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Purslane (Portulaca oleracea L.) is a popular orphan crop used for its nutritional properties

in various parts of the world. It is considered one of the richest terrestrial sources of

omega-3 and omega-6-fatty acids (ω-3 and 6-FAs) suggesting its importance for human

health. This ethnomedicinal plant is also an important part of traditional healing systems

among the indigenous people. Many studies have indicated its tolerance against multiple

stresses and found that it easily grows in a range of environmental gradients. It has

also been considered one of the important biosaline crops for the future. Despite its

huge nutritional, economic, and medicinal importance, it remains neglected to date.

Most of the studies on purslane were focused on its ethnomedicinal, phytochemical,

pharmacological, and stress-tolerance properties. Only a few studies have attempted

genetic dissection of the traits governing these traits. Purslane being an important

traditional food crop across the globe can be valorized for a sustainable food security in

the future. Therefore, this review is an attempt to highlight the distribution, domestication,

and cultivation of purslane and its importance as an important stress-tolerant food

and a biosaline crop. Furthermore, identification of genes and their functions governing

important traits and its potential for improvement using genomics tools for smart and

biosaline agriculture has been discussed.

Keywords: purslane, sustainable food systems, traditional foods, food security, climate change, climate smart

agriculture, biosaline agriculture, ethnic foods

INTRODUCTION

The Portulaca L. is the only genus in the family Portulacaceae as per APG III classification
of angiosperms (The Angiosperm Phylogeny Group, 2009; Ocampo and Columbus, 2012)
and comprises more than 100 species which are widely distributed and adapted to a range
of environmental conditions (Nyffeler and Eggli, 2010). The genus Portulaca shows a great
phenotypic plasticity in its various traits such as flower, fruit, leaves, stem, and growing habit
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(Coelho and Giulietti, 2010). The members of Portulaca genus
are either herbaceous perennials or annuals usually with tuberous
roots, slightly succulent stem, and leaves with alternate or rarely
opposite phyllotaxy and cymose terminal inflorescences (Nyffeler
and Eggli, 2010; Walters et al., 2011; Ocampo and Columbus,
2012; Dalavi et al., 2018). The flowers are sessile or rarely
pedicellate and are easily distinguishable by their inflorescence
and fruits which are operculate capsules termed as pyxidia
(Nyffeler and Eggli, 2010). The Portulaca is characterized by thick
and dense homogenous populations in nature (Walters et al.,
2011). Due to the presence of facultative C4/CAMphotosynthetic
pathways in purslane, it has become an important model crop
for facultative C4/CAM photosynthesis evolution in plants and
its future role for food security (D’Andrea et al., 2014; Ferrari
et al., 2020). The species of Portulaca are adapted to the shady
and moist environments, show extensive branching (Matthews
and Levins, 1985), and are generally characterized by tuberous
roots (Geesink, 1969; Carolin, 1987). The leaves are succulent
in nature, and fruits are round or egg-shaped operculated
capsules and produce tiny, oval-shaped reddish-, brown-, or
black-colored seeds which are rich in phytochemicals (Matthews
and Levins, 1985; Grubben, 2004). The leaves and inflorescences
show the presence of trichomes (Matthews and Levins, 1985).
It produces many seeds with very high dormancy (Alam et al.,
2014e). Most of its species such as P. oleracea, Portulaca
grandiflora, Portulaca amilis, Portulaca molokiniensis, Portulaca
pilosa, and Portulaca umbraticola show C4 photosynthesis (Koch
and Kennedy, 1982; Guralnick et al., 2002; Voznesenskaya et al.,
2010). Interestingly, some C4 species such as P. oleracea, P.
grandiflora, P. australis, P. pilosa, Portulaca digyna, and Portulaca
cyclophylla also show Crassulacean acid metabolism (CAM)

FIGURE 1 | Natural habitat and parts of purslane plant. (a) Purslane plant in natural habitat; (b) young stem with leaves; (c) harvested plant showing roots; and

(d) young fruits, known as pyxidia with black-colored seeds.

pathway, a special type of photosynthesis found in the succulent
plants adapted to desert conditions (Sage, 2002). Most of the
species except a few such as Portulaca cryptopetala show Kranz
anatomy (Ocampo et al., 2013). However, the CAM pathway
in the C4 Portulaca species operates only during drought
conditions when water availability is reduced (Lara et al., 2004;
D’Andrea et al., 2014). Besides a model plant for C4/CAM
photosynthesis, it is also an important crop for understanding
the salt-tolerance mechanisms in plants (Borsai et al., 2018,
2020). Of the more than 100 species of Portulaca, P. oleracea
L. (hereafter purslane; Figures 1a–d) is the most important
and well-studied species. Purslane also shows wide phenotypic
plasticity in its flower colors that make it an important
ornamental plant (Figure 2). Purslane is an important plant
rich in important phytochemicals and nutritional components
possessing medicinal, nutritional, medicinal, phytoremediation,
stress-tolerance, and pharmacological properties (Alam et al.,
2014c, 2015b; Uddin et al., 2014; Zhou et al., 2015). Purslane
is also traditionally used as an ethnomedicinal plant (Sultana
and Raheman, 2013; Iranshahy et al., 2017). Despite its
multiple benefits, such as its nutritional and phytochemical
richness, purslane still remains a neglected food crop of the
indigenous communities, and studies on the genetic regulation
of important traits and their improvement strategies is limited.
Except for the C4-CAM switch, very limited information
on distribution, domestication, and cultivation of purslane is
available. Information on application of genetics and genomics
for the improvement of nutritional and stress-resilient traits of
purslane, and hence to be adopted for the extensive cultivation
and industrial applications is not available. Furthermore, since
the purslane grows profusely across a range of environmental
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FIGURE 2 | (a–i) Morphological diversity of flowers observed in purslane (scale bar, 1 cm).

gradients, and shows salinity tolerance, it is not surprising that
the species holds a potential as a biosaline crop for urban
agriculture. Taken together with this background, this review
summarizes current knowledge on various aspects of purslane
with an emphasis on its distribution, cultivation, domestication,
and its importance as a nutritional, medicinal, and biosaline crop.
It further discusses a futuristic approach combining genomics
and gene-editing tools for the editing of genes governing
important traits for urban and biosaline agriculture.

