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Pollution resulting from the persistence of plastics in the environment has driven

the development of substitutes for these materials through fermentation processes

using agro-industrial wastes. Polyhydroxybutyrate (PHB) is a rapidly biodegradable

material with chemical and mechanical properties comparable to those of some

petroleum-derived plastics. PHB accumulates intracellularly as an energy reserve in a

wide variety of microorganisms exposed to nutritionally imbalanced media. The objective

of this study was to evaluate the use of a banana waste product as a carbon source

for PHB production. PHB was extracted by acid methanolysis and detected by gas

chromatography-mass spectrometry. Eleven bacterial strains with potential for PHB

production were evaluated by in vitro fermentation in a culture broth containing fructose

as the carbon source and limited nitrogen. A 22 central composite rotational design

was applied to optimize the concentrations of banana juice and ammonium chloride

needed to maximize the PHB-producing biomass concentration. The process was then

carried out in a 3 L fed-batch fermentation system that included an initial stage of

biomass growth. Banana juice was used as the carbon source and fructose pulses

were added to maintain the test sugar concentrations of 30, 40, and 50 g/L. The

control strain, Cupriavidus necator (ATCC 17699), produced 2.816 g/L of PHB, while

productivity of the most promising isolate, C. necator (CR-12), was 0.495 g/L. Maximum

biomass production was obtained using 5% banana juice and 2 g/L ammonium chloride.

PHB production was not detected in fed-batch fermentations supplemented with 30

or 40 g/L of fructose, while the mean PHB production in fermentations with 50 g/L of

fructose was 1.3 g/L.

Keywords: polyhydroxybutyrate, Cupriavidus necator, banana by-product, agro-industrial wastes, fed-batch

fermentation, methanolysis
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INTRODUCTION

Biotechnological alternatives to conventional plastics are
increasingly important in industry worldwide (Sirohi et al.,
2020) as they promote sustainability in the agriculture industry
and strengthen rural economies (Li and Wilkins, 2021). Some
types of biopolymers have valuable characteristics; they are
biocompatible and biodegradable by enzymes, microorganisms
and fungi present in the environment (Saratale et al., 2019;
Sirohi et al., 2020) and can show thermoplastic characteristics
with mechanical properties similar to materials derived
from petroleum (Naranjo et al., 2014). Unlike biopolymers,
petroleum-based products degrade slowly and take 20–100
years to decompose, which results in serious damage to the
environment (Mozejko-Ciesielska and Kiewisz, 2016; Amaro
et al., 2019; Sirohi et al., 2020). Therefore, there are strong
incentives to develop alternative biodegradable materials that
decompose rapidly to produce carbon dioxide, water and
biomass (Kumar and Kim, 2018; Sirohi et al., 2020).

Polyhydroxybutyrate (PHB), the most common
biodegradable homopolymer of polyhydroxyalcanoates (PHA)
(Maity et al., 2020), has numerous applications in food,
agriculture, medicine and other industries (Li et al., 2017; Sirohi
et al., 2020). It naturally accumulates intracellulary in a large
number of microorganisms (Oliveira et al., 2004; Mohapatra
et al., 2020; Mostafa et al., 2020; Pati et al., 2020; Penkhrue et al.,
2020; Nygaard et al., 2021). Some bacteria synthesize PHB as part
of the primary metabolism; others, such as Cupriavidus necator,
require a nutritional imbalance in the culture media to activate
the synthesis metabolism (Grousseau et al., 2014; Getachew and
Woldesenbet, 2016; Amini et al., 2020).

The major limitation for commercial use of biopolymers is
the high cost of production (Li et al., 2017; Li and Wilkins,
2021). For this reason, several studies have focused on the
use of low-cost raw materials from agricultural residues (Sirohi
et al., 2020) and fermentation methods that favor competitive
production (Shivakumar, 2012; Sallau et al., 2018; Sukruansuwan
and Napathorn, 2018; Dalsasso et al., 2019), such as fed batch
fermentation processes, which increase the productivity of PHB
(Xia et al., 2017; Li andWilkins, 2020, 2021; Nygaard et al., 2021).

