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The challenge of maximising agricultural productivity encourages growers to apply

high volumes of nitrogen (N) fertilisers and pesticides in order to promote and protect

yields. Despite these inputs, pests and pathogens (P&Ps) continue to cause economic

losses and challenge food security at local, national, and global scales. P&Ps are a

particular problem in industrial agricultural environments, where large-scalemonocultures

facilitate rapid growth of crop-adapted P&P populations. P&P population growth is

strongly dependent upon acquisition of N-resources (e.g., amino acids) from crop tissues,

and concentrations of these compounds depend on the metabolic state of the crop

which, in turn, is influenced by its growth stage, by environmental conditions, and by

agrochemical inputs. In this study we demonstrate that routine applications of pesticides

and/or N-fertilisers may inadvertently reinforce the problem of P&P damage in agriculture

by enhancing the nutritional quality of crops for these organisms. N-fertilisation has

diverse influences on crops’ susceptibility to P&P damage; N-fertilisers enhance the

nutritional quality and “attractiveness” of crops for P&Ps, and they can also alter crops’

expression of the defensive traits (both morphological and chemical) that serve to protect

them against these organisms. Exposure of crops to pesticides (including commonly

used insecticide, fungicide, and herbicide products) can result in significant metabolic

disruption and, consequently, in accumulation of nutritionally valuable amino acids within

crop tissues. Importantly, these metabolic changes may not cause visible signs of stress

or toxicity in the crop, and may represent an “invisible” mechanism underlying persistent

P&P pressure in the field. Given the intensity of their use worldwide, their far-reaching and

destructive consequences for wildlife and overall ecosystem health, and the continued

prevalence of P&P-associated crop damage in agriculture, we recommend that the

impacts of these cornerstone agricultural inputs on the nutritional relationship between

crops and their P&Ps are closely examined in order to inform appropriate management

for a more secure and sustainable food system.
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INTRODUCTION

The challenge of maximising agricultural productivity has
encouraged growers to apply increasingly large volumes of
nitrogen (N) fertilisers and pesticides to cropping systems in
order to boost and safeguard yields. The Food and Agriculture
Organisation of the United Nations (FAO) estimates that
approximately 109 million tonnes of fertiliser N were applied
globally in 2018, along with approximately 4 million tonnes of
pesticide active ingredients (FAOSTAT, 2020a,b). These inputs
are forecast to increase in the coming years, in step with
the continued growth of the human population (Oerke, 2006;
Bodirsky et al., 2014).

Alongside the importance of these chemicals in current
approaches to industrial food production (by ‘industrial’ we
mean high-yielding agricultural systems that rely on high levels
of external inputs), and their considerable significance for
the global economy, the environmental costs of agronomic
reliance on N and pesticides are increasingly apparent. Intensive
application has resulted in their near-ubiquitous pollution of
soils, freshwaters, oceans, and the atmosphere. Agricultural
N inputs substantially alter global N-cycling, with deleterious
consequences for biodiversity and overall ecosystem stability,
air quality, and contributions to climate forcing both regionally
and globally (Fowler et al., 2013). Persistent pesticide residues
in agricultural soils, and widespread transport and accumulation
of those residues far from their original sites of application by
wind, water and erosion raise serious concerns regarding toxicity
to non-target organisms, and threats to human health (Silva
et al., 2019). Furthermore, despite the diverse arsenal of pesticides
applied, agricultural pests, and pathogens (P&Ps) continue to
present significant challenges to food production and security
at local, national and global scales, and to cause substantial
economic losses (Oerke, 2006; Savary et al., 2019). A recent
analysis of the impact of P&P damage on yields of five major food
crops – wheat, maize, potato, soybean, and rice–estimated that
global yearly losses range between 17 and 23% for all five crops
except for rice, for which the estimate was 30% (Savary et al.,
2019).

There is concern that intensive use of N-fertilisers and
pesticides in agriculture may inadvertently reinforce the problem
of P&P-associated damage to crops (Figure 1). Of all the
nutrients, N is required in the highest quantity by plants;
sufficient N availability is vital to support all aspects of crop
growth and development. However, fertilisation of crops with
N at high application rates has also been shown to enhance
their nutritional quality for, and thus their attractiveness to,
P&Ps. A large body of literature demonstrates that increased
P&P damage can result where N is applied in excess
(Mattson, 1980; Walters and Bingham, 2007; Chen et al., 2010;
Fagard et al., 2014). In addition, and perhaps paradoxically,
treatment of cropping systems with pesticides (e.g., insecticides,
fungicides, acaricides, herbicides) may also reinforce subsequent
P&P pressure; either by (i) suppressing the natural enemies
(e.g., predators/parasitoids) of pest species, thereby creating
ecological imbalances that allow pest populations to proliferate,

(ii) promoting the evolution of pesticide resistance in some
P&P species, and/or (iii) by inducing changes in the tissue
biochemistry of crops that render them more susceptible. While
the first two of these potential impacts are already well-
described, and often cited as a causal mechanisms underlying
occurrences of “pest resurgence” or “secondary pest outbreak”
following pesticide use (e.g., Carson, 1962; Hardin et al., 1995;
Bottrell and Schoenly, 2012; Bakker et al., 2020), the third
impact has received little attention and is currently much less
comprehensively understood.

“Trophobiosis” the Nutritional Relationship
Between Agrochemicals, Crops, and Their
P&Ps
The theory of “trophobiosis” (Chaboussou, 2004) provides initial
evidence that intensive use of N-fertilisers and/or pesticides
would promote P&P damage in agriculture. Crops’ suitability
as hosts for P&P organisms depends to a large extent upon
the availability of soluble nutrients (e.g., amino acids, soluble
sugars) in their tissues. That availability depends on themetabolic
state of the crop which, in turn, is influenced by its age or
growth stage, as well as by external conditions such as soil
characteristics, water, light, and agrochemical inputs. Via its
conversion to amino acid precursors, N is used by plants
to synthesise proteins. N-fertilisation tends to increase tissue
concentrations of soluble N and amino acids, however, since
the uptake of N can occur more rapidly than its incorporation
into primary and secondary metabolic processes (Liu et al.,
2018). Since these soluble compounds are major growth limiting
nutrient sources for P&Ps, the trophobiosis theory proposed
that their elevated concentrations following fertilisation would
create a favourable environment for P&P organisms to feed
and proliferate. Chaboussou also presented data indicating that
exposure of crops to a range of pesticides (those in common
use at the time of publication) resulted in subtle disruption to
crops’ primary metabolism and, consequently, in accumulation
of amino acids (e.g., glutamine, arginine, asparagine) in crop
tissues. In much the same way as for N-fertilisation, it was
suggested that routine pesticide exposure could render crops
more susceptible to subsequent P&P damage by enhancing
the concentration of these nutritionally valuable compounds in
their tissues.

In this review, we apply the nutritional focus of the
trophobiosis theory as a lens through which to examine the
impacts of N-fertilisation and a range of contemporary pesticide
products on crops’ susceptibility to P&P damage. We draw
together key insights from a broad literature pool spanning a
range of interrelated topics, in order to (i) provide an overview
of current understanding regarding the complex influence of
N-fertilisation on crops’ P&P susceptibility; (ii) investigate the
impact of pesticide exposure on crops’ internal biochemistry and
nutritional quality for P&P organisms; and (iii) identify key gaps
in current understanding, and make recommendations for future
research directions.
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FIGURE 1 | Pathways via which the un-intended impacts of N-fertilisers and/or pesticides may reinforce the problem of pest and pathogen (P&P) damage in

agriculture. Both N-fertilisers and/or pesticides can enhance the biochemical susceptibility of crops to P&P damage, by enhancing concentrations of highly valuable

nutritional compounds within crop tissues (e.g., N-rich amino acids (AAs)). In addition, N-applications can result in changes to crops’ expression of the defensive traits

that serve to protect them against P&P organisms. Finally, pesticide applications can enhance crops’ ecological susceptibility to P&P damage by suppressing the

“natural enemies” (e.g., predators and parasitoids) of P&P species. These impacts (either alone, or in combination) may stimulate P&P population growth and

precipitate damage to crops, and this may result in the need for further pesticide applications (orange arrows, agrochemical inputs; blue arrows, biochemical impacts;

green arrows, ecological impacts).