DISTRIBUTION AND DIVERSITY OF
PURSLANE

Purslane is the eighth most commonly distributed plant in
the world (Anastácio and Carvalho, 2013). The molecular
phylogenetic study of the genus Portulaca shows that it is a

monophyletic genus with two major clades, namely, opposite
leaves (OL) and alternate leaves (AL; Ocampo and Columbus,
2012). The study further showed that OL clade includes species
that possess opposite leaves and are distributed in Africa, Asia,
and Australia, whereas AL clade represents species that possess
alternate to subopposite leaves and are distributed in the New
World. There was a debate around its origin in the Old World
and its further introduction to the New World countries during
the Columbus period. However, the presence of Pre-Columbian
archaeological evidence in the NewWorld suggests that purslane
is distributed in the Old World as well as New World
countries thereby ending the debate whether it was introduced
by Columbus (Byrne and McAndrews, 1975). Recovery of the
carbonized fossils of purslane from prehistoric human settlement
sites suggests its importance as an important food plant for
the indigenous communities since prehistoric times (Chapman
et al., 1973; Byrne and McAndrews, 1975; Simopoulos et al.,
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1995). Simopoulos et al. (1995) suggested Mexico as the center
of origin of purslane because the maximum number of species
including its three ploidy types exists there. Although germplasm
collections and their characterization for various important traits
such as stress tolerance, superior metabolic and nutritional traits,
and biomass accumulation are important for improvement of
purslane; however, no such study reports are available in plenty.

DOMESTICATION AND CULTIVATION OF
PURSLANE AND MEASURES TO UPSCALE
ITS PRODUCTION AND CONSUMPTION

A very few studies have focused on the cultivation and
domestication of purslane. Cros et al. (2007) carried out
comparative study of its cultivation using peat, vermiculite, coir,
perlite, and mixtures of peat and perlite and found that plants
grown on peat showed the highest total fatty acid, alpha-linolenic
acid, and linoleic acid. Application of Rhizophagus irregularis, an
arbuscular mycorrhizal fungi (AMF) increased the phosphorus
uptake, grain yield, biomass weight, total antioxidant activity, and
unsaturated fatty acid, leaf essential oil, and leafω3 and improved
the soil cation exchange capacity (CEC) of plants (Hosseinzadeh
et al., 2020, 2021). Application of nitrogen fertilizers also
improved phosphorus and nitrogen uptake, biomass weight,
flavonoid content, total antioxidant capacity, and fatty acid
content (Hosseinzadeh et al., 2020). The best season for its sowing
is spring of fall, and it completes its life cycle in 60–75 days (Alam
et al., 2014e). InMalaysia, nearly seven cultivars are cultivated for
ornamental purposes and are propagated through cuttings (Alam
et al., 2014e). However, the wild purslane can germinate through
the seeds (Alam et al., 2014e). Although it is nutritionally and
medicinally important across different cultures, it is considered
a weed in several parts of the world (Banerjee and Mukherjee,
2002; Rapoport and Drausal, 2013; CABI, 2021).

Safdari and Kazemitabar (2009) have attempted tissue culture
in wild and cultivated races of purslane using different explants
and hormone concentrations, and the results show that 10µM
IBA combined with 5 or 10µM BAP sufficiently induce callus
formation in the wild race whereas 2.5µM IBA was enough for
root generation in both the races. A study on the development
of in vitro plant regeneration and in vitro flowering using
various concentrations of PGRS showed that 0.5mg L−1 of
kinetin is optimum for maximum shooting and 0.2mg L−1 of
GA3 induced bud formation in purslane (Sharma et al., 2011).
Shekhawat et al. (2015) observed maximum shooting when MS
medium was supplemented with 2.0mg L−1 BAP. These studies
provide a basis for the cultivation of purslane. However, to
better understand the best performance conditions, further field
trial experiments are needed. Moreover, the standardization of
tissue culture protocols in purslane would be helpful for future
breeding programs aimed at upscaling cultivation of purslane.
The future studies should be aimed at the methods for improved
productivity, phytochemical composition, and its suitability for
urban agriculture. Dewanti et al. (2021) found the highest
amount (9.73mg kg−1) of vitamin C in purslane obtained from
lowland areas.

IMPORTANCE OF PURSLANE

The purslane is cultivated in various parts of the world mostly
for ornamental purposes because of its phenotypic diversity
in its flower color and for nutritional and medicinal purposes
because of its richness in important phytochemicals (Simopoulos
et al., 1992; Coelho and Giulietti, 2010; Melilli et al., 2020).
Figure 3 provides an overview of the importance of purslane for
sustainable food security and human benefits.

