
Increasing SOM increases cation exchange capacity, reducing
the soil solution NH+

4 concentration that in turn, reduces soil
solution NH3 and associated inhibition of NO−

2 oxidation, thus
reducing urea-derived N2O emissions (Breuillin-Sessoms et al.,
2017). Soil buffer capacity increases with increasing soil organic
matter alleviating increases in soil pH following urea deposition
and associated solubilization of organicmatter, and the formation
of dissolved organic C and N (Breuillin-Sessoms et al., 2017).

On the other hand, excessive grazing without time for grass
recovery increases the risk of soil compaction, an indicator
of grass degradation. Compaction reduces soil porosity and
pore continuity, decreases aeration, restricts plant growth, and
increases soil N2O emissions in urine patches (van Groenigen
et al., 2005). In addition, soil acidification, which could also be
an indicator of pasture degradation, has been shown to increase
N2O emissions as acidic conditions generally reduce plant
growth and inhibit the activity of the enzyme N2O reductase,
which is responsible for transforming N2O into dinitrogen (N2)
(Robinson et al., 2014).

Implementation of Silvopastoral Systems
The incorporation of shrubs and trees in pastures in the
called silvopastoral systems (SPS) can also contribute to reduce
emissions by improving soil cover and health and by increasing
the quality of the diet (Chará et al. 2019). These systems
have demonstrated effects on the physical, chemical and
microbiological properties of the soil both by the provision
of shade and higher amount of heterogeneous biomass that is
deposited on the soil in the form of leaves, branches, fruits, and
exudates and by improving the root microbiome allowing the
modification of microorganism populations in the soil that can
regulate nitrification and oxidation processes (Vallejo et al., 2010,
2012). Silvopastoral systems can also contribute to increase SOM
(Aryal et al., 2018) which contributes to reduce GHG flows as
mentioned previously. Cubillos et al. (2016) found in a study
including SPS of different ages, that these arrangements have
significantly lower potential for ammonia nitrification compared
to monoculture systems (between 15 and 20%), similar to those
observed in forest patches, which is why N2O flows are expected
to be reduced under these systems. According to these authors,
in SPSs ammonia oxidizing bacteria and archaea limit the rate in
nitrification and the resulting N2O emissions could be reduced.

On the other hand, such systems can modify emissions in
feces by the presence of dung beetles that limit the interactions of
manure with mineral soil, restricting substrates for nitrification
and denitrification processes (Slade et al., 2016). Studies in
different regions of Colombia have shown that SPSs have greater
abundance, diversity, and activity of beetles than treeless pastures
(Giraldo et al., 2011; Montoya-Molina et al., 2016). According
to Slade et al. (2016) the presence of beetles in livestock systems
reduces N2O emissions by 14.7% and CH4 emissions by 17%.

Another effect of these systems is the increased N partitioning
into dung relative to urine as this has shown to reduce
N2O emissions from pastures, since the emission factor for
dung is lower than that for urine (Luo et al. 2018). Feeding
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animals condensed tannin (CT)-rich diets can also increase N
partitioning into dung (Carulla et al., 2005). The inclusion of
CT either as a dietary supplement or in forages fed to ruminants
reduced urinary-N excretion, increased the amount of N excreted
in the dung and improvedN retention in the animal (Misselbrook
et al., 2005). Since N2O emissions are traditionally higher in
urine, this may be a mitigation pathway. Silvopastoral systems
use forage species such as Leucaena leucocephala, Tithonia
diversifolia, and Gliricidia sepium, which contain significant
amounts of tannins in their leaves and stems (Barahona et al.,
2006; Rivera et al., 2021). Rivera et al. (2018) compared an iSPS
and a traditional system and found reductions in emission factors
(N2O) of 23% and 10 times less for feces and urine, respectively.