In 2019, Costa Rica exported 120 million boxes of bananas
(18.14 kg/box), which reached markets such as the European
Union and the United States. The banana industry estimated
328,303 tons of fruit are rejected annually in packing plants
(CORBANA, 2019). Rejected fruit has a high content of sugars
such as glucose, sucrose and fructose, as well as a variety of
minerals, vitamins and amino acids (Chan-Blanco et al., 2003;
Guylène et al., 2009) that can be used in fermentative processes.

The objective of this research was to use banana pulp juice,
an agroindustrial by-product as the carbon source for PHB
production in a submerged fed-batch fermentation.

MATERIALS AND METHODS

Banana By-Product
The banana by-product, obtained from a pulp production
process, was supplied by Compañía Mundimar (Limón, Costa

Rica) and consisted of a puree with a high seed content.
The material was subjected to enzymatic maceration with
Crystalzyme R© PMLX (White Labs) to increase the content of
fermentable sugars. A pneumatic press was then used to obtain
a juice from the banana purée (JBP) with a final concentration
of 20◦ Brix and pH 3.6. Sugar content in JBP was measured
by HPLC (Agilent 1260 Infinity). The instrument was equipped
with a refractive index detector (RID) (Sullivan and Carpenter,
1993). Mineral content of the substrate was determined by
atomic absorption spectrophotometry (AOAC International,
2012b,c,d,e,f). Nitrogen concentration was measured according
to AOAC International (2012a).

Bacterial Strains
Eleven native isolates were provided by the Center for Research
in Cellular and Molecular Biology of the Universidad de Costa
Rica (CIBCM-UCR). These strains are part of a collection
generated from samplings in different places in Costa Rica and
have been obtained for various research projects of the CIBCM.
The strains used in this study were selected from the positive
reaction to Nile blue staining, a lipophilic fluorescent dye used
to visualize hydrophobic cell structures such as membranes or
lipid-like inclusions, like PHB (Juengert et al., 2018). A strain
of Cupriavidus necator (ATCC 17699) was used as a control
microorganism. The isolates were grown on Trypticase Soy Agar
(TSA) (OXOID, CM0131, USA) at 30◦C for 24 h. Cultures grown
on TSAwere used to prepare suspensions in Trypticase Soy Broth
(TSB) (OXOID, CM0876, USA) to a concentration equivalent to
standard 4 on the McFarland turbidity scale. The suspensions
were frozen in 800 µL portions in cryovials with 200 µL 30%
sterile glycerol until later use (Tedeschi and De Paoli, 2011).

PHB Extraction
Two mL of cultures were centrifuged at 10,600 rcf for 10min.
The cell pellets were resuspended in 2mL of distilled water and
transferred to 10mL headspace vials. A volume of 6mL of an
85:15 mixture of methanol:sulfuric acid (Dalal et al., 2010) was
added to each sample. Sealed vials were incubated at 90–95◦C
for 3 h in a thermostatic bath with agitation for the methanolysis
process (Cavalheiro et al., 2009; Dobroth et al., 2011; Wu et al.,
2012; Davis et al., 2013). The samples were cooled in an ice bath
and 1.5mL of distilled water and 3mL of chloroform were added.
Samples were shaken vigorously and allowed to settle for phase
separation. The organic phase was extracted (the sample was
dried over anhydrous sodium sulfate) (Coats et al., 2008), and
then filtered through a 0.22µm filter and transferred to vials for
Gas Chromatography (GC).