Nutritional Value
A number of studies have shown that purslane is very rich in
important nutritional components such as vitamins, proteins,
carbohydrates, ω-3-FAs, carotenoids, and minerals (Simopoulos
et al., 1995, 2005; Aberoumand, 2009; Uddin et al., 2014;
Petropoulos et al., 2016; Alam et al., 2021). It shows a very
high amount of ω-3-fatty acids which is not generally found in
vegetarian diets suggesting its important role as a functional food
(Palaniswamy et al., 2001; Alam et al., 2014e; Petropoulos et al.,
2016). Several studies have done analysis of its various nutritional
constituents. The purslane contain high quantity of protein,
ash, fiber content, and minerals (Aberoumand, 2009; Almasoud
and Salem, 2014; Uddin et al., 2014; Chugh et al., 2019). It is
also a very good source of various types of vitamins including
vitamins A and C (Guil-Guerrero and Rodríguez-García, 1999;
Chugh et al., 2019). The high nutritional composition of purslane
indicates its potential as an important nutraceutical food for
the future.

Medicinal Potential
Purslane is an important traditional ethnomedicinal plant
as its leaves, roots, and stems contains rich medicinally
important phytochemicals such as alkaloids, flavonoids,
phenolic acids, homoisoflavonoids, lignans, polysaccharides, and
catecholamines (Banerjee and Mukherjee, 2002; Xiang et al.,
2005; Lim and Quah, 2007; Alam et al., 2014b; Zhou et al., 2015).
Several authors have reviewed the phytochemical composition
of purslane. It has been a part of indigenous healthcare systems
across the continents (Xiang et al., 2005; Bosi et al., 2009;
Sultana and Raheman, 2013; Hwess et al., 2018; Sdouga et al.,
2020; Zaman et al., 2020). Many ethnobotanical studies have
reported its use against multiple diseases and ailments (Ahmad
and Beg, 2001; Bosi et al., 2009; Nedelcheva, 2013; Sultana and
Raheman, 2013; Hwess et al., 2018; Chaachouay et al., 2019;
Manzanero-Medina et al., 2020; Nanagulyan et al., 2020). Recent
pharmacological studies also suggest its important medicinal
benefits against a number of diseases such as cancer, diabetes,
and viral, bacterial, and fungal infections (Dong et al., 2010; Ye
et al., 2015; Jin et al., 2017; Park and Han, 2018; Zhao et al., 2018;
da Silva et al., 2019; Li et al., 2019; El-Desouky, 2021; Park et al.,
2021; Tleubayeva et al., 2021). These results of pharmacological
studies provided important evidence toward the potential of
purslane in drug development against diseases.

Potential for Biosaline Agriculture
Salinity is also an important stressor that limits crop productivity.
There is plenty of saline water, and if salinity-tolerant crops are
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FIGURE 3 | Potential of purslane for sustainable food security and health benefits.

available, we can use the saline water for agriculture and can
reduce the usage of freshwater in agriculture (Flowers, 2004;
Yamaguchi and Blumwald, 2005; Roy et al., 2014; Fita et al., 2015).
Moreover, the current agricultural practices which involve the
use of chemicals have increased the salinity of agricultural soils
(Shrivastava and Kumar, 2015). Therefore, soils have become
less fertile and the normal varieties cannot survive in the saline
environments. Plants respond to salinity stresses in a variety of
ways including expression of important genes related to salinity
tolerance (Chandna et al., 2014; Borsai et al., 2018). Therefore,
looking for crop plants which can withstand salinity condition
should be one strategy so that saline environment can be utilized
for agriculture.

Purslane is considered salinity tolerant and can perform even
under high salinity conditions (Yazici et al., 2007; Kafi and
Rahimi, 2011; Alam et al., 2014b,e; Hniličková et al., 2019).
Experimental evidences by several studies showed that purslane
could grow in saline soils, therefore, it could be popularized
as an important biosaline crop (Hasanuzzaman et al., 2014;
Panta et al., 2014; Dagar, 2018; Elouafi et al., 2020). The plant
responds to salinity stress by the production of proline which
is an important osmolyte and helps in salt tolerance (Yazici
et al., 2007; Rahdari et al., 2012). Similar response is observed
in another species, P. grandiflora suggesting its adaptability
to stresses (Kichenaradjou et al., 2018). Studies have shown
reduced accumulation of proteins and lipids following salinity
stress and increased accumulation of carbohydrates (Morgan,
1992; Dhanapackiam and Ilyas, 2010). Unlike salt-sensitive crops,
purslane is known to keep its photosynthetic activity on even
under higher salinity conditions through increased chloroplast
biosynthesis and chlorophyll accumulation (Rahdari et al., 2012),
although, the application of salinity decreases its germination
potential. Another study found that intermediate levels of salinity

are not detrimental to purslane as they continue to perform
well under moderate salinities (Teixeira and Carvalho, 2009).
Several metabolites in response to salinity have been identified
in P. oleracea (Zaman et al., 2020). Increased accumulation
of proline in the salt-tolerant purslane genotypes correlated
with higher expression of pyrroline-5-carboxylate synthetase
(PC5S) gene which is a key enzyme for the biosynthesis of
proline (Sdouga et al., 2019). Increased accumulation of proline
and its correlation with PC5S show important transcriptional
control of salt tolerance in purslane. Due to its salt-tolerance
potential, it is suggested to be an appropriate crop, with greater
pharmacological and nutritional potential that can be grown in
areas where the irrigation water is saline and solar radiation levels
are high (Franco et al., 2011).