Finally, plant morphological factors that can affect soil N
cycling and N2O emissions include the effect of the root system
on a plant’s ability to access water and nutrients, and plant
canopy-effects on the dispersion of urine voided by grazing
animals (de Klein et al., 2019). When roots are present, root
morphology can affect soil structure and hydrology, both of
which influence conditions that govern the reduction of N2O
to N2 and diffusion of gases to the soil surface (Chapuis-lardy
et al., 2007). Root morphology can also affect plant N uptake and
thus availability for soil nitrification and denitrification processes
(Abalos et al., 2014). These authors found that combining two
grasses, L. perenne and Poa trivialis, which is a high fertility
responsive grass like L. perenne, produced the greatest amount
of biomass and the lowest N2O emissions. They suggested this
was due to the complementarity of the root foraging strategies
of these two species, where P. trivialis may access N hotspots
not previously emptied by L. perenne. This combination, together
with its very high total root biomass, is thought to increase
mineral N uptake, thereby lowering soil nitrate content and
subsequent N2O emissions (Abalos et al., 2014).

Plant species diversity and interactions can also influence N
uptake and N2O emissions (Niklaus et al. 2016). Increasing plant
species richness from 1 to 16 grassland species has been found
to reduce N2O emissions in the absence of N fertilizer (Niklaus
et al., 2016), due to more efficient soil inorganic N uptake.
However, this pattern was not observed when the diversity
included a large proportion of legumes (de Klein et al., 2019).

Although pasture species with increasing root mass or rooting
depth have greater ability to take up N, the winter-activity of
pasture species such as Lolium multiflorum Lam.—i.e., the ability
of roots to take up N under cooler conditions—appeared to be
more important than specific root architecture (e.g., deep roots)
for reducing N leaching losses (Woods et al., 2016). Woods et al.
(2016) found that winter-active Italian ryegrass had the greatest
N uptake and lowest N leaching, whereas the opposite was found
for the tap-rooted L. perenne. The high N leaching losses fromM.
sativa in this study were attributed to poor winter herbage growth
and the limited depth of the lysimeters (0.7m) used for this deep
rooting species.

Legumes as an Alternative to N Fertilizer
Biological nitrogen fixation (BNF) in association with forage
legumes provides an alternative N source for grazing systems (Li
et al., 2013). In tropical and subtropical conditions, legumes such

as Desmodium ovalifolium, Leucaena leucocephala, Centrosema
pubescens, Stylosanthes guianensis, Cajanus cajan, among others,
can fix between 120 and 150 kg N/ha/yr. For SPS with Leucaena
leucocephala planted in rows in Australia, nitrogen fixation
rates range between 36 and 61.9 kg/ha/y (Radrizzani et al.,
2011; Conrad et al., 2018) while for an iSPS with high density
of L. leucocephala in Mexico ranged between 77.1 and 80 kg
N/ha over a period of 100 days (Sarabia-Salgado et al., 2020).
This fixed N becomes available slowly over time to the grass
in pastures after its release into soil via exudates from living
legume roots, by mineralization of senesced legume tissues
and in excreta after consumption by grazing animals (Ledgard
et al., 2009), generating lower losses of N that can be converted
into N2O (Schmeer et al., 2014). Rising costs of fertilizer N
and environmental regulations governing stocking densities and
fertilizer N use on farms is increasing interest in the use of
legumes in pastures. A review by Andrews et al. (2007) concluded
that herbage and milk production from legumes-based pastures
(perennial ryegrass with 20% white clover (Trifolium pratense)
in herbage DM on an annual basis) are likely to be similar to
that from a perennial ryegrass pasture receiving annual input of
200 kg/ha of N fertilizer and around 70% of that obtained with
perennial ryegrass receiving an annual input of 350–400 kg/ha
of fertilizer.