Quantification of PHB
Methyl (R)-3 hydroxybutyrate (3-MHB) (Sigma R©, CAS: 3976-
69-0) was used as a standard for PHB quantification (Cavalheiro
et al., 2009) while benzoic acid was used as an internal standard
(Merk, CAS: 65-85-0) (Coats et al., 2008). The methyl esters of
3-hydroxyalcanoic acid were analyzed by gas chromatography
(7820A, Agilent Technologies) coupled to mass detection (5977B
MSD Agilent Technologies). Detector was operated on Scan
mode, with 70 eV ionization voltage. Two microliters samples
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were injected into a HP-Innowax column, with a length of 30m,
internal diameter of 0.25mm and width of 0.25µm (Çiggin et al.,
2009; Davis et al., 2013). The helium flow was 8 mL/min. A
20:1 split relation was used. The temperature of the injector and
the detector was 250◦C. Temperature was increased from 120 to
220◦C at a rate of 3◦C/min (Davis et al., 2013).

Evaluation of PHB Production Capacity of
Native Strains in Flask Culture
Fermentations were carried out in two stages: a growth stage and
a PHB production stage with limited nitrogen (Amirul et al.,
2008; El-Sayed et al., 2009; Yang et al., 2010; Garcia-Gonzalez
et al., 2015). For the first stage, 1mL of cryopreserved culture was
inoculated to 50mL of TSB in 250mL Erlenmyer flasks. Cultures
were incubated for 24 h at 30◦C and 150 rpm in an orbital shaker
(Lab Companion, SI-600, Germany). For the second fermentative
phase, cultures were centrifuged at 3,320 rcf for 15min in order
to remove the growth medium, and the resulting cell pellet was
resuspended in 50mL of imbalanced culture media for PHB
production described by Khanna and Srivastava (2005) with
modifications: Fructose: 40 g/L, NH4Cl: 5 g/L, KH2PO4: 1.5 g/L,
NaH2PO4 : 4 g/L, MgSO4

∗ 7H2O: 0.51 g/L, CaCl2: 0.02 g/L, trace
solution: 1 mL/L (Trace solution composition [ZnSO4

∗ 7H2O:
13 mg/L, FeSO4

∗ 7 H2O: 2 mg/L, (NH4)6Mo7O24
∗ 4H2O: 6

mg/L, H3BO3: 6 mg/L]. Cultures were incubated at 30◦C in an
orbital shaker at 150 rpm for 48 h. Each strain was evaluated in
triplicate. A Completely Randomized Design (CRD) was used
with 12 treatments (11 native isolates and the control). The
response variable was PHB concentration determined by GC-
MS. Results were analyzed by one factor ANOVA usingMicrosoft
Excel (version 18. 2008. 12711. 0).

Design of Medium Supplemented With JBP
for Growth of C. necator
Nitrogen (NH4Cl) and carbon (JBP) concentrations in culture
media for C. necator (ATCC 17699) were optimized in order to
maximize biomass growth. A 22 Central Composite Rotational
Design was used to determine test concentrations of both
components, according to Table 1. Four replicates of the
central point were executed for statistical parameters calculation.
Cell concentration was determined by measuring each culture
optical density by spectrophotometry at 425 nm. A Response
Surface Analysis was performed using JMP 8 software (SAS
Institute Inc.).

For each experiment, 50mL of culture broth supplemented
with the test concentrations of JBP and NH4Cl were prepared
in 250mL erlenmeyer flasks. Besides the test concentrations of
NH4Cl and JBP, the media contained 5 g/L NaCl and 2.5 g/L
KH2PO4. For each broth formulation, JSB, salts solution and
water were combined. pH was adjusted to 7.1 with 1M NaOH.
NH4Cl solution was autoclaved separately and aseptically added
to each flask.

Each flask was inoculated with 1mL of cryopreserved bacterial
suspension and incubated at 30◦C with 150 rpm agitation for
24 h. The optical density of the culture was measured at the end
of the incubation.

TABLE 1 | JBP percentages and NH4Cl concentrations evaluated by a central

composite design for C. necator growth optimization.