Potential for Urban Agriculture
Another issue that we face today is the nonavailability of land
resources in urban areas (Fischel, 1982; Fazal, 2000; Satterthwaite
et al., 2010; Kapil, 2019). The urban populations are dependent
on market foods that are not fresh and sometimes, it takes
many days to reach the kitchens of urban areas (Satterthwaite
et al., 2010). However, if crops are devised that takes very less
space and gives high biomass, it can be adopted in the future
especially by urban people/consumers to have quick chemical-
free fresh vegetables and foods. As purslane takes very less space
and produces huge biomass rich in very important nutrients
and health-promoting phytochemicals, this crop has tremendous
potential for urban agriculture (Ren and White, 2019).

Rich Terrestrial Source of Omega-3-Fatty
Acids
Several quantitative studies from various parts of the world have
reported very high amounts of ω-3-fatty acids in its various plant
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parts of purslane (Davis and Kris-Etherton, 2003; Simopoulos
et al., 2005; Uddin et al., 2014). It is considered one of the richest
sources of ω-3-fatty acids. Marine algae are also rich in ω-3-
fatty acids; however, they are not available beyond the coastal
areas. Moreover, cultivation of algae needs skill and expertise. In
contrast, cultivation of purslane is very easy and does not require
special care or expertise. Vegetarian and vegan diets are relatively
low in alpha-linolenic acid (ALA), an important ω-3-fatty acid
(Davis and Kris-Etherton, 2003). ALA is further broken down to
eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)
and the latter are essential for cardiovascular health. However,
plasma, tissue, and blood of vegetarians and vegans are also low
EPA as well as DHA as these (Davis and Kris-Etherton, 2003;
Rosell et al., 2005; Saunders et al., 2013). Lower EPA and DHA
in vegetarians and vegans may lead to cardiovascular-related
health issues. Dieticians and health experts suggest increased
intake of ALA to vegetarians and vegan people since their
diets are deficient in ALA (Davis and Kris-Etherton, 2003). The
presence of a high amount of ALA in purslane suggests its
suitability for vegetarians and vegans as an important source
of ALA (Uddin et al., 2014). Therefore, the promotion of
consumption of purslane among vegetarians and vegans is an
important step toward enriching their diets with ALA, EPA,
and DHA.

Wide Phenotypic Diversity and Adaptability
to a Range of Environmental Gradients
The P. oleracea is a cosmopolitan species, and huge phenotypic
plasticity is observed for various traits such as flower color,
phytochemical constitution, leaf size and number, growth habit,
and overall plant size (Danin et al., 1978; Ezekwe et al.,
1999; Ren et al., 2011; Alam et al., 2014d). Ren et al. (2011)
reported genetic variation study in purslane using amplified
fragment length polymorphic markers in 10 drought-tolerant
accessions from different geographical locations, namely, POS,
PO, and Turkey (Turkey), Keren and Tokombiya (Eritrea),
Golden E (UK), Golden G and T (Netherlands),Wild Greece
(Greece), and Egyptium (Egypt). They reported Tokombiya and
Egyptium as the most tolerant accessions to drought stress
at the adult stage (Ren et al., 2011). Commercial cultivars,
Glystrida 0425 and Purslane Dark Green, and local populations,
Sari, Gorgan, and Aliabad originating from Iran had relatively
higher biomass yield (Karkanis and Petropoulos, 2017). Ezekwe
et al. (1999) have characterized eight accessions namely P.
oleracea, P. sativa, Golden Gerber (GG Dutch), Garden (Gn
Dutch), Golden (G England), and wild (W) accessions (Beltsville,
Egyptian, and Greece) of purslane from different geographical
regions for chemical composition, crude protein, total lipids, and
carbohydrate content. They reported the highest crude protein
content (27.1%) in Wild Greek accession and the highest omega
fatty acid content in Dutch Garden accession (Ezekwe et al.,
1999). Alam et al. (2014d) studied 45 accessions of purslane
from the Western Peninsula of Malaysia and grouped them
into seven types based on their characters such as leaf type
and color, stem color, and flower type and color. Molecular
analysis of these 45 accessions of purslane using expressed