The N2O emissions induced by the growth of legume
crops/forages may be estimated solely as a function of the
above-ground and below-ground N inputs from crop residues
(Li et al., 2013). Accordingly, N2O emissions from legume-
based grasslands are much lower than fertilized grasslands. For
example, Ruzjerez et al. (1994) reported up to five-foldmore N2O
emission from heavily N fertilized grasslands than from their
legume-based counterparts in New Zealand. A data synthesis
indicates that the average soil N2O emissions from field-grown
legumes, N fertilized grass pastures and crops, and unfertilized
soils are 1.29, 3.22, and 1.20 kg N/ha/yr, respectively (Li et al.,
2013).

Use of Forage Species With Potential for
Biological Inhibition of Nitrification
Within soil GHG emission mitigation strategies, especially for
N2O flows, the use of nitrification inhibition grass species (BNI)
is an option to reduce gas production (Byrnes et al., 2017;
Teutscherova et al., 2019). According to Byrnes et al. (2017) and
Beeckman et al. (2018) the use of nitrification inhibitors, whether
synthetic or plant-based (biological nitrification inhibitors -BNI)
reduce soil nitrification rates and therefore NO−

3 leachate and
N2O emissions. In addition, this reduction in the nitrification
rate contributes to increase the efficiency in the use of N in the
system (Yang et al., 2016).

Species such as Brachiaria humidicola (Byrnes et al., 2017),
Sorghum bicolor, Oryza sativa and Triticum aestivum have
demonstrated their ability to decrease N2O flows (Subbarao
et al., 2009; Zhu et al., 2012). Byrnes et al. (2017) reported that
in urine patches with B. humidicola cv. Tully, N2O emissions
were 60% lower than in B. hybrid cv. Mulato (32 vs. 80mg
N2O–N m2, respectively). These authors also found that the
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high content of NO−

3 had a positive relationship (p < 0.05)
with the number of copies of the amoA gene of ammonia
oxidizing archaea and bacteria at sites with higher emissions.
Studies regulating soil N dynamics associated with plant and
microorganism interaction such as BNI and, more recently,
inhibition of biological denitrification (BDI), have increased,
as they represent an ecological, sustainable, and cost-effective
strategy compared to the use of synthetic inhibitors (Subbarao
et al., 2017).

On the other hand, root exudates can also affect the availability
of soil mineral N, as C in these exudates may temporarily increase
microbial immobilization of N (Fisk et al., 2015). Carbon from
root exudatesmay thus reduceN2O emissions derived from urine
deposition due to immobilization of urine-N. Indeed, a number
of studies have demonstrated that excess N in urine patches
does not immediately become available for nitrification and
denitrification (Bol et al., 2004). Instead, it can be immobilized
into organic matter or fixed on clay particles.

Application of Biochar and Liming Material
Biochar is a carbonaceous material produced during the thermal
decomposition of different materials (wood, plant litter, crop
residues, animal manure or waste products) under low-oxygen
conditions (Cai et al., 2017). Biochar may inhibit nitrification
by compounds such as α-pinene and ethylene and constrain
denitrification through physical and biochemical regulations,
including improved soil aeration, increased sorption of substrates
for denitrification, and increased soil pH to facilitate complete
denitrification to N2 (Cayuela et al., 2014). A meta-analysis
reports a 54% reduction of N2O emissions (with a confidence
interval from −60 to −48%) following biochar addition to
agricultural soils (Cayuela et al., 2014).

Biochar can also decrease CH4 emission or increase CH4

oxidation via increasing soil aeration and reducing soil bulk
density, but some compounds contained in biochar may also
inhibit the activity of methanotrophs and increase CH4 emission
(van Zwieten et al., 2010).