Experiment Design points % juice NH4Cl (g/L)

1 0 12.5 3.5

2 –+ 5 5

3 A0 23 3.5

4 0a 12.5 1.4

5 –– 5 2

6 a0 1.9 3.5

7 0A 12.5 5.6

8 +– 20 2

9 0 12.5 3.5

10 ++ 20 5

11 0 12.5 3.5

12 0 12.5 3.5

PHB Production Process Implementation
in Bioreactor
A fed-batch fermentation process was performed in triplicate
using the C. necator strain (ATCC 17699). The process was
carried out in stirred tank reactors (Applikon R© Biotechnology)
in a 3 L volume of culture media with the following composition:
JBP: 5%; NaCl: 5 g/L; KH2PO4: 4 g/L, NH4Cl: 2 g/L,
Na2HPO4

∗ 2H2O: 4.5 g/L, MgSO4
∗ 7H2O: 0.51 g/L, CaCl2:

0.02 g/L and 10X trace element solution: 1 mL/L [ZnSO4
∗

7H2O: 130 mg/L; FeSO4
∗ 7H2O: 20 mg/L; (NH4)6Mo7O24

∗ 4H2O: 60 mg/L; H3BO3: 60 mg/L]. The inoculum was
prepared by adding 3mL cryopreserved culture to 300mL broth
and incubating with shaking at 175 rpm for 24 h at 30◦C
(Aramvash et al., 2015).

Fermentation parameters were controlled with the ez-
Control console and BioXpert R© XP software (Applikon R©

Biotechnology). Culture conditions were: temperature 30◦C,
agitation 350 rpm, pH 7 adjusted with 2M NaOH and 100%
air saturation at a flow of 1 vvm. The biomass production
stage was carried out over 24 h, and was followed by the PHB
production stage, initiated by the addition of a fructose pulse
(500 g/L), at an agitation speed of 500 rpm. In this stage, the
effect of the initial concentration of fructose (30, 40 or 50 g/L)
on PHB production was evaluated. Data were analyzed by one-
way ANOVA using the program JMP 8 (SAS Institute Inc.).
Samples were collected every 24 h; the concentration of PHB
was determined by GC-MS, and sugar content was measured
by HPLC (Agilent 1260 Infinity). The instrument was equipped
with a refractive index detector (RID). A Zorbax Carbohydrate
column with dimensions: 5µm × 150mm × 4.6mm was used
for the analysis. The following analytical conditions were applied:
flow: 1.2 mL/min; oven and detector temperature; 30◦C and
injection volume: 5 µL Nitrogen concentration was determined
by Rapid N- Exceed R© Combustion Method according to AOAC
International (2016). The biomass dry weight concentration was
determined in duplicate using a thermogravimetric analyzer
(TGA 701, Leco).
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RESULTS

Characterization of JBP
Enzymatic treatment of banana agroindustrial by-
product produced a viscous concentrated juice. Chemical
characterization showed values for fermentable sugars and
minerals that can be used by the microorganism during
fermentation. The ratio of sucrose, glucose and fructose in
the JBP was 1:3.7:3.6, respectively. The nitrogen content was
0.056/100 g (Table 2).

PHB Production Capacity of Bacterial
Strains
PHB production in native strains was not quantifiable (Measured
PHB concentrations stood between detection and quantification
limits defined for the method), except for CR-12 which showed a
concentration of 0.5 g PHB/L culture broth. The control strain
produced 2.82 g/L of culture broth. According to ANOVA,
significant differences (p< 0.05) were found for PHB production
means between the native strain CR-12 and control strain.

Design of JBP-supplemented Medium for
Growth of C. necator
The effects of JBP (p < 0.001) and NH4Cl (p < 0.001)
concentrations, as well as both components interaction (p =

0.0464) was significant on C. necator cell growth, with a greater
influence of JBP on optical density (Figure 1). The biomass
concentration increased as levels of NH4Cl and JBP decreased,

TABLE 2 | Chemical composition of banana by-product juice (JBP).