sequence tag (EST)-derived simple sequence repeat markers
(ES-SSR) showed high genetic diversity among the accessions
(Alam et al., 2015a). Evaluation of antioxidant compounds,
antioxidant activities, and mineral composition of 13 collected
purslane accessions showed wide phenotypic diversity (Alam
et al., 2014c). Several accessions of purslane were screened for
high salt tolerance (Alam et al., 2014b), and it was found that
salinity affects phenolic compounds and antioxidant activities
of 13 collected purslane germplasms (Alam et al., 2015b).
Characterization of 45 accessions of West Peninsular, Malaysia
for various morphological and physiological parameters and
mineral composition identified potential accessions that can be
used for supplementing the nutritional andmineral requirements
(Alam et al., 2014a,e). Liu et al. (2000) have evaluated 12
varieties of purslane (nine Australian wild, two North American
origins and one local), and the results of the study showed
a wide variation in fatty acids and β-carotene composition.
Lim and Quah (2007) characterized six cultivars (PO1–PO6)
of purslane for total phenol content (TPC) and found that the
ornamental cultivars have higher total phenolic (TPC) content
and antioxidant activities than the common variety (PO1).
Among the six varieties, PO6 showed the highest TPC and
antioxidant activity. Tiwari et al. (2008) found that two species of
Portulaca, i.e., P. tuberosa and P. oleracea are good heavy metal
accumulators. Zhu et al. (2010) used 11 Portulaca accessions from
five provinces of China and obtained consistent GC-MS and IR
spectral fingerprints that are important for quality assurance. A
comparative study of two subspecies of Portulaca, i.e., P. oleracea
subs. granulatostellulata and P. oleracea subs. edulis for their
growth and nutritional quality showed that both the subspecies
were rich in minerals. However, K content was higher in P.
oleracea subs. edulis, whereas the Ca content was higher in P.
oleracea subs. granulatostellulata (Yun et al., 2016). Analysis of
physicochemical properties of oil from seed, leaf, and stem of
purslane from the Dire Dawa region of Ethiopia showed the
highest oil content in seeds (11.25%) compared with leaf and
stem (Desta and Cherie, 2018). Furthermore, the analysis of
13 common Malaysian-cultivated accessions of purslane showed
differential morphological responses to salinity stress (Alam et al.,
2016). The results showed that except plant height in Ac 1
(accession 1), all morphological parameters showed negative
correlation with salinity and Ac 13 was the most affected
accession among all. Egea-Gilabert et al. (2014) characterized
12 accessions of purslane using morphological, molecular,
agronomical, and biochemical analyses and identified CM 13-
00809 as an important accession with superior traits such as yield,
dry matter, and potassium content. Kaşkar et al. (2009) analyzed
agronomic parameters of several accessions of purslane such as
Golden purslane, “C,” one local Turkish accession, and three
Spanish accessions and found variation in various parameters
such as nitrate and oxalate content, plant height, number of
leaves, leaf area, and yield component. They further found that
accession “C” which was obtained from Pasa Seeds company
showed better agronomic traits which includes plant height,
number of leaves, leaf area, and yield component. The Turkish
accession showed minimum amounts of oxalate and nitrates
(undesirable/antinutrients) suggesting their suitability for human
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consumption. Analysis of 19 characters in four populations
of purslane showed wide interpopulation heterogeneity in
Tunisia (Salah and Chemli, 2004). Sdouga et al. (2020) found
wide diversity in morphological and biochemical characters
between wild populations and cultivated varieties. Karkanis
and Petropoulos (2017) studied comparative physiological
responses under Mediterranean semiarid conditions between
two commercial cultivars, three local populations of Iran, and
one local population of Greece and found that the Aliabad, a
local population of Iran showed the highest yields. Balabanova
et al. (2020) analyzed 33 Bulgarian and five Greek accessions of
purslane and reported 50metabolite markers. Metabolic profiling
of leaves and roots of two purslane genotypes, Tall Green (TG)
and ShandongWild (SD), under the control and saline exposures
was performed by Zaman et al. (2020) who found a huge
variation in the concentration of 132 metabolites under control
and treated conditions. Furthermore, salinity-induced reduction
in the number of leaves and roots, diameter of the stem, and
length of roots was reported.

Besides its tolerance to a range of environmental conditions
(Miller et al., 1984; Simopoulos, 2011), it produces a very
high number of seeds with very good germination rate even
under stress conditions (Fernández et al., 2008; Chauhan and
Johnson, 2009; Alam et al., 2014e; Ren and White, 2019).
Purslane grows profusely even on the less fertile and waste lands
(Nyffeler and Eggli, 2010; Subramanyan, 2017). Its adaptability
to various climatic conditions makes it a suitable crop for
extensive agriculture. Various varieties are regionally important,
and people collect it from the natural habitats (Turner et al.,
2011; Uddin et al., 2014; Borelli et al., 2020). In some cases,
people also cultivate it at a small scale especially for ornamental
purposes (Osma et al., 2014). Efforts must be taken to exploit
its genetic diversity for regional agricultural programs based
on the availability and suitability of Portulaca species/cultivar.
Moreover, except for P. oleracea, only a few other species of
Portulaca are studied to date. This suggests that further studies
on other species of Portulaca will help us to identify potential
genotypes including higher content of ω-3-fatty acids and other
nutritional and phytochemical components.

Important Model Crop for C4/CAM
Facultative Photosynthetic Pathways
Portulaca oleracea is an important plant that uses both C4 and
CAM photosynthetic pathways depending upon the prevailing
situations (Lara et al., 2004; D’Andrea et al., 2014). The C4-
CAM switching depending upon the prevailing environmental
conditions makes it an important and desirable crop for
the twenty-first century. The scientists are working toward
development of climate-smart crops using the gene and genome
engineering/editing tools (DeLisi et al., 2020; Zaidi et al., 2020).
However, purslane is a naturally occurring smart crop that
operates its machinery smartly (D’Andrea et al., 2014). Due to
the presence of C4 and CAM enzymes in purslane, it has become
an important model crop for C4-CAM facultative photosynthesis
studies. It behaves as a C4 plant when grown under normal
conditions whereas it switches to CAM pathway under drought
conditions. Since CAM pathway is a highly water-efficient system
of photosynthesis, switching into CAM by purslane surely helps

it to survive under drought conditions (D’Andrea et al., 2014).
Further investigation on the mechanisms governing C4-CAM
switching in purslane and the identification of the genes would
provide important insights into this important facility used by
purslane (Winter and Holtum, 2014). The enzymes that are
activated during these situations have been studied (Lara et al.,
2003, 2004; D’Andrea et al., 2014, 2015).

Emergency Food During COVID-19-Like
Situations
Various indigenous communities rely on traditional food
plants including purslane for their nutritional requirements
(Kuhnlein and Receveur, 1996; Pieroni et al., 2005; Muthoni
and Nyamongo, 2010; Uddin et al., 2014; Pawera et al., 2020).
Traditional plants are also used for medicinal purposes in various
parts of the world (Mahomoodally et al., 2012; Shikov et al., 2017;
Kumar et al., 2019). As discussed, purslane is also one of the most
important ethnomedicinal plants among various countries (Ross,
2003; Bosi et al., 2009; Iranshahy et al., 2017). The traditional
food plants are regionally very important and local communities
rely on them for their nutritional needs. During the coronavirus
disease 2019 (COVID-19)-like situations, purslane can be one of
the important emergency foods for far-flung areas where food
aid is disrupted due to COVID-19-like situations in the future.
It is not surprising that COVID-19 has disturbed the global
supply chains of the foods, and in the future, such crops can
be important for sustaining the communities that lack basic
food distribution.