IMPACTS OF N-FERTILISATION ON
CROPS’ SUSCEPTIBILITY TO P&Ps

Sufficient N-availability is crucial to support crop development
and promote high yields. Plants acquire most of their N from
the soil through plant-mediated uptake of nitrate or ammonium,
or additionally through symbiont-mediated atmospheric N2

fixation in legumes. Inside the plant nitrate (NO−

3 ) is first
converted to nitrite (NO−

2 ) via action of the enzyme nitrate
reductase (NR). Nitrite is then converted to ammonium
(NH+

4 ) via the enzyme nitrite reductase (NiR). The ammonium
is used for synthesis of amino acids via the glutamate
synthase/glutamine-2-oxoglutarate aminotransferase (GOGAT)
cycle, and these amino acids become the precursors of complex
plant proteins.

It has long been recognised that crops’ N-status can influence
their interactions with P&Ps. The underlying mechanisms are
complex, however, since N-fertilisation is shown to impact upon
both nutritional (see N-fertilisation enhances crop quality for
insect herbivores, and N-fertilisation enhances crop quality for
pathogenic microbes) and defence (see N-fertilisation influences
crops’ chemical defences against P&Ps) components of crop-
P&P interactions. This phenomenon has been described in
previous reviews which focus on the relationship between crop
N-nutrition and interactions with phytophagus insect pests
(Mattson, 1980; Awmack and Leather, 2002; Chen et al., 2010),

and with phytopathogenic microbes (Snoeijers et al., 2000;
Walters and Bingham, 2007; Fagard et al., 2014; Sun et al., 2020).
Illustrated by examples drawn from these reviews as well as from
recently published experimental work, the following sections
provide an overview of the influence of N-supply on crops’
susceptibility to P&Ps.

N-Fertilisation Enhances Crop Quality for
Insect Herbivores
Phytophagous insects utilise plant-derived N compounds as
building blocks for biosynthesis of their own tissues (Mattson,
1980). Some insect species assimilate plant-N by chewing plant
material and digesting the constituents, whilst others extract
soluble N and amino acids directly by piercing individual cells,
and from phloem sap. When presented with choice, most insect
herbivores are shown to distinguish between highly fertilised
plants containing high concentrations of soluble N and amino
acids, and those of lower nutritional quality (Chen et al., 2010).
Insects assess the palatability of plant hosts via a number
of morphological properties including the shape, colour, and
toughness of leaves, and the presence of pubescence or trichomes
(Mattson, 1980; Awmack and Leather, 2002).

N-status has been shown to influence the preference of adult
female insects when selecting crop hosts on which to raise new
generations of larvae (Prudic et al., 2005; Chen and Ruberson,
2008; Chen et al., 2010; Žanić et al., 2011; Braswell et al., 2019).
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For example, female moths of the beet armyworm (Spodoptera
exigua) showed preference for oviposition on cotton plants
fertilised withN at high application rates, comparedwith controls
(Chen and Ruberson, 2008), and the oviposition rate of tobacco
whitefly (Bemisia tabaci) was significantly higher on tomatoes
(Lycopersicon esculentum Miller cv. Belle) receiving high or
intermediate N rates, compared with those receiving low rates
(Žanić et al., 2011).

Once eggs hatch, larvae and nymphs have been shown to
develop more rapidly (Glynn et al., 2003; Groenteman et al.,
2006; Chen and Ruberson, 2008; Hosseini et al., 2010) and
to achieve greater size/body weight when feeding on high-
N crops (Nevo and Coll, 2001; Chen and Ruberson, 2008;
Hosseini et al., 2010; Aqueel and Leather, 2011; Ren et al., 2013;
Larbat et al., 2015; Lange et al., 2019). When three leaf-chewing
herbivores; the spotted fireworm (Choristoneura parallela), the
sparganothis fruitworm (Sparganothis sulfureana), and the gypsy
moth (Lymantria dispar) were raised on cranberry (Vaccinium
macrocarpon), larval body weight increased significantly with N
application rate in all three species (Lange et al., 2019). In general,
rapid larval development and increased body weight are known
to confer greater likelihood of survival to reproductive maturity,
and greater overall fecundity (Mattson, 1980; Awmack and
Leather, 2002). By contrast, larvae reared on low-N crops tend to
exhibit prolonged development times (Mattson, 1980; Awmack
and Leather, 2002; Chen and Ruberson, 2008; Chen et al., 2010;
Larbat et al., 2015) and increased mortality (Comadira et al.,
2015; Larbat et al., 2015; Lange et al., 2019). A large number of
studies document significantly higher rates of insect herbivore
population growth, and/or higher ultimate population densities
where N application rates are high, compared with controls (e.g.,
Hasken and Poehling, 1995; Jauset et al., 2000; Bi et al., 2001;
Brodbeck et al., 2001; Nevo and Coll, 2001; Couture et al., 2010;
Sauge et al., 2010; Chow et al., 2012; Hu et al., 2016; Larbat
et al., 2015; Lange et al., 2019). Finally, a fascinating review by
Chen et al. (2010) describes how the “bottom up” effects of N-
fertilisation can also influence tritrophic interactions between
crops, herbivores, and their natural predators and parasitoids.

The above findings demonstrate that high N-availability can
“feed” the problem of pest pressure in agriculture, by enhancing
the nutritional quality of crop tissues and supporting rapid
population growth of insect herbivores. This highlights an
important tradeoff for growers, since any decision to mitigate
this effect by reducing fertiliser application rates could limit the
overall yield of the crop if N becomes limiting. A balance must be
struck between judicious N-application to minimise nutritional
promotion of P&P species, and sufficient N-availability to
support crop productivity and quality.

It should also be noted, however, that these trends cannot
be assumed to be universal to all crop-pest interactions; since
the nature and degree of herbivore response to variations in
host N-content is shown to vary both within and between
insect feeding guilds (e.g., between leaf chewing or sap-sucking
species). A number of factors are likely to contribute to this
variation. For example, due to heterogeneous spatial partitioning
of N within the crop, the quantity and quality of N-resources
available to a particular pest will depend upon the organs

or tissues on which they commonly feed. In addition, insect
species vary in their sensitivity to the defensive traits (e.g.,
structural barriers/toxins/digestibility reducers) synthesised by
plants to discourage feeding, and plants’ defensive chemistry is
also shown to vary significantly with their nutritional status (see
N-fertilisation influences crops’ chemical defences against P&Ps).
In general, phloem-feeding insects (e.g., aphids, plant hoppers,
leafhoppers, whiteflies) are shown to be highly responsive to
changes in crop N-status, whereas the effects on leaf-chewing
species are shown to be less consistent (Mattson, 1980; Altieri and
Nicholls, 1995; Awmack and Leather, 2002; Chen et al., 2010).
Finally, it is important to note that in some cases, rapid vegetative
growth (afforded by high nutrient availability) may allow crops
to “keep up” with the biomass removal and/or tissue damage
occurring as a result of herbivore feeding (Meyer, 2000).

N-Fertilisation Enhances Crop Quality for
Pathogenic Microbes
Microbial phytopathogens include oomycetes, fungi, bacteria,
and viruses. As with insect herbivores, their survival requires
acquisition of nitrogenous resources from host plant tissues,
and pathogens have evolved diverse strategies for infection and
feeding (Solomon et al., 2003; Berger et al., 2007; Divon and
Fluhr, 2007). Pathogens with a “biotrophic” lifestyle extract
nutrients directly from the apoplast and/or the haustorial matrix
of living host cells, whereas “necrotrophic” pathogens kill host
cells in advance of invasion and feed on decomposing tissue
constituents. The N resources available to a particular pathogen
depend, thus, upon its lifestyle, upon the plant organ or tissue
being colonised, and on the overall N-status of the plant.
Fertilisation of crops with N enhances the concentration of
soluble N-compounds in crop tissues (including in the apoplast)
and thus enriches the pathogen diet (Walters and Bingham,
2007; Fagard et al., 2014; Sun et al., 2020). In addition, N-
fertilisation influences plant morphological characteristics such
as the branching and expansion of the canopy, which in turn
influence the canopy microclimate. The large, dense canopies
typical of high-N crops are found to be more conducive to
pathogen colonisation and spore transfer than small, sparse ones
(Walters and Bingham, 2007; Sun et al., 2020).

Numerous studies have demonstrated that measures of crop
disease severity (e.g., the extent of lesion area and/ or pathogenic
spore production) were enhanced when N-application rates
were increased relative to controls (Walters and Bingham, 2007;
Fagard et al., 2014; Huang et al., 2017; Sun et al., 2020).
For example, the severity of powdery mildew disease (caused
by the biotrophic fungus Erysiphe graminis f.sp. hordei) in
seedlings of spring barley (Hordeum vulgare) was strongly
influenced by N-supply; both the colony density and cumulative
spore production by the pathogen increased significantly with
increasing N application rates to the crop (Jensen and Munk,
1997). The severity of both powdery mildew, and septoria leaf
spot disease (the latter caused by the hemi-biotrophic fungus
Septoria tritici) was significantly and positively correlated with
crop N-status in winter wheat (Triticum aestivum) (Olesen et al.,
2003). Also in winter wheat, Neumann et al. (2004) showed that
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rust disease (caused by the biotrophic fungus Puccinia striiformis
f.sp. tritici) could be curtailed by reducing N-supply to wheat
plants, even though the cultivar used (cv. Brigadier) is known to
be particularly susceptible to rust infection.