Component Concentration

Sucrose (g/100 g) 1.88 ± 0.04

Glucose (g/100 g) 6.97 ± 0.45

Fructose (g/100 g) 6.75 ± 0.43

Nitrogen (g/100 g) 0.056 ± 0.001

Calcium (mg/100 g) 11.62 ± 0.39

Sodium (mg/100 g) 0.64 ± 0.04

Potassium (mg/100 g) 214.48 ± 6.3

Iron (mg/100 g) 0.07 ± 0.002

Magnesium (mg/kg) 305.76 ± 2.02

Phosphorous (mg/kg) 258.85 ± 20.95

Sulfur (g/100 g) 1.38 ± 0.01

as shown in Figure 2. Biomass concentration (OD) presented
a linear behavior with an R2 value of 0.99 (Table 3). Based on
these results, concentrations of 2 g/L of NH4Cl and 5% JBP were
selected for use in fermentation experiments.

PHB Production Process Implementation
in Bioreactor
Dissolved oxygen (DO) saturation was below 15% during the
first stage of exponential growth, while levels of 20–40% were
observed in the second stage of the process. Oxygen levels
remained near zero during the first hours of fermentation. At
the beginning of the fermentations, the fructose concentration
was 2 g/L. After 25 h of culture, this value reached 50 g/L due
to the fructose pulse added to initiate the PHB production stage.
The sugar content then decreased and was completely depleted
by the time the process reached 72 h. Little change in nitrogen
concentration was observed at the end of the growth phase of the
microorganism (Figure 3).

A biomass concentration of 24.42 ± 2.25 g/L was obtained
at the end of the first fermentation stage. For fermentations
where 30 and 40 g/L fructose were tested, PHB production was
not detectable at any of the sampling times (24, 48, 72, and
96 h). A maximum PHB production of 1.3 g/L was reached
after 96 h of fermentation for the 50 g/L fructose assay. In such
experiments, C/N ratio was roughly 10, while C/N ratio obtained
in fermentations with 30 and 40 g/L fructose was lower than 10.

In addition to methyl (S)-(+)-3-hydroxybutyrate (PHB)
signal, various fatty acids and carboxylic acids were also
identified (Table 4).

DISCUSSION

Agro-industrial by-products can contain internal structures such
as starches, cellulose and complex sugars that are difficult to
transform directly by microorganisms into products of interest
(Kulkarni et al., 2015; Sirohi et al., 2020). The enzymatic
maceration pretreatment applied to the banana pulp allowed
the conversion of the substrate into simple sugars molecules,
primarily glucose (Velásquez-Arredondo et al., 2010) and
fructose, as well as an increment on proteins and polysaccharides
accessibility (Naranjo et al., 2014; Tsang et al., 2019), and
facilitated the development of fermentation processes for PHB
production. Even though the substrate enzymatic treatment
increase the process costs, they are preferred over chemical
treatments because the latter generate unwanted secondary

FIGURE 1 | Sorted parameter estimates for the response surface analysis: effect of JBP and NH4Cl concentrations in culture medium and their interaction in

C. necator cell density. *marks statistically significant factors for p < 0.05.

Frontiers in Sustainable Food Systems | www.frontiersin.org 4 June 2021 | Volume 5 | Article 681596

https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org
https://www.frontiersin.org/journals/sustainable-food-systems#articles


Arias-Roblero et al. Fed-Batch Fermentation for PHB Production

FIGURE 2 | Effect of different JBP and NH4Cl supplementation levels in growth medium on of C. necator cell concentration, measured as optical density at 425 nm.

TABLE 3 | Optical Density at 425 nm of C. necator in different formulations of

biomass production culture media.