Stress Tolerance in Purslane
The depletion of water resources is one of the biggest challenges
to modern agriculture in the world (FAO, 2011). It directly
translates to reduced productivity and yields, and if arising in a
large-scale agricultural land, would lead to global food insecurity
(Falkenmark, 2013; Misra, 2014). Scientists across the globe are
putting efforts to devise and innovate strategies to engineer new
varieties of crops that can perform well even under extreme
conditions such as drought condition (Zhang et al., 2000, 2018;
Jewell et al., 2010; Vandenbroucke andMetzlaff, 2013; Jaganathan
et al., 2018; Zaidi et al., 2020). Considering the global water
shortages, and the susceptibility of the modern crop cultivars
to drought conditions, it is highly desirable to discover new
crops/varieties that are naturally drought tolerant.

Researchers are putting efforts to use genetic engineering tools
to modify currently available crops for increased stress tolerance.
Some studies have shown encouraging results, although, not up
to the mark. Therefore, the alternative option is to discover
naturally occurring stress-tolerant plants that can perform well
under stressful conditions. Among all, drought, salinity, heat,
and temperature stresses are some of the important abiotic
stresses concerning agriculture (Yang et al., 2012; Jin et al.,
2015). Drought is also an important environmental stress which
limits plant growth and development and affects yields (Ren
et al., 2011). Several studies have indicated that purslane is
drought tolerant and can easily grow in extreme drought
conditions (Ren et al., 2011; Rahdari et al., 2012). Jin et al.
(2015) studied drought and heat stress tolerance of purslane and
observed significant increase in the malondialdehyde (MDA),
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proline, electrolyte leakage, reactive oxygen species (ROS),
and antioxidant activities and decrease in leaf water content
(LWC) and chlorophyll content during the progressive drought
treatment. The rehydration following drought stress reversed
the negative parameters such as LWC and chlorophyll content.
Activation and regulation of various physiological mechanisms
makes purslane more efficient to cope up with stress conditions
and recover during rehydration (Jin et al., 2015). Earlier study
has also shown rapid recovery of purslane plants following
dehydration (D’Andrea et al., 2014). Purslane responds to
stresses at multiple levels using various mechanisms. One study
suggests that switching of CAM pathways enhances the water use
efficiency and drought tolerance in purslane (Liu et al., 2018).
Differences in the metabolites and the enzymes required during
their synthesis in the well-irrigated and drought conditions are
also observed, suggesting a biochemical basis of salt tolerance in
purslane (Lara et al., 2003, 2004). It also improves its tolerance by
enhancing the production of antioxidants, proline content, and
heat-shock proteins which are all important for survival under
high stress conditions (Yang et al., 2012).

TRADITIONAL FOOD SYSTEMS THAT ARE
BASED ON PURSLANE

Traditional food plants are an important part of indigenous
diets, and they are produced within the restricted local areas
(FAO, 1988). Culturally accepted food patterns evolved from
available local resources are referred to as traditional food
systems (Kuhnlein and Receveur, 1996). Traditional food systems
reflect the culture indigenous communities and their dietary
patterns (Trichopoulou et al., 2007). Traditional food plants are
healthy, nutritious, and serve as the sustainable food resources
for indigenous rural communities (Legwaila et al., 2011). A
wide variety of food plants form a part of traditional food
systems across the world (Turner et al., 2011). Various studies
have reported the use of purslane as an important part of
traditional food systems (Welcome and Van Wyk, 2019). It
is consumed as a vegetable in a variety of ways across the
globe, and the mode of preparation and consumption of
purslane varies from region to region. It is used as a raw
salad in Turkey, Kufla ka saag in India, and as traditionally
processed papads in India (Kapoor et al., 2010; Renu and
Waghray, 2016; Borelli et al., 2020). It is also consumed in many
other countries and forms a basis for novel traditional foods.
Table 1 presents a summary of traditional food systems that
are based on purslane across 18 countries. This table provides
information related to its local names, mode of preparation,
and consumption.

GENETICS OF PHYTOCHEMICAL,
NUTRITIONAL, AND STRESS-RESILIENT
TRAITS

Since purslane is known for its medicinal and nutritional
properties due to the synthesis of important nutrients and