Collectively, a large body of evidence indicates that high
rates of N-fertilisation can increase disease pressure in cropping
systems by increasing the nutritional resources available to
phytopathogenic microorganisms. Once again, the trade-off is
apparent between the beneficial impacts of N for supporting high
yields, and its concurrent promotion of disease pressure which
may, in turn, threaten the overall yield and quality of the crop. It
would be valuable for future research to explore whether addition
of N in alternative forms (for example via rotations with nitrogen
fixing legumes, or application of manure) would enhance crops’
nutritional susceptibility to P&P in a similar way.

As with the findings regarding insect herbivory, however,
the above trends are not universal and a number of studies
report either neutral, or negative effects of N-fertilisation
on crop disease severity (e.g., Hoffland et al., 1999, 2000;
Lecompte et al., 2010). Findings from a comparative study by
Hoffland et al. (2000) emphasise that the relationship between
crop N-supply and disease severity is highly pathogen-specific.
In parallel laboratory experiments, the authors observed the
effect of increasing N application rates on the susceptibility
of tomato plants (L. esculentum) to three different pathogen
species. Susceptibility to “bacterial speck” (caused by the
hemibiotrophic bacterium Pseudomonas syringae pv. tomato)
and also to powdery mildew (caused by the biotrophic fungus
Oidium lycopersicum) was significantly and positively correlated
with tomato leaf N-concentrations, but crops’ N-status had no
appreciable effect on their susceptibility to Fusarium wilt disease
(caused by the necrotrophic fungus Fusarium oxysporum f.sp.
lycopersici). Part of the variation observed in these results (and
in the literature more broadly) can be attributed to the differing
lifestyles of the pathogens studied (Snoeijers et al., 2000; Solomon
et al., 2003; Walters and Bingham, 2007; Fagard et al., 2014). In
general, N-fertilisation is expected to strongly enhance the diet
(and increase the virulence) of biotrophic pathogens, since these
are dependent upon direct extraction of soluble nutrients from
living plant cells. The influence of fertilisation on hemibiotrophic
and necrotrophic interactions appears to be less consistent
(Hoffland et al., 2000; Lecompte et al., 2010; Ballini et al., 2013;
Vega et al., 2015; Zhou et al., 2017). On the one hand, the capacity
of necrotrophs to kill and decompose host tissues enables them
to utilise a broader range of nutrient resources than biotrophs,
and this relative “generalism” is thought to buffer the impacts
of changes to soluble N concentrations in plant cells (Solomon
et al., 2003). In addition, a plentiful N-supply to the crop supports
the endurance of basic cellular metabolism (via maintenance
of the GS/GOGAT cycle), and this support may prolong the
survival of host cells during interactions with necrotrophs, which
specialise in colonisation of weak and/ or senescing tissues
(Seifi et al., 2013, 2014). Finally, and in a similar vein to the
variation seen between different species of phytophagus insects,
phytopathogen species vary in their sensitivity to the defensive
compounds produced by plants in order to ward off infection
and curtail disease.

N-Fertilisation Influences Crops’ Chemical
Defences Against P&Ps
Various components of plants’ innate chemical defences (see
Box 1) against P&Ps can be enhanced, constrained, or remain
neutral in response to N-fertilisation (reviewed byMattson, 1980;
Chen et al., 2010; Fagard et al., 2014; Mur et al., 2016; Sun et al.,
2020). For example, conditions of high N-availability generally
decrease plants’ synthesis of C-based defensive compounds, but
increase synthesis of predominantly N-based compounds (Sun
et al., 2020). A recent review by Sun et al. (2020) emphasises
that there can be no unifying model with which to predict the
impact of N-fertilisation regimes on crop defence for a given
crop-P&P interaction, since the responses of particular defensive
traits are idiosyncratic and vary depending on the biosynthetic
pathways involved in, and the resources required for, their
expression. In turn, P&P species vary in their sensitivity and
responsiveness to these traits (Chen et al., 2010; Sun et al., 2020).
Some general patterns in the relationship between N-fertilisation
and components of crop defence have been identified, and these
will now be outlined in brief. We refer the reader to Sun et al.
(2020) for further details.

Because the synthesis of each defensive trait or compound
requires investment of precursor molecules and energy, models
such as the “Growth Differentiation Balance hypothesis”
(GDBH) predict the existence of a physiological trade-off in
allocation of plant resources between primary and secondary
metabolic pathways (Herms and Mattson, 1992; Massad et al.,
2012). According to the GDBH, N-fertilisation stimulates
rapid vegetative growth; and, since immature leaves are
strong photosynthetic sinks, their growth requires export of
photosynthate frommature leaves to support growingmeristems.
This export drains the pool of carbohydrates available for
synthesis of C-based defensive chemicals such as the flavonoids,
phenolics, tannins, and terpenoids. By contrast, when N-supply
is lessened to the extent that growth is relatively slowed,
carbohydrates can accumulate in source leaves and become
available for partitioning toward secondary metabolic defences
(Herms and Mattson, 1992; Massad et al., 2012). In line with
the conclusions of the GDBH, findings from numerous studies
indicate that plants’ synthesis of various C-based defensive
compounds can be significantly attenuated under conditions of
high N-availability (Matsuyama and Dimond, 1973; Bryant et al.,
1987; Stout et al., 1998; Hoffland et al., 1999; Jauset et al., 2000;
Coviella et al., 2002; Glynn et al., 2003; Prudic et al., 2005; Chen
and Ruberson, 2008; Sauge et al., 2010; Larbat et al., 2015; Mur
et al., 2016).

In contrast to C-based defences, N-fertilisation can enhance
plants’ expression of some predominantly N-based defensive
compounds–for example the chitinases, chitosanases, and β-
glucanases (enzymes which degrade constituents of bacterial
and/or fungal cell walls to counter infection)–and other
pathogenesis-related (PR) antimicrobial proteins (Stout et al.,
1998; Dietrich et al., 2004; Lou and Baldwin, 2004; Sun et al.,
2020). Furthermore, recent research indicates that the form of
N available to crops (e.g., NO−

3 , NH
+

4 ) can also significantly
impact the expression of defence, by affecting the biosynthesis
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BOX 1 | Crops’ innate defences against P&P damage.

Plants protect themselves from P&P damage by expressing a complex constellation of defensive traits. The outermost layer of defence includes a combination

of “constitutive” morphological barriers, e.g., the waxy epicuticle/ lignified cell walls, and a host of antimicrobial phytochemicals which inhibit P&P ingress and

development. These phytochemicals include N-based (e.g., alkaloids and non-protein amino acids) as well as carbon (C) based (e.g., phenolics, flavonoids,

terpenoids, and tannins) secondary compounds. In addition, plant “recognition” of a pest or pathogen challenge can elicit a suit of induced defence responses; e.g.,

expression of various defence-related genes, further synthesis of antimicrobial chemicals, and development of the hypersensitive response (HR) and localised plant

cell-death (PCD). Defence-related signalling compounds (e.g., reactive oxygen species, nitric oxide, salicylic acid, jasmonic acid) can travel from the initial site of

infection or damage throughout distal tissues to confer systemic acquired resistance (SAR) across the whole plant.

of defence-related signalling compounds including nitric oxide,
salicylic acid, and the polyamines (Gupta et al., 2013; Mur et al.,
2016; Sun et al., 2020).

Although N-availability strongly influences crop defence, it is
not yet possible to anticipate the over-all impacts of particular
fertiliser regimes without further crop-specific information on
the relative effects of N-supply (and form) on the multiple,
interrelated components of crops’ defensive armoury (see Box 1).
Outcomes of individual crop-P&P interactions in the field
will arise from the balance between these interrelated factors,
as well as the sensitivity of particular P&P species to crops’
defensive traits. There is likely to be an intermediate range
of N-supply rates (particular to each crop, and its growing
environment) between which expression of N-responsive defence
traits will be optimal. Where high N-availability does undermine
crop defence, this impact may compound the stimulatory
effects of N-fertilisation on P&P feeding, development and
population growth (see N-fertilisation enhances crop quality for
insect herbivores, and N-fertilisation enhances crop quality for
pathogenic microbes).