Pattern JBP (%) NH4Cl (g/L) Optical Density 425 nm

+– 20 2 0.579

0 12.5 3.5 1.731

– – 5 2 4.300

++ 20 5 0.254

– – 5 2 4.158

0 12.5 3.5 2.078

–+ 5 5 3.515

0 12.5 3.5 1.896

+– 20 2 0.600

++ 20 5 0.273

0 12.5 3.5 2.072

– – 5 2 3.983

–+ 5 5 3.568

++ 20 5 0.304

+– 20 2 0.572

–+ 5 5 3.403

0 12.5 3.5 2.135

0 12.5 3.5 2.195

compounds (e.g., furfural) that negatively affect the development
and metabolism of the microorganisms during fermentation (Lu
and Zhong, 2020).

Regarding the native strains PHB production evaluation,
the absence of this polymer in the majority such strains may
be related to the individual nutritional requirements of the
isolates. The optimization of production media is specific for
the microorganism used (Pereira et al., 2021), this study used
a base medium described for C. necator (suitable for control
and CR-12 strains). The other strains may have been inhibited
by components in the medium or may require absent nutrients
from the utilized base medium for their metabolism proper
functioning. PHB production with the native isolate CR-12 and
the control strain was lower than that reported by other authors;
Nygaard et al. (2019) obtained 4.6 g/L PHB usingC. necator strain
ATCC 17967 and Zhila et al. (2015) reported values of 7.2–7.7 g/L
with strain B-10646 (C. eutrophus) in synthetic media in a two
stage fermentation process. However, the PHB concentration of
the control strain was higher than the maximum production of
1.62 g/L reported by Sen et al. (2019).

The concentrations of 2 g/LNH4Cl and 5% JBPwere optimum
within the experimental range. However, results of the study
indicate that higher biomass production may be obtained by
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FIGURE 3 | Fructose and nitrogen levels during fermentation supplemented with 50 g/L fructose (A) Repetition 1, (B) Repetition 2, (C) Repetition 3.

TABLE 4 | Compounds present in bioreactor fermentation samples, identified by

GC-MS.

Compound Retention time (min)

Methyl (S)-(+)-3-hydroxybutyrate (PHB) 5.08

Methyl ester of levulinic acid 6.06

Dimethyl ester of succinic acid 6.25

Methyl ester of lauric acid 8.01

Methyl ester of myristic acid 10.03

Glutaric acid, 2-oxo-, dimethyl ester 10.92

widening the experimental range to include lower concentrations
of these two nutrients. For C. necator, some reports indicate that
biomass production is maximized when glucose is used as the
fermentation substrate, although other types of sugars such as
fructose and xylose have also generated good results (Poomipuk
et al., 2014). Given that the sugars in JBP are primarily fructose
and glucose, this substrate was expected to maximize cell growth
of the microorganism. The C/N ratio in the supplemented
culture media was 5.3 based on the concentration and molar
mass of glucose, fructose and NH4Cl. This value is below the
range reported by Huschner et al. (2015); however, reducing the
nitrogen content may result in a higher biomass concentration.

During fermentation processes implementation for PHB
production, oxygen is an important parameter. C. necator
biomass and PHB production have been observed to increase
when the concentration of dissolved oxygen is maintained above
15% during the exponential growth phase of the microorganism
in a fed-batch system (Cavalheiro et al., 2009). The effect of
DO concentration on PHA production by C. necator has also
been studied. Both the total concentration of PHAs and the
proportion in which the polymers accumulate intracellularly
were incremented when DO saturation was increased to 20% in
the production phase, compared with the same process using a
DO saturation of 2% (Cavalheiro et al., 2012). For all fructose
treatments, the DO saturation increased in the second half of the
process, and reached 20–40% for most of the consulted studies
(Cavalheiro et al., 2009; Atlić et al., 2011; Passanha et al., 2013;
Grousseau et al., 2014; Huschner et al., 2015; Dalsasso et al.,
2019). In order to obtain PHAs, cultures with a high cell density
are required. The biomass concentration in this study was 24.42
± 2.25 g/L. Biomass values of 27 g/L have been obtained using
complex carbon sources from agro-industrial by-products (Atlić
et al., 2011; Cavalheiro et al., 2012).