phytochemicals such as alkaloids, flavonoids, catecholamines,
lignans, terpenoids, betalains, carotenoids, vitamins, and ω-
3-fatty acids (Oliveira et al., 2009; Mulla and Swamy, 2010;
Singh et al., 2011; Patil et al., 2012; Petropoulos et al., 2016;
Verma et al., 2016; Fernández-Poyatos et al., 2021) and tolerance
toward several stresses such as drought, temperature, salinity,
moisture, and heat (Ichimura and Suto, 1998; Yazici et al.,
2007; Alam et al., 2014b; Jin et al., 2016; Borsai et al., 2020;
Xing et al., 2020), it is attaining greater attention (Sultana
and Raheman, 2013; Uddin et al., 2014). Many plant-derived
secondary metabolites have been used as drugs in modern times
as these compounds have specific biological activities (Kumar
et al., 2019). It is important to isolate and identify the genes
that govern stress-resilient traits and biosynthesis of metabolites.
Identification of genes involved in biosynthetic pathways of
important metabolites and stress-resilient traits is useful for
the trait improvement programs and for the development
of superior varieties. Only a few studies have reported the
genes regulating important traits in purslane. Among the
various phytochemicals synthesized in purslane, dopamine is an
important catecholamine with a neuroprotective potential (Chen
et al., 2003; Chugh et al., 2019). It is important to identify and
characterize the genes that synthesize dopamine. Recently, genes
for two enzymes tyrosine decarboxylase and tyrosinase have
been identified from hair roots using A. rhizogenes (Babashpour
et al., 2018). Two genes encoding ω-3 fatty acid desaturases
viz. FAD7 and FAD8 which are involved in the conversion
of linoleic to ω-3-linolenic acid have been identified from
purslane (Teixeira et al., 2010). In addition to synthesizing
ω-3 fatty acids, purslane also produces ω-6-fatty acids. Du
et al. (2021) identified 94 genes involved in the biosynthetic
pathway of unsaturated fatty acids. Three genes encoding ω-
6 fatty acid desaturases viz. FAD2-1, FAD2-2, and FAD-6 have
been isolated (Teixeira et al., 2009). FAD2 genes are plasticidal
whereas FAD6 is microsomal. Differential expressions of several
genes in response to drought stress and after rewatering have
been reported in purslane (D’Andrea et al., 2015). The study
showed that three important genes, namely, Ribosomal protein
S15A (RPS15A), Ribosomal protein L2 (RPL2), and ω-6-fatty acid
desaturase 2 (FAD2) were induced at higher levels following
rewatering/recovery of purslane, suggesting their important roles
in imparting stress tolerance. FAD2 and stearoyl-acyl-carrier-
protein desaturase (SAD) are also important genes involved in
ω-3 fatty acid biosynthesis, and there differential expression is
reported in stem and leaves of P. oleracea (Du et al., 2021).
C4/CAM switching is one of the most important mechanisms
reported from purslane in response to the differences in
environmental conditions. It uses C4 machinery at normal
irrigated conditions whereas it switches to CAM when water
scarcity is sensed. The enzymes that are activated during C4
and CAM environmental conditions have been studied (Lara
et al., 2003, 2004; D’Andrea et al., 2014, 2015). However, the
identification of genes governing C4/CAM switch which enables
plants to survive under different environmental conditions would
be immensely helpful to manipulate this mechanism in purslanes
by genetic engineering.
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TABLE 1 | Some traditional food systems based on purslane from different countries.

Sl. No. Country Traditional food Preparation/uniqueness References

1 Turkey Salad Used as salad or side dish. Borelli et al., 2020

2 Spain Special soup “sop salem korkat” Sop salem korkat is made by boiling it with local celery, leek, and

citrus and sweet soy sauce.

Tarkergari et al., 2013

3 India “Kulfa ka saag” and papads Leaves are cut and boiled by adding salt till it becomes paste.

Coriander seeds and red chillies fried in mustard oil mixed with

this paste. Experience a bit of sour taste.

Kapoor et al., 2010; Renu and

Waghray, 2016

4 Indonesia Oseng-oseng Leaves cooked with tamarind, Oseng-oseng are prepared by

stirring and frying young leaves and tender stems along with

shallot, garlic, red chilies, palm sugar, salt, salem leaves, and

galangal.

Mishra et al., 2020

5 Sri Lanka Cooked vegetables Entire plant of purslane is cooked and used as a vegetable. Ediriweera, 2010

6 Italy Salad Plants are eaten as salads and cooked like spinach. Bosi et al., 2009

7 Mexico Snacks and sauces Rolled in omelets and tortillas and added in soups or stews or

flowers, leaves, and stems are steamed and consumed.

Irawan et al., 2003;

Manzanero-Medina et al., 2020

8 China Stir fry, pancakes, soups, and

sauces

In South China, tender leaves and stems are eaten as stir fry and

in egg pancakes, soup, and sauces.

Xu et al., 2020

9 Bulgaria Salad and soups Above-ground parts are used for preparing salad and soups. Nedelcheva, 2013

10 Australia Roasted roots, raw leaves, and

seed floor.

Roots are eaten after roasting. Leaves and stems are consumed

raw or in slightly heated form. Seed flour is used in cakes.

Smith, 1991

11 Armenia Fries, salads, lacto-fermented foods Fried aerial parts are eaten or pickled in brine. Young leaves and

stems are used in salads. Aerial parts are lacto-fermented

Nanagulyan et al., 2020; Pieroni

et al., 2021

12 Albania Raw fresh parts consumed as such.

Leaf used to make drinks.

Drink made from leaf juice mixed with milk and sugar. Pieroni et al., 2005

13 Georgia Food (Phkhali) Leaves are used as delicious food. Bussmann et al., 2016

14 Tunisia Flours, sauce, and salads Leaves and stems are used in sauce and salads and seeds

crushed into flours.

Ismail, 2013

15 South Africa Snacks and vegetables Stem is used as a vegetable, leaves for snacks and vegetables. Magwede et al., 2019;

Welcome and Van Wyk, 2019

16 Madagascar Soup/salad Locals use it as salad or soup. Beidokhti et al., 2018

17 Benin Cooked vegetables Locally used as a green vegetable. In Benin, it is used against

rheumatism, gynecological diseases, dysentery, fever, and other

infections.

Achigan-Dako et al., 2010

18 Greece Purslane salad Raw purslane is mixed with potato slices, onions, tomatoes,

green chillies, and oil.