IMPACTS OF PESTICIDE EXPOSURE ON
CROPS’ SUSCEPTIBILITY TO P&Ps

Pesticides have become crucial tools for crop protection in
industrial food production. The diversity of modern pesticides,
and their specific modes of action allow growers to suppress
particular P&P “target organisms” with no or minimal harm
to crops. The following discussion examines the subtle impacts
of pesticide exposure on crops’ internal biochemistry, and
the potential for consequent, un-intended impacts on their
nutritional susceptibility to P&P damage.

P&P challenge (e.g., the onset of infection or herbivory)
induces rapid re-orientation of crop metabolism and internal
biochemistry (Pérez-García et al., 1998; Olea et al., 2004; Pageau
et al., 2006; Schwachtje and Baldwin, 2008; Seifi et al., 2013, 2014;
Zhou et al., 2015; Thalineau et al., 2018; Wang et al., 2019). Plant
metabolic pathways induced in response to P&P challenge are
akin to those induced in response to various abiotic stresses (e.g.,
salt, drought, or light stress) and also during the course of natural
tissue senescence (Pageau et al., 2006; Tavernier et al., 2007; Zhou
et al., 2015). They are characterised by a transition from N-
assimilation to N-remobilisation, and begin with the degradation
of ribulose-1,5-biphosphate carboxylase-oxygenase (RuBisCO)

and other chloroplastic proteins in the cells of the mesophyll.
NH+

4 released from chloroplast degradation is re-assimilated
to glutamine, which becomes a substrate for generation of
other N-rich amino acids (Pérez-García et al., 1998; Lea et al.,
2007). Newly generated amino acids are either loaded to the
phloem for translocation to sites of storage or new growth, or
temporarily stored in the cellular vacuole (Masclaux-Daubresse,
2010). The amino acids that commonly accumulate in crop
tissues in response to both biotic and/ or abiotic stresses–e.g.,
glutamine, asparagine, arginine, proline, GABA–are all associated
with pathways of N-recycling, remobilisation, and storage (Lea
et al., 2007; Seifi et al., 2014).

There is a paradoxical relationship between stress-associated
metabolism in plants, and the nutritional requirements of their
P&Ps, since the N-rich compounds which tend to accumulate
in plant tissues during herbivory and/ or during the progress
of disease are valuable, growth limiting nutrients for many P&P
organisms (Solomon et al., 2003; Olea et al., 2004; Tavernier
et al., 2007; Rico and Preston, 2008; Ward et al., 2010; Fagard
et al., 2014; Seifi et al., 2014; Zhou et al., 2015; Huang et al.,
2017; Thalineau et al., 2018). Fagard et al. (2014) propose
an explanation for this; that co-evolutionary development has
led to nutritional adaptation of P&P organisms to utilise the
compounds that accumulate in their hosts under conditions
of stress.

With regard to Chaboussou’s theory of trophobiosis
(Chaboussou, 2004), we note that exposure of crops to
pesticides (several of those in common use at Chaboussou’s
time of writing; for example insecticides such as DDT, parathion
and thiometon, fungicides such as zineb and maneb, and
herbicides such as simazine) was shown to result in protein
degradation, and marked accumulation of amino acids in crop
tissues (White, 1984; Chaboussou, 2004). Chaboussou proposed
that such alterations in the crop biochemical state would render
crops more nutritionally valuable, and thus more vulnerable to
subsequent herbivory and/or disease.

Data from a number of recently published metabolomic
studies (see Box 2) indicates that similar biochemical changes
(akin to those associated with stress and/or senescence) can
occur in crop tissues following exposure to some contemporary
pesticide products (Mahdavi et al., 2015; Serra et al., 2015;
Blondel et al., 2016; Li et al., 2019).

Among these, a detailed study by Serra et al. (2015)
characterised the response of perennial ryegrass (Lolium perenne)
to a suite of chemical “stressors.” Rye seedlings were exposed
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BOX 2 | Metabolomic pro�ling.

Metabolomic profiling uses chromatographic separation coupled with magnetic resonance (NMR) spectroscopy, and/or mass spectrometry (MS) to determine

a biochemical phenotype or “fingerprint” of a particular plant tissue at a particular time. When paired with multivariate analyses, these techniques allow

researchers to identify particular metabolites (e.g., amino acids, carbohydrates, organic acids, lipids) which vary significantly in concentration between two or more

treatment conditions, and thus to visualise and quantify the overall metabolic response of plants to environmental contaminants, or perturbations (Matich et al., 2019).

to “residual” concentrations (low concentrations mimicking
residual soil contamination from previous use) of (i) the broad-
spectrum herbicide glyphosate, (ii) the principle breakdown
product of glyphosate aminomethylphosphonic acid (AMPA)
and (iii) the triazole fungicide tebuconazole, amongst other
pollutants common to agricultural environments. Metabolomic
profiling of plant tissue extracts was carried out using
gas chromatography mass spectrometry (GC-MS) following
exposure treatments. Parallel analyses identified that as well as
stressor-specific responses (owing to known chemical modes
of action), there were a number of common metabolic
response patterns across the exposure treatments. These were
characterised by apparent re-orientation of N-metabolism; for
example concentrations of the amino acid asparagine were
significantly elevated in response to almost all chemical treatment
conditions. Asparagine has a particularly high N:C ratio, making
it a particularly efficient molecule for N transport and storage
(Lea et al., 2007), and its accumulation in treated L. perenne
tissues suggests that seedlings may have undergone some
degree of stress-induced protein degradation/N-remobilisation.
In addition, the branched-chain amino acids (BCAAs) leucine,
valine, and isoleucine were frequently elevated in response
to exposure treatments, as was lysine. These may serve
as osmotic regulators, and as precursors for a range of
secondary metabolites (Mahdavi et al., 2015; Blondel et al.,
2016; Huang and Jander, 2017), and have been shown to
accumulate in Arabidopsis and other plant species as a result
of osmotic stress-induced proteolysis (Huang and Jander,
2017).

A similar response was observed in rice (Oryza sativa
L.). A field study conducted by Mahdavi et al. (2015)
investigated the metabolic response of rice plants to treatment
at recommended rates with the organophosphorus insecticide
diazinon. Concentrations of several amino acids from the
glutamate family, namely glutamate, glutamine, arginine, and
proline were significantly elevated following diazinon treatment.
The BCAAs leucine and valine were also elevated, and after
an initial depletion (between 24 and 48 h after treatment)
asparagine concentrations increased significantly compared
with untreated controls. Along with asparagine, glutamine,
and arginine are important N-storage/transport compounds,
and are putative markers of stress and/or senescence-induced
protein breakdown (Lea et al., 2007). Proline accumulation
is common in response to diverse abiotic stress conditions;
it is a protectant against oxidative/osmotic stresses, and also
functions as an N-storage molecule (Ward et al., 2010; Seifi et al.,
2013).

Blondel et al. (2016) exposed maize seedlings (Zea mays) to
residual concentrations of two organochlorine pesticides (OCPs);
lindane (hexachlorocyclohexane, HCH) and chlordecone (CLD).
While use of these insecticides is now strictly prohibited in
Europe they are still widely used in parts of Asia and Africa,
and their chemical stability renders them highly environmentally
persistent (Blondel et al., 2016; Jayaraj et al., 2017). Seedling
roots were exposed either to 2.5µM HCH, mimicking baseline
soil contamination, or to 25µM HCH or 2.5µM CLD, both
representing residue “hot spots” such as former agricultural sites.
1H-HRMAS NMR-based metabolomic analyses of root tissues
were then carried out. Concentrations of GABA and isoleucine
were significantly elevated in response to 25µM HCH, and
asparagine accumulated remarkably and significantly following
both HCH treatments (+105 and +153% in response to 2.5 and
25µM HCH, respectively). Metabolic fluctuations in response
to CLD were similar to those induced by HCH, although only
one increase, that of isoleucine, was statistically significant. The
authors concluded that although maize is understood to be
relatively tolerant to OPCs, even minute, residual exposures
appeared sufficient to trigger some degree of proteolysis and
N-remobilisation (Blondel et al., 2016).

Finally, a recent study by Li et al. (2019) exposed 2-week-
old seedlings of pak choi (Brassica chinensis) to “residual”
concentrations of the widely used neonicotinoid insecticide
imidacloprid (IMI). LC-QTOF/MS-based metabolomic analyses
were carried out on the 1st and 21st days after exposure (DAE),
and these revealed significant fluctuations in a wide array of
metabolites. On the 1st DAE tissue concentrations of proline,
glutathione, tryptophan, tyrosine, leucine, lysine, threonine, and
aspartate were all significantly increased compared with controls,
while glutamine and arginine concentrations were reduced.
On the 21st DAE glutamine, arginine, aspartate, phenylalanine,
tryptophan, and spermidine concentrations were all significantly
elevated in treated plant tissues. The overall biomass of IMI-
treated seedlings was significantly greater than that of controls,
and the authors attributed this to hormesis-like stimulation of
crop growth, induced by low-level IMI stress.