In general, fructose is the most utilized carbon source for C.
necator; a better PHB production is usually achieved by using
this source than with glucose or othermore complex sources such
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as molasses (Baei et al., 2011). In preliminary experiments, PHB
production was higher using this sugar as a carbon source (data
not shown). Ienczak et al. (2013) obtained PHA yields of 68%
(dry weight) when the biomass concentration was 50 g/L in a fed-
batch system using glucose and fructose. For PHB production,
the carbon source must be maintained at a high concentration
with considerably limited nitrogen. In this research, maximum
PHB production was 1.3 g/L at 96 h. This concentration is lower
than that reported by other authors under similar conditions
of oxygen saturation (Cavalheiro et al., 2009; Atlić et al., 2011;
Passanha et al., 2013; Grousseau et al., 2014; Huschner et al., 2015;
Dalsasso et al., 2019), however, it is close to the concentration
of 3.3 g/L reported by Li and Wilkins (2020) and 1.98 g/L
obtained by Amini et al. (2020). A possible explanation for
these results is the rapid consumption of fructose in the culture
medium, which stimulates consumption of the polymer by the
bacterial metabolism (Poomipuk et al., 2014). For fed-batch
fermentations, PHB productivity was increased by replacing the
single sugar supplement with several pulses of added sugar to
maintain a relatively stable sugar concentration throughout the
fermentation (Nygaard et al., 2021).

In this research, a roughly constant level of nitrogen was
maintained; this may have prevented the C/N imbalance
necessary for high PHB yields, or PHB synthesis may have
been inhibited by the presence of nitrogen (Wang and Yu,
2007; Nygaard et al., 2021). The C/N ratio may explain the
non-detectable levels of PHB in fermentations with fructose
concentrations of 30 and 40 g/L. Huschner et al. (2015) found
important percentages of PHAs using C/N ratios between 50 and
580, and obtained maximum productivity of C. necator ATCC
17699 at 48 h of culture using a C/N ratio of 90. Nygaard et al.
(2019) considered the effect of phosphorous on PHB production
and optimized culture media composition for C. necator ATCC
17967, maximum polymer production was 4.6 g/L when a C/N
ratio of 10 was used.

Signals of other compounds have been detected during PHB
analysis by GC-MS. Werker et al. (2008) suggested that these
compounds were products of alcoholysis (or in the case of
the current study, butanolysis), or were by-products of the
degradation of the cell biomass or microbial metabolites. These
authors used the NIST database to tentatively identify the signals
for levulinic acid and the succinic acid dibutyl ester, compounds
derived from polysaccharides present in the bacterial biomass
and from microbial metabolism, respectively. As shown in
Table 4, these two compounds were found in the fermentations
as methyl ester and dimethyl ester, respectively. It is possible

that the levulinic acid detected in various chromatograms was
derived from microbial metabolism of the simple sugar used,
or from the degradation of the C. necator biomass; levulinic
acid can be used as a precursor for the synthesis of biopolymers
(Sirohi et al., 2020).

Biosynthesis of PHAs and fatty acids share the same
metabolic route with acetyl-CoA and propionyl-CoA as common
intermediates. Thus, both routes compete for precursors,
especially in nutrient-limited conditions. The mechanisms to
explain this competition have not yet been elucidated, and
further research is needed to be able to direct the synthesis
process toward the component of interest, obtain high PHA
productivities and control precisely the composition of these
polymers (Magdouli et al., 2015). Consequently, it is possible that
the fatty acids detected by GC-MS correspond to products of this
metabolic route whose synthesis was favored over that of PHAs.
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