Since increased pH can enhance the activity of N2O reductase,
lime application should be able to reduce N2O emissions. Liming
has also been shown to enhance nitrification (Khan et al., 2011).
Therefore, the effect of liming on N2O emission depends on its
net effect on N2O reductase and nitrification. Generally, liming
can increase N2 emission and reduce the ratio of N2O to N2 for
emission from urine patches, but there are contradictory results
about its effect on N2O emission (McMillan et al., 2016). In
addition, owing to the decreased Al+3 toxicity as pH increases,
liming has shown to increase soil CH4 oxidation and reduce CH4

emission; this effect might be more pronounced in acid soils
(Kunhikrishnan et al., 2016). However, it should be noted that
even though liming has merit for lowering N2O emissions, the
increased nitrification after lime application may also potentially
enhance a risk of N2O production from denitrification when the
soils become anaerobic, due to the possible accumulation of the
resultant NO−

3 from nitrification (Barton et al., 2013).
Given the many uncertainties of the effect of liming on N2O

emission, caution should be exercised in using liming as an
option for mitigating N2O from excreta patches, and the effect

of liming on the emission of CO2, CH4, and NH3 from excreta
patches should also be considered (Cai et al., 2017).

Application of Nitrification and Urease
Inhibitors
Since N2O emission from excreta patches mainly results
from nitrification and denitrification, thus any inhibitor that
can suppress these two processes could be used to mitigate
N2O emissions from excreta patches Cai et al. (2017).
Nitrification inhibitors (NIs) such as dicyandiamide (DCD), 3,
4-dimethylpyrazole phosphate (DMPP), nitrapyrin, and pyrazole
derivatives (PD), can inhibit the conversion of NH+

4 to NO−

2 ,
decrease NO−

3 production and the subsequent denitrification
(Barneze et al., 2015). Additionally, Urease inhibitors (UIs) can
slow down the conversion of urea to NH+

4 and NH3 and decrease
the availability of NH+

4 for nitrification (Cai et al., 2017). The
efficacy of NIs in reducing N2O emission varies widely depending
on the application rate, timing and method (Cai et al., 2017).
Application of DCD significantly decreases N2O emissions from
cattle urine (by 4.24 ± 1.10 kg N/ha) and cattle feces (by 0.66
± 0.61 kg N/ha) patches (Cai et al., 2017). However, NIs may
decrease CH4 oxidation (or increase CH4 emission) by the
inhibitory effect of accumulating NH+

4 and possibly directly
affect methane monooxygenase (MMO), presumably due to the
close structural relationship between ammonia monooxygenase
(AMO) and MMO activities (Le Mer and Roger, 2001; Hatch
et al., 2005). Therefore, the effect of NIs on CH4 emission
from both urine and feces patches needs to be further studied
under a wide range of conditions, since uncertainties about the
differential effect of urine and feces deposition on CH4 emission
are large (Cai et al., 2017).

Although this mitigation pathway is effective, its applicability
is difficult under grazing conditions, since these are systems
where the excretion of urine and feces is dispersed; also, the costs
could be high and may not outweigh the benefits.

According to Adhikari et al. (2021) in intensively managed
dairy pastures, urine deposited by cattle during grazing covers
relatively small proportion of the total grazed area. Maire et al.
(2018) reported that urine patches represent only about 6–
12% of the grazed area in a single dairy cow grazing event.
Therefore, there is a large potential for limiting the risk of
NIs entry into these systems if these compounds can be
targeted directly to urine patches, avoiding the need for their
application across often large areas of pasture unaffected by urine
deposition during grazing. Most N2O emissions from a urine
patch occur within the first few days to weeks of its deposition,
depending on soil and climatic conditions (Selbie et al., 2015).
Technologies are therefore needed that can identify and treat
urine patches shortly after deposition to inform optimum
mitigation options for emission reductions (Marsden et al.,
2017). Approaches to identifying urine patches include visually
monitoring cows in the field, automated monitoring using
electromagnetic induction, electrical conductivity measurements
and optical sensing (Misselbrook et al., 2016), ground-based
sensing and airborne technologies, such as remotely piloted areal
systems (RPAS), LiDAR and satellites using hyperspectral and
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near infra-red imaging, and temperature sensors (Dennis et al.,
2013). The application rates for DCD, DMPP and nitrapyrin in
previous field experiments involving urine ranged from 5 to 80, 1
to 5, and 1 to 10 kg/ha, respectively (Adhikari et al., 2021).