While none of the studies detailed above were specifically
designed to examine the impacts of pesticide-induced
biochemical changes on crop-P&P interactions, their combined
findings lead us to a novel hypothesis; that the changes observed
(in general characterised by an apparent metabolic shift toward
proteolytic breakdown, and free amino acid accumulation) may
result in a favourable nutritional environment for P&P organisms
to feed, develop and proliferate (Figure 2). In this way, while
pesticides are applied to suppress P&P organisms in the short
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FIGURE 2 | Un-intended impacts of pesticide applications on crops’ biochemical susceptibility to subsequent pest and pathogen (P&P) damage. Exposure of crops

to agronomically relevant concentrations of various pesticides can trigger a low-level “stress response” in the crop, resulting in subtle but significant metabolic

disruption and accumulation of nutritionally valuable amino acids (AAs) within crop tissues. We hypothesise that pesticide-induced alterations to crop biochemistry

may result in a favourable nutritional environment for P&P organisms (e.g., those not suppressed by the initial pesticide-application) to feed, develop, and proliferate.

Subsequent P&P pressure may then trigger further applications of pesticide (orange arrow, agrochemical inputs; blue arrows, biochemical impacts; green “sketched”

arrows, hypothesised ecological impacts).

term, they may simultaneously improve crop nutritional quality
for surviving, or in-coming P&Ps.

OUTSTANDING QUESTIONS AND
POTENTIAL INTERACTIONS

It is important to note that the subtle (but potentially
nutritionally important) disruption of primary metabolism
observed in the above studies occurred as a common response
to several different pesticides (Mahdavi et al., 2015; Serra et al.,
2015; Blondel et al., 2016; Li et al., 2019). This effect appears,
thus, not to be linked to particular modes of action by active
ingredients. Since only a small number of studies are currently
available, further research will be highly valuable to determine
to what extent this response is expressed in other crop species
and cultivars, exposed to other pesticide types and formulations.
In addition, since the metabolomic analyses offer us only “snap-
shots” of the crop biochemical state at particular time-points
after exposure, it will be valuable for future studies to determine
how long amino acid accumulations persist in effected crop
tissues. Many pesticides (and xenobiotics in general) are rapidly
degraded within plants, and metabolic disruption is likely to
be temporary with crops “recovering” once degradation and
detoxification of the applied chemical is substantial. Finally, since
changes in the biosynthesis and breakdown of amino acids are
certain to impact upon crops’ secondary metabolism and the

synthesis of defensive compounds (Zeier, 2013), future studies
should examine the impacts of pesticide exposure on crops’
expression of defence-related traits (see Box 1).

It is possible that pesticide-induced nutritional enhancement
of crop tissues may occur in tandem with, and perhaps
compound the stimulatory effects of N-fertilisation on P&P
population growth (see N-fertilisation enhances crop quality for
insect herbivores, and N-fertilisation enhances crop quality for
pathogenic microbes). Finally, it is also important to note that
crops’ nutritional state (and their quality for P&Ps) is influenced
by a multitude of interrelated factors; which include the relative
availability of a diverse array of macro- and micro-nutrients as
well as N, the age and stage of development of the crop, and
external growing conditions such as local soil characteristics,
rainfall, temperature and light. The relative importance of
these interacting factors (alongside N and/or pesticide inputs)
in determining crop-P&P outcomes in the field will likely
vary between different crop species and varieties, P&P species,
environments and seasons.

CONCLUSIONS

The findings presented in this review give support to the original
conclusions of the trophobiosis theory. Firstly, we confirm that N-
fertilisation can directly enhance the nutritional quality of crop
tissues for P&Ps, and thereby support enhanced P&P population
growth. In addition, recent research reveals that N-fertilisation

Frontiers in Sustainable Food Systems | www.frontiersin.org 8 July 2021 | Volume 5 | Article 701310

https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org
https://www.frontiersin.org/journals/sustainable-food-systems#articles


Martinez et al. When the Medicine Feeds the Problem

modifies–both quantitatively and qualitatively–crops’ expression
of their defensive traits.

Secondly, recent metabolomic analyses demonstrate that
exposure of crops to pesticides can result in subtle metabolic
disruption and, consequently, in accumulation of nutritionally
valuable amino acids within crop tissues. This effect may not
be sufficient to cause visible signs of toxicity or stress in the
plant, and thus it may go unnoticed by growers in the field.
We hypothesise that P&P populations may benefit from this
stress-related biochemical state; and resultant P&P pressure
may result in a “vicious cycle” of further pesticide applications.
Thus, in addition to the more widely recognised ecological
impacts associated with pesticides’ suppression of predator and
parasitoid species, direct, pesticide-induced enhancement of the
P&P diet may represent an “invisible” mechanism underlying
the persistent problem of P&P-damage in agriculture. Our
hypothesis remains to be confirmed by multi-factorial trials
combining pesticide treatments, biochemical tissue analyses,
and experimental P&P-challenge in a range of crops and
environments. In addition, further research should explore
the potential for these two mechanisms–nutritional stimulation
of P&Ps induced by N-fertilisation, and that induced by

pesticide exposure–to interact where N and pesticides are
applied together.

Given the intensity of their use worldwide, their far-reaching
and destructive consequences for wildlife and overall ecosystem
health, and the continued prevalence of P&P-associated crop
damage in agriculture, we recommend that the impacts of these
cornerstone agrochemical inputs on the nutritional relationship
between crops and their P&Ps are closely examined, in order
to inform appropriate management for a more secure and
sustainable food system.

AUTHOR CONTRIBUTIONS

UL, AG-H, MG, and DM: conceptualisation and methodology.
DM: investigation andwriting—original draught. AG-H, UL, and
MG: supervision and writing—review and editing. All authors
contributed to the article and approved the submitted version.

ACKNOWLEDGMENTS

We are very grateful to all at the Schiehallion Group for their
support of this work.

REFERENCES

Altieri, M. A., and Nicholls, C. I. (1995). Soil fertility management and insect pests:
harmonizing soil and plant health in agroecosystems. Soil Till. Res. 72, 203–211.
doi: 10.1016/S0167-1987(03)00089-8

Aqueel, M. A., and Leather, S. R. (2011). Effect of nitrogen fertilizer on the
growth and survival of Rhopalosiphum padi (L.) and Sitobion avenae (F.)
(Homoptera:Aphididae) on different wheat cultivars. Crop Protect. 30, 216–221.
doi: 10.1016/j.cropro.2010.09.013

Awmack, C. S., and Leather, S. R. (2002). Host plant quality and
fecundity in herbivorous insects. Annu. Rev. Entomol. 47, 817–844.
doi: 10.1146/annurev.ento.47.091201.145300

Bakker, L., Van der Werf, W., Tittonell, P., Wyckhuys, K. A. G., and Bianchi, F. J.
J. A. (2020). Neonicotinoids in global agriculture: evidence for a new pesticide
treadmill? Ecol. Soc. 25:26. doi: 10.5751/ES-11814-250326

Ballini, E., Nguyen, T. T. T., and Morel, J. B. (2013). Diversity and genetics of
nitrogen-induced susceptibility to the blast fungus in rice and wheat. Rice 6:32.
doi: 10.1186/1939-8433-6-32

Berger, S., Sinha, A. K., and Roitsch, T. (2007). Plant physiology meets
phytopathology: plant primary metabolism and plant–pathogen interactions.
J. Exp. Bot. 58, 4019–4026. doi: 10.1093/jxb/erm298

Bi, J. L., Ballmer, G. R., Hendrix, D. L., Henneberry, T. J., and Toscano,
N. C. (2001). Effect of cotton nitrogen fertilization on Bemisia argentifolii

populations and honeydew production. Entomol. Exp. Appl. 99, 25–36.
doi: 10.1046/j.1570-7458.2001.00798.x

Blondel, C., Khelalfa, F., Reynaud, S., Fauvelle, F., and Raveton, M. (2016). Effect
of organochlorine pesticides exposure on the maize root metabolome assessed
using high-resolution magic-angle spinning 1H NMR spectroscopy. Environ.
Pollut. 214, 539–548. doi: 10.1016/j.envpol.2016.04.057