Irawan et al., 2003

IMPROVEMENT OF PURSLANE USING
GENOMICS AND GENE-EDITING TOOLS
FOR SUPERIOR TRAITS AND URBAN
AGRICULTURE

Crop improvement involves strategies for the trait enhancement
of the plants for superior characters (Singh et al., 2020). Various
strategies including conventional and modern approaches have
been used for crop improvement programs (Breseghello and
Coelho, 2013). The characterization and identification of
diverse germplasm is an important step toward further crop-
improvement programs (Ezekwe et al., 1999; Alam et al., 2014b;
Egea-Gilabert et al., 2014). Few researchers have attempted
and successfully standardized tissue culture protocols and
Agrobacterium-mediated transformation (Rossi-Hassani et al.,
1995; Sedaghati et al., 2019, Sedaghati et al., 2021). Although
the advancement of molecular techniques including genomics
and other omics technologies enabled the analysis of genomes,
proteomes, metabolomes, and ionomes of the crop plants (Salt,

2004; Kumari et al., 2015; Ramalingam et al., 2015), however,
such studies are lacking in purslane. The genomics studies in
combination with other omics studies such as metabolomics
and proteomics will provide useful information about the
regulatory networks that contribute to the stress tolerance,
diversity of phytochemicals, and other nutritional traits in
purslane besides shortening the time required for breeding
superior cultivars (Singh et al., 2020). Furthermore, the gene-
editing tools can also be exploited for editing the important
genes and customization of the purslane cultivars for urban
and biosaline agriculture (Abdallah et al., 2015). The purslane
improvement studies must focus on traits such as biomass,
yield, maturity, flowering, seeds, and stress tolerance (Alam
et al., 2014e). Since purslane is highly nutritious orphan crops
with a number of superior traits, attempts should be made
to decipher its genetic makeup and other regulators such as
noncoding RNAs and epigenetic marks using genomics tools.
The identification of genes will enable to manipulate and
improve desirable traits including enhancement of ω-3-FAs, its
CAM pathway, nutritional content, stress tolerance/resistance,
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FIGURE 4 | Integrated strategies to improve purslanes using genomics and gene-editing technology.

and other important traits using conventional and modern
genome-editing tools. Furthermore, a large-scale profiling of
nutrients and essential mineral elements using metabolomics
and ionomics and establishing links with their genes would
help us to decipher the importance of genetics of these
traits. Figure 4 represents an integrative strategy involving
the use of genomics and gene editing for the improvement
of purslane.

CHALLENGES TO CULTIVATION AND
IMPROVEMENT OF PURSLANE

Purslane is a nutritionally rich traditionally important orphan
crop which is not either cultivated or consumed on a
large scale. Although it has multiple desirable traits, it has
unpalatable taste due to which it is not widely consumed by
people. To increase its production and consumption, awareness
programs about its health benefits must be conducted. Although
wide variation of purslane is reported, detail collection and
characterization to identify potential germplasm to be used
in crop improvement has not been reported (Ramanatha Rao
and Hodgkin, 2002: Alam et al., 2014a, 2015a). The lack
of germplasm collections in different gene/germplasm banks
across the globe is also one of the reasons why it remained
neglected to date. Furthermore, there are very limited genetic
and genomics resources of purslane to date. Future attempts
should be made to increase germplasm collections; their
characterization, phenotyping, and genotyping using various

omics techniques should be attempted for purslane to be used in
improvement programs.

CONCLUSION AND FUTURE DIRECTIONS

Purslane, being an important traditional crop with multiple
health benefits and inherent stress-tolerant mechanism has
tremendous potential to be adopted for cultivation during
this time of global climate change, salinity, drought, and
urbanization-related problems. The climate-smart crops should
be able to grow and adapt in stressful environments such as
drought, high temperature, and submergence machinery, and
these properties are inherently present in purslane. Purslane uses
water-efficient CAM pathway for photosynthesis during drought
conditions and switches to C4 machinery when the temperature
is very high (Simopoulos et al., 1995; Kamil et al., 2000; Ferrari
et al., 2020), which is a potential trait for designing climate-
smart crop (D’Andrea et al., 2014). Facultative CAM pathway
of purslane and C4 metabolism makes it an important crop for
water-scarce regions of the world (Welkie and Caldwell, 1970;
Koch and Kennedy, 1980; Ocampo et al., 2013; Winter and
Holtum, 2014; Liu et al., 2018). Therefore, its cultivation can
also be attempted in the drought-prone regions of the world.
Furthermore, its salinity-tolerance character makes it fit for
biosaline agriculture where freshwater (normal) is not in plenty
(Borsai et al., 2018, 2020). However, the mechanisms of salinity
tolerance still need to be investigated in detail. The development
of transformation protocols is important for gene editing or
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genetic modification of crops. A research group has standardized
and developed an efficient protocol of Agrobacterium-mediated
transformation in P. oleracea (Sedaghati et al., 2019). The
induction of hairy root is a key step toward in vitro
production of secondary metabolites, and it has been successfully
achieved in P. oleracea (Moghadam et al., 2014). Therefore, the
availability of Agrobacterium-mediated transformation protocol
may ensure genetic manipulation experiments once the genes
governing important traits are identified. Furthermore, other
gene editing technologies may also be attempted in purslane for
manipulating genes governing important traits. The application
of multi-omics high-throughput technologies such as genomics,
transcriptomics, metabolomics, proteomics, and ionomics and
their integrated analysis would help to identify genes, understand
the regulatory mechanism, and help in manipulation of
important traits. Lastly, we suggest and recommend for
popularizing the cultivation and consumption of traditional

orphan food crop purslane in a large scale owing to its high
nutrition and health beneficial compound content and easy to
cultivate in less space and multiple stress environments.
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