MANAGEMENT AND STORAGE OF
MANURE AS A MEANS OF DECREASING
CH4 AND N2O EMISSIONS

According to IPCC (Intergovernmental Panel on Climate
Change). (2019), in bovine systems in tropical and subtropical
areas only 4 to 15% of manure receives some type of
management. Considering the manure handling chain,
mitigation options involve adequate handling, storage, and
application, especially in those systems where animals are kept
in confinement permanently or during part of the day or the
year. According to Montes et al. (2013) there are many options
for mitigating emissions of N2O and CH4 during storage. For
CH4 mitigation, during solid manure storage, composting can
be an efficient mitigation option, if it is properly managed.
Samer (2015) found that adding straw to solid manure reduces
CH4 emissions, but under certain conditions, it could increase
N2O emissions.

In general, the most effective methods are anaerobic digestion
and composting, which in turn have the advantage of generating
products that replace fossil fuels and chemical fertilizers.
Generally speaking, to mitigate N2O emissions from manure
deposits, the following are the best methods: (i) maintain
anaerobic deposits (e.g., compact and covered); (ii) adopt a liquid
manure system compared to a deep-bed system (although it has
the drawback of increased water use); and (iii) add straw to
immobilize ammonium. On the other hand, to mitigate CH4

emissions, the following are the best methods: (i) anaerobic
digestion (Chadwick et al., 2011); (ii) water removal in manure
(opposite to N2Omitigation); (iii) minimize the volume of liquid
manure stored during the summer months; (iv) cooling; and (v)
aeration of solid manure and composting heaps. According to
these recommendations, apart from anaerobic digestion, there
are no options to tackle both gases simultaneously, but there
are some general strategies to reduce GHG emissions by manure
management. Although some of the strategies proposed are
efficient in reducing emissions, their actual mitigation potential
must be evaluated against possible tradeoffs as they may rely
on high use of electricity, fossil fuels, labor or water, or reduce
productivity. For example, cooling, constant washing of excreta
or the use of specialized structures, could increase costs or
increase emissions of other gases such as CO2, or generate
other negative environmental impacts such as eutrophication
and acidification.

FINAL REMARKS

Integrated production systems such as silvopastoral systems are
strategic to reduce emissions of both CH4 and N2O through the

reduction in the use of external inputs (i.e., fertilizer and feed
supplements), soil protection and improvement of its structure
and aeration, and efficient use of nutrients in the production
process. An efficient production system that provides nutrients to
animals according to their requirements not only contributes to
reducing emissions but also allows for more efficient production.
Although the reduction of emissions for integrated systems can
be as high as 50%, the uptake of these alternatives is still very
low and many research gaps remain to make these reductions
more generalized.

With regard to mitigation practices, it is important to note
that these may result in an “emission exchange” or increase
in the flows of some GHGs. Therefore, due to numerous
interactions, mitigation practices should not be evaluated in
isolation but as a component of the bovine production system
(Montes et al., 2013). Optimizing the animal diet to improve
the efficiency of N use, balance N input with production
level and maintaining fiber digestibility while reducing enteric
fermentation of CH4, are important steps to reduce N2O and
CH4 emissions from manure. In addition, the use of BNI
fodder, as well as providing adequate soil cover offered in well-
managed systems, are strategies alternatives to reducing N2O
emissions (Figure 3).

Finally, it is important to mention that some strategies, if
applied separately, have different limitations and drawbacks
as mentioned in Table 1. For this reason, it is important to
advance in studies focused on evaluating the economic impact
of mitigation strategies, and to determine their impact on animal
and food production. It is also important to work on the
estimation of CH4 emission factors and to evaluate mitigation
strategies for this gas that has received less attention compared
to N2O.
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