Bodirsky, B. L., Popp, A., Lotze-Campen, L., Dietrich, J. P., Rolinski, S.,
Weindle, I., et al. (2014). Reactive nitrogen requirements to feed the world
in 2050 and potential to mitigate nitrogen pollution. Nat. Commun. 5:3858.
doi: 10.1038/ncomms4858

Bottrell, D. G., and Schoenly, K. G. (2012). Resurrecting the ghost of green
revolutions past: the brown planthopper as a recurring threat to high-
yielding rice production in tropical Asia. J. Asia Pac. Entomol. 15, 122–140.
doi: 10.1016/j.aspen.2011.09.004

Braswell, L. R., Reisig, D. D., and Sorenson, C. E. (2019). Helicoverpa zea

(Lepidoptera: Noctuidae) oviposition and larval vertical distribution in Bt
cotton under different levels of nitrogen and irrigation. J. Econ. Entomol. 112,
1237–1250. doi: 10.1093/jee/toz023

Brodbeck, B. V., Stavisky, J., Funderburk, J. E., Anderson, P. C., and Olson, S.
M. (2001). Flower nitrogen status and populations of Frankliniella occidentalis
feeding on Lycopersicon esculentum. Entomol. Exp. Appl. 99, 165–172.
doi: 10.1046/j.1570-7458.2001.00814.x

Bryant, J. P., Clausen, T. P., Reichardt, P. B., McCarthy, M. C., and
Werner, R. A. (1987). Effect of nitrogen fertilization upon the
secondary chemistry and nutritional value of quaking aspen (Populus
tremuloides Michx.) leaves for the large aspen tortrix [Choristoneura
conflictana (walker)]. Oecologia 73, 513–517. doi: 10.1007/BF003
79408

Carson, R. (1962). Silent Spring. Boston, MA: Houghton Mifflin.
Chaboussou, F. (2004) Healthy Crops: A New Agricultural Revolution. Charlbury:

Jon Carpenter Publishing.
Chen, Y., Olson, D. M., and Ruberson, J. R. (2010). Effects of nitrogen

fertilization on tritrophic interactions. Arthropod. Plant Interact. 4, 81–94.
doi: 10.1007/s11829-010-9092-5

Chen, Y., and Ruberson, J. R. (2008). Impact of variable nitrogen fertilization on
arthropods in cotton in Georgia, USA. Agric. Ecosyst. Environ. 126, 281–288.
doi: 10.1016/j.agee.2008.02.011

Chow, A., Chau, A., andHeinz, K.M. (2012). Reducing fertilization: amanagement
tactic against western flower thrips on roses. J. Appl. Entomol. 136, 520–529.
doi: 10.1111/j.1439-0418.2011.01674.x

Comadira, G., Rasool, B., Karpinska, B., Morris, J., Verrall, S. R., Hedley, P. E.,
et al. (2015). Nitrogen deficiency in barley (Hordeum vulgare) seedlings induces
molecular and metabolic adjustments that trigger aphid resistance. J. Exp. Bot.
66, 3639–3655. doi: 10.1093/jxb/erv276

Couture, J. J., Servi, J. S., and Lindroth, R. L. (2010). Increased nitrogen
availability influences predator–prey interactions by altering host-plant quality.
Chemoecology 20, 277–284. doi: 10.1007/s00049-010-0058-y

Coviella, C. E., Stipanovic, R. D., and Trumble, J. T. (2002). Plant
allocation to defensive compounds: interactions between elevated CO2

and nitrogen in transgenic cotton plants. J. Exp. Bot. 53, 323–331.
doi: 10.1093/jexbot/53.367.323

Frontiers in Sustainable Food Systems | www.frontiersin.org 9 July 2021 | Volume 5 | Article 701310

https://doi.org/10.1016/S0167-1987(03)00089-8
https://doi.org/10.1016/j.cropro.2010.09.013
https://doi.org/10.1146/annurev.ento.47.091201.145300
https://doi.org/10.5751/ES-11814-250326
https://doi.org/10.1186/1939-8433-6-32
https://doi.org/10.1093/jxb/erm298
https://doi.org/10.1046/j.1570-7458.2001.00798.x
https://doi.org/10.1016/j.envpol.2016.04.057
https://doi.org/10.1038/ncomms4858
https://doi.org/10.1016/j.aspen.2011.09.004
https://doi.org/10.1093/jee/toz023
https://doi.org/10.1046/j.1570-7458.2001.00814.x
https://doi.org/10.1007/BF00379408
https://doi.org/10.1007/s11829-010-9092-5
https://doi.org/10.1016/j.agee.2008.02.011
https://doi.org/10.1111/j.1439-0418.2011.01674.x
https://doi.org/10.1093/jxb/erv276
https://doi.org/10.1007/s00049-010-0058-y
https://doi.org/10.1093/jexbot/53.367.323
https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org
https://www.frontiersin.org/journals/sustainable-food-systems#articles


Martinez et al. When the Medicine Feeds the Problem

Dietrich, R., Ploss, K., and Heil, M. (2004). Constitutive and induced resistance
to pathogens in Arabidopsis thaliana depends on nitrogen supply. Plant. Cell
Environ. 27, 896–906. doi: 10.1111/j.1365-3040.2004.01195.x

Divon, H. H., and Fluhr, R. (2007). Nutrition acquisition strategies
during fungal infection of plants. FEMS Microbiol. Lett. 266, 65–74.
doi: 10.1111/j.1574-6968.2006.00504.x

Fagard, M., Launay, A., Clément, G., Courtial, J., Dellagi, A., Farjad, M., et al.
(2014). Nitrogenmetabolismmeets phytopathology. J. Exp. Bot. 65, 5643–5656.
doi: 10.1093/jxb/eru323

FAOSTAT (2020a). Fertilisers by Nutrient. Available online at: http://www.fao.org/
faostat/en/#data/RFN

FAOSTAT (2020b). Pesticides Use. Available online at: http://www.fao.org/faostat/
en/#data/RP

Fowler, D., Coyle, M., Skiba, U., Sutton, M. A., Neil Cape, J., Reis, S., et al. (2013).
The global nitrogen cycle in the twenty-first century. Phil. Trans. R. Soc. B
368:20130165. doi: 10.1098/rstb.2013.0164

Glynn, C., Herms, D. A., Egawa, M., Hansen, R., and Mattson, W. J. (2003).
Effects of nutrient availability on biomass allocation as well as constitutive
and rapid induced herbivore resistance in poplar. Oikos 101, 385–397.
doi: 10.1034/j.1600-0706.2003.12089.x

Groenteman, R., Guershon, M., and Coll, M. (2006). Effects of leaf nitrogen
content on oviposition site selection, offspring performance, and
intraspecific interactions in an omnivorous bug. Ecol. Entomol. 31, 155–161.
doi: 10.1111/j.0307-6946.2006.00772.x

Gupta, K. J., Brotman, Y., Segu, S., Zeier, T., Zeier, J., Persjin, S., et al. (2013). The
form of nitrogen nutrition affects resistance against Pseudomonas syringae pv.
phaseolicola in tobacco. J. Exp. Bot. 64, 553–568. doi: 10.1093/jxb/ers348

Hardin, M. R., Benrey, B., Coll, M., Lamp, W. O., Roderick, G. K., and Barbosa, P.
(1995). Arthropod pest resurgence: an overview of potential mechanisms. Crop
Protect. 14, 3–18. doi: 10.1016/0261-2194(95)91106-P

Hasken, K. H., and Poehling, H. M. (1995). Effects of different intensities of
fertilisers and pesticides on aphids and aphid predators in winter wheat. Agric.
Ecosyst. Environ. 52, 45–50. doi: 10.1016/0167-8809(94)09008-U

Herms, D., andMattson, W. (1992). The dilemma of plants—to grow or defend.Q.
Rev. Biol. 67, 283–335. doi: 10.1086/417659

Hoffland, E., Jeger,M. J., and van Beusichem,M. L. (2000). Effect of nitrogen supply
rate on disease resistance in tomato depends on the pathogen. Plant Soil 218,
239–247. doi: 10.1023/A:1014960507981

Hoffland, E., van Beusichem, M. L., and Jeger, M. J. (1999). Nitrogen availability
and susceptibility of tomato leaves to Botrytis cinerea. Plant Soil 210, 263–272.
doi: 10.1023/A:1004661913224

Hosseini, M., Ashouri, A., Enkegaard, A., Goldansaz, S. H., Nassiri
Mahalati, M. N., and Hosseininaveh, V. (2010). Performance and
population growth rate of the cotton aphid, and associated yield
losses in cucumber, under different nitrogen fertilization regimes.
Int. J. Pest. Manage. 56, 127–135. doi: 10.1080/096708709032
48827

Hu, X. F., Cheng, C., Luo, F., Chang, Y.-Y., Teng, Q., Men, D.-Y., et al. (2016).
Effects of different fertilization practices on the incidence of rice pests and
diseases: a three-year case study in Shanghai, in subtropical southeastern China.
Field Crops Res. 196, 33–50. doi: 10.1016/j.fcr.2016.06.004

Huang, H., Thu, T. N. T., He, X., Gravot, A., Bernillon, S., Ballini, E., et al.
(2017). Increase of fungal pathogenicity and role of plant glutamine in
nitrogen-induced susceptibility (NIS) to rice blast. Front Plant Sci. 28:265.
doi: 10.3389/fpls.2017.00265

Huang, T., and Jander, G. (2017). Abscisic acid-regulated protein degradation
causes osmotic stress-induced accumulation of branched-chain amino acids in
Arabidopsis thaliana. Planta 246, 737–747. doi: 10.1007/s00425-017-2727-3

Jauset, A. M., Sarasua, M. J., Avilla, J., and Albajes, R. (2000). Effect of nitrogen
fertilization level applied to tomato on the greenhouse whitefly. Crop Prot. 19,
255–261. doi: 10.1016/S0261-2194(00)00016-8

Jayaraj, R., Megha, P., and Sreedev, P. (2017). Organochlorine pesticides, their
toxic effects on living organisms and their fate in the environment. Interdiscip.
Toxicol. 9, 90–100. doi: 10.1515/intox-2016-0012

Jensen, B., and Munk, L. (1997). Nitrogen-induced changes in colony
density and spore production of Erysiphe graminis f. sp. hordei on
seedlings of six spring barley cultivars. Plant Pathol. 46, 191–202.
doi: 10.1046/j.1365-3059.1997.d01-224.x

Lange, E. S. D., Kyryczenko-Roth, V., Johnson-Cicalese, J., Davenport, J.,
Vorsa, N., Rodriguez-Saona, C., et al. (2019). Increased nutrient availability
decreases insect resistance in cranberry. Agric. For. Entomol. 21, 326–335.
doi: 10.1111/afe.12335

Larbat, R., Adamowicz, S., Robin, C., Han, P., Desneaux, N., Le Bot, J., et al. (2015).
Interrelated responses of tomato plants and the leaf miner Tuta absoluta to
nitrogen supply. Plant Biol. 18, 495–504. doi: 10.1111/plb.12425

Lea, P. J., Sodek, L., Parry, M. A. J., Shewry, P. R., and Halford,
N. G. (2007). Asparagine in plants. Ann. Appl. Biol. 150, 1–26.
doi: 10.1111/j.1744-7348.2006.00104.x

Lecompte, F., Abro, M. A., and Nicot, P. C. (2010). Contrasted responses
of Botrytis cinerea isolates developing on tomato plants grown under
different nitrogen nutrition regimes. Plant Pathol. 59, 891–899.
doi: 10.1111/j.1365-3059.2010.02320.x

Li, Y., Long, L., Ge, J., Li, H., Zhang, M., Wan, Q., et al. (2019). Effect of
imidacloprid uptake from contaminated soils on vegetable growth. J. Agric.
Food Chem. 67, 7232–7242. doi: 10.1021/acs.jafc.9b00747

Liu, T., Ren, T., White, P. J., Cong, R., and Lu, J. (2018). Storage nitrogen co-
ordinates leaf expansion and photosynthetic capacity in winter oilseed rape. J.
Exp. Bot. 69, 2995–3007. doi: 10.1093/jxb/ery134

Lou, Y., and Baldwin, I. T. (2004). Nitrogen supply influences herbivore-
induced direct and indirect defenses and transcriptional responses inNicotiana

attenuata. Plant Physiol. 135, 496–506. doi: 10.1104/pp.104.040360
Mahdavi, V., Farimani, M. M., Fathi, F., and Ghassempour, A. (2015). A targeted

metabolomics approach toward understanding metabolic variations in rice
under pesticide stress. Anal. Biochem. 478, 65–72. doi: 10.1016/j.ab.2015.02.021

Masclaux-Daubresse, C. (2010). Nitrogen uptake, assimilation and remobilization
in plants: challenges for sustainable and productive agriculture. Ann. Bot. 105,
1141–1157. doi: 10.1093/aob/mcq028

Massad, T. J., Dyer, L. A., and Vega, G. (2012). Costs of defense and
a test of the carbon-nutrient balance and growth-differentiation balance
hypotheses for two co-occurring classes of plant defense. PLoS ONE 7:e47554.
doi: 10.1371/journal.pone.0047554

Matich, E. K., Chavez Soria, N. G., Aga, D. S., and Atilla-Gokcumen, G. E.
(2019). Applications ofmetabolomics in assessing ecological effects of emerging
contaminants and pollutants on plants. J. Hazard. Mater. 373, 527–535.
doi: 10.1016/j.jhazmat.2019.02.084

Matsuyama, N., and Dimond, A. E. (1973). Effect of nitrogenous fertilizer on
biochemical processes that could affect lesion size of rice blast. Phytopathology
63, 1202–1203. doi: 10.1094/Phyto-63-1202

Mattson, W. J. (1980). Herbivory in relation to plant nitrogen content. Annu. Rev.
Ecol. Evol. Syst. 11, 119–161. doi: 10.1146/annurev.es.11.110180.001003

Meyer, G. A. (2000). Interactive effects of soil fertility and herbivory on Brassica

nigra. Oikos 88, 433–441. doi: 10.1034/j.1600-0706.2000.880221.x
Mur, L. A. J., Simpson, C., Kumari, A., Gupta, A. K., and Gupta, K. J. (2016).

Moving nitrogen to the centre of plant defence against pathogens. Ann. Bot.
119, 703–709. doi: 10.1093/aob/mcw179

Neumann, S., Paveley, N. D., Beed, F. D., and Sylvester-Bradley, R. (2004).
Nitrogen per unit leaf area affects the upper asymptote of Puccinia

striiformis f. sp. tritici epidemics in winter wheat. Plant Pathol. 53, 725–732.
doi: 10.1111/j.1365-3059.2004.01107.x

Nevo, E., and Coll, M. (2001). Effect of nitrogen fertilization on Aphis gossypii

(Homoptera: Aphididae): variation in size, color, and reproduction. J. Econ.
Entomol. 94, 27–32. doi: 10.1603/0022-0493-94.1.27

Oerke, E. C. (2006). Crop losses to pests. J. Agric. Sci. 144, 31–43.
doi: 10.1017/S0021859605005708

Olea, F., Pérez-García, A., Cantón, F. R., Rivera, M. E., Cañas, R., Avila, C.,
et al. (2004). Up-regulation and localization of asparagine synthetase in tomato
leaves infected by the bacterial pathogen Pseudomonas syringae. Plant Cell
Physiol. 45, 770–780. doi: 10.1093/pcp/pch092

Olesen, J. E., Jørgensen, L. N., Petersen, J., and Mortensen, J. V. (2003). Effects
of rate and timing of nitrogen fertilizer on disease control by fungicides in
winter wheat. 1. Grain yield and foliar disease control. J. Agric. Sci. 140, 1–13.
doi: 10.1017/S0021859602002885

Pageau, K., Reisdorf-Cren, M., Morot-Gaudry, J. F., and Masclaux-Daubresse,
C. (2006). The two senescence-related markers, GS1 (cytosolic glutamine
synthetase) and GDH (glutamate dehydrogenase), involved in nitrogen
mobilization, are differentially regulated during pathogen attack and by stress

Frontiers in Sustainable Food Systems | www.frontiersin.org 10 July 2021 | Volume 5 | Article 701310

https://doi.org/10.1111/j.1365-3040.2004.01195.x
https://doi.org/10.1111/j.1574-6968.2006.00504.x
https://doi.org/10.1093/jxb/eru323
http://www.fao.org/faostat/en/#data/RFN
http://www.fao.org/faostat/en/#data/RFN
http://www.fao.org/faostat/en/#data/RP
http://www.fao.org/faostat/en/#data/RP
https://doi.org/10.1098/rstb.2013.0164
https://doi.org/10.1034/j.1600-0706.2003.12089.x
https://doi.org/10.1111/j.0307-6946.2006.00772.x
https://doi.org/10.1093/jxb/ers348
https://doi.org/10.1016/0261-2194(95)91106-P
https://doi.org/10.1016/0167-8809(94)09008-U
https://doi.org/10.1086/417659
https://doi.org/10.1023/A:1014960507981
https://doi.org/10.1023/A:1004661913224
https://doi.org/10.1080/09670870903248827
https://doi.org/10.1016/j.fcr.2016.06.004
https://doi.org/10.3389/fpls.2017.00265
https://doi.org/10.1007/s00425-017-2727-3
https://doi.org/10.1016/S0261-2194(00)00016-8
https://doi.org/10.1515/intox-2016-0012
https://doi.org/10.1046/j.1365-3059.1997.d01-224.x
https://doi.org/10.1111/afe.12335
https://doi.org/10.1111/plb.12425
https://doi.org/10.1111/j.1744-7348.2006.00104.x
https://doi.org/10.1111/j.1365-3059.2010.02320.x
https://doi.org/10.1021/acs.jafc.9b00747
https://doi.org/10.1093/jxb/ery134
https://doi.org/10.1104/pp.104.040360
https://doi.org/10.1016/j.ab.2015.02.021
https://doi.org/10.1093/aob/mcq028
https://doi.org/10.1371/journal.pone.0047554
https://doi.org/10.1016/j.jhazmat.2019.02.084
https://doi.org/10.1094/Phyto-63-1202
https://doi.org/10.1146/annurev.es.11.110180.001003
https://doi.org/10.1034/j.1600-0706.2000.880221.x
https://doi.org/10.1093/aob/mcw179
https://doi.org/10.1111/j.1365-3059.2004.01107.x
https://doi.org/10.1603/0022-0493-94.1.27
https://doi.org/10.1017/S0021859605005708
https://doi.org/10.1093/pcp/pch092
https://doi.org/10.1017/S0021859602002885
https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org
https://www.frontiersin.org/journals/sustainable-food-systems#articles


Martinez et al. When the Medicine Feeds the Problem

hormones and reactive oxygen species in Nicotiana tabacum L. leaves. J. Exp.
Bot. 57, 547–557. doi: 10.1093/jxb/erj035

Pérez-García, A., Pereira, S., Pissarra, J., García Gutiérrez, A., Cazorla, F. M.,
Salema, R., et al. (1998). Cytosolic localization in tomato mesophyll cells of
a novel glutamine synthetase induced in response to bacterial infection or
phosphinothricin treatment. Planta 206, 426–434. doi: 10.1007/s004250050418

Prudic, K. L., Oliver, J. C., and Bowers, M. D. (2005). Soil nutrient effects on
oviposition preference, larval performance, and chemical defense of a specialist
insect herbivore. Oecologia 143, 578–587. doi: 10.1007/s00442-005-0008-5

Ren, L. L., Hardy, G., Liu, Z. D., Wei, W., and Dai, H. G. (2013). Corn defense
responses to nitrogen availability and subsequent performance and feeding
preferences of beet armyworm (Lepidoptera: Noctuidae). J. Econ. Entomol. 106,
1240–1249. doi: 10.1603/EC12091

Rico, A., and Preston, G.M. (2008). Pseudomonas syringae pv. tomatoDC3000 uses
constitutive and apoplast-induced nutrient assimilation pathways to catabolize
nutrients that are abundant in the tomato apoplast.Mol. Plant Microbe Interact.

21, 269–82. doi: 10.1094/MPMI-21-2-0269
Sauge, M. H., Grechi, I., and Poëssel, J. L. (2010). Nitrogen fertilization

effects on Myzus persicae aphid dynamics on peach: vegetative growth
allocation or chemical defence? Entomol. Exp. Appl. 136, 123–133.
doi: 10.1111/j.1570-7458.2010.01008.x

Savary, S., Willocquet, L., Pethybridge, S. J., Esker, P., McRoberts, N., and Nelson,
A., et al. (2019). The global burden of pathogens and pests on major food crops.
Nat. Ecol. Evol. 3, 430–439. doi: 10.1038/s41559-018-0793-y

Schwachtje, J., and Baldwin, I. T. (2008). Why does herbivore attack reconfigure
primary metabolism? Plant Physiol. 146, 845–851. doi: 10.1104/pp.107.112490

Seifi, H. S., Curvers, K., De Vieesschauwer, D., Delaere, I., Aziz, A., Höfte, M., et al.
(2013). Concurrent overactivation of the cytosolic glutamine synthetase and the
GABA shunt in the ABA-deficient sitiens mutant of tomato leads to resistance
against Botrytis cinerea. New Phytol. 199, 490–504. doi: 10.1111/nph.12283

Seifi, H. S., Vleesschauwer, D. D., Aziz, A., and Höfte, M. (2014). Modulating
plant primary amino acid metabolism as a necrotrophic virulence strategy: The
immune-regulatory role of asparagine synthetase in Botrytis cinerea-tomato
interaction. Plant Signal. Behav. 9:e27995. doi: 10.4161/psb.27995

Serra, A. A., Couée, I., Renault, D., Gouesbet, G., and Sulmon, C. (2015). Metabolic
profiling of Lolium perenne shows functional integration ofmetabolic responses
to diverse subtoxic conditions of chemical stress. J. Exp. Bot. 66, 1801–1816.
doi: 10.1093/jxb/eru518

Silva, V., Mol, H. G. J., Zomer, P., Tienstra, M., Ritsema, C. J., Geissen,
V., et al. (2019). Pesticide residues in European agricultural soils—
a hidden reality unfolded. Sci. Total. Environ. 653, 1532–1545.
doi: 10.1016/j.scitotenv.2018.10.441

Snoeijers, S. S., Pérez-García, A., Joosten, M. H. A. J., and De Wit, P. J. G. M.
(2000). The effect of nitrogen on disease development and gene expression
in bacterial and fungal plant pathogens. Eur. J. Plant. Pathol. 106, 493–506.
doi: 10.1023/A:1008720704105

Solomon, P. S., Tan, K. C., and Oliver, R. P. (2003). The nutrient supply of
pathogenic fungi; a fertile field for study. Mol. Plant Pathol. 4, 203–210.
doi: 10.1046/j.1364-3703.2003.00161.x

Stout, M. J., Brovont, R. A., and Duffey, S. S. (1998). Effect of nitrogen
availability on expression of constitutive and inducible chemical
defenses in tomato, Lycopersicon esculentum. J. Chem. Ecol. 24, 945–963.
doi: 10.1023/A:1022350100718

Sun, Y., Wang, M., Mur, L. A. J., Shen, Q., and Guo, S. (2020). Unravelling the
roles of nitrogen nutrition in plant disease defences. Int. J. Mol. Sci. 21:572.
doi: 10.3390/ijms21020572

Tavernier, V., Cadiou, S., Pageau, K., Laug,é, R., Reisdorf-Cren, M., Langin, T.,
et al. (2007). The plant nitrogen mobilization promoted by Colletotrichum

lindemuthianum in Phaseolus leaves depends on fungus pathogenicity. J. Exp.
Bot. 58, 3351–3360. doi: 10.1093/jxb/erm182

Thalineau, E., Fournier, C., Gravot, A., Wendehenne, D., Jeandroz, S., Truong,
H.-N., et al. (2018). Nitrogen modulation of Medicago truncatula resistance
to Aphanomyces euteiches depends on plant genotype. Mol. Plant Pathol. 19,
664–676. doi: 10.1111/mpp.12550

Vega, A., Canessa, P., Hoppe, G., Retamal, I., Moyano, T., Canales, J., et al. (2015).
Transcriptome analysis reveals regulatory networks underlying differential
susceptibility to Botrytis cinerea in response to nitrogen availability in Solanum

lycopersicum. Front. Plant Sci. 6, 911. doi: 10.3389/fpls.2015.00911
Walters, D. R., and Bingham, I. J. (2007). Influence of nutrition on disease

development caused by fungal pathogens: implications for plant disease
control. Ann. Appl. Biol. 151, 307–324. doi: 10.1111/j.1744-7348.2007.00176.x

Wang, M., Gu, Z., Wang, R., Guo, J., Ling, N., Firbank, L. G., et al. (2019).
Plant primary metabolism regulated by nitrogen contributes to plant-pathogen
interactions. Plant Cell Physiol. 60, 329–342. doi: 10.1093/pcp/pcy211

Ward, J. L., Forcat, S., Beckmann, M., Bennett, M., Miller, S. J., Baker, J. M.,
et al. (2010). The metabolic transition during disease following infection of
Arabidopsis thaliana by Pseudomonas syringae pv. tomato. Plant J. 63, 443–457.
doi: 10.1111/j.1365-313X.2010.04254.x

White, T. C. R. (1984). The abundance of invertebrate herbivores in relation
to the availability of nitrogen in stressed food plants. Oecologia 63, 90–105.
doi: 10.1007/BF00379790
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