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Due to the rapid growth in the global population, the consumption of animal-based

food products/food compounds has been associated with negative implications for food

sustainability/security. As a result, there is an increasing demand for the development

of plant-based food and compounds as alternatives. Meanwhile, a growing number of

studies report the health benefits of food protein-based peptides prepared via enzymatic

hydrolysis and exhibiting biological properties such as antioxidant, antihypertensive,

anti-thrombotic, and antidiabetic activities. However, the inherent bitterness of some

peptides hinders their application in food products as ingredients. This article aims

to provide the latest findings on plant-based bioactive peptides, particularly their

health benefits, manufacturing methods, detection and qualification of their bitterness

properties, as well as debittering methods to reduce or eliminate this negative sensory

characteristic. However, there is still a paucity of research on the biological property

of debittered peptides. Therefore, the role of plant protein-derived bioactive peptides

to meet the health targets of the Sustainable Development Goals can only be

realised if advances are made in the industrial-scale bioprocessing and debittering of

these peptides.

Keywords: peptides, flavour masking, encapsulation, protein, enzymatic hydrolysis, nutraceuticals

INTRODUCTION

According to the data from World Population Prospects (2019 revision), United Nations (2019)
estimates a dramatic global population growth from 7.7 to 9.7 billion from 2019 to 2050, with the
population over the age of 65 increasing from 9 to 16%. Not only this population growth prospects
is raising questions on demand for food quantity, but it is also initiating discussions and debates
on the sustainability of systems used in the current agri-food sector. In this context, some negative
impacts on the environment through the manufacturing of animal-based food materials by the
agricultural sector have been reported. Some of these impacts include the formation of a large
number of greenhouse gases, farm land conversion (i.e., from forests, wetlands, and grasslands)
and poor biodiversity, etc.
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Unfortunately, at the same time, the contemporary
“downstream” food industry is also generating a huge number of
by-products and wastes. The disposal of these by-products could
cause a huge negative impact on the environment. However,
some of these by-products can be potentially used to develop
novel food ingredients with health benefits. For instance, defatted
seeds, which are considered “by-products” by the oil industry,
are rich in proteins. A Food and Agriculture Organization of
the United Nations (2012) report suggested that the annual
volume of defatted meals of major oilseeds (i.e., soybean,
rapeseed, cottonseed, sunflower seed, flaxseed, and peanut) was
approximately 200 million tonnes, and these defatted meals
contain up to 50% (w/w) protein. On the other hand, defatted
cereal (e.g., rice bran, corn and wheat germ etc.) and vegetables
(e.g., olive, shea butter cake and palm kernel cake etc.), which are
also produced in large quantities annually, are promising sources
of proteins (Zarei et al., 2012; Abdul-Mumeen et al., 2013;
Rahman et al., 2013; Meshginfar et al., 2019; Görgüç et al., 2020).
Therefore, there is an increasing demand in developing new
food products and ingredients from these plant-based materials
to improve the sustainability of food production processes and
reduce the environmental footprint of food waste disposal.

BIOPEPTIDES AND FABRICATION
PROCESS

Bioactive peptides (or biopeptides) are part of proteins, with
the structure of 2–20 amino acid residues linked by peptide
bonds and a molecular weight below 6 kDa (Sarmadi and Ismail,
2010; Chalamaiah et al., 2018, 2019). Recently, the biological
activities of food protein-derived biopeptides have been drawing
interest from both research and industrial sectors. Compared
with physical mixtures of amino acids at an equivalent amount,
peptides with short chains, particularly di- and tripeptides, are
more readily absorbed by the human body due to (1) the
presence of specific transport systems for peptides; (2) the
less hypertonic nature of peptides, eliminating problems with
osmosis, and (3) improved stability and or solubility of peptides
(Parrado et al., 1991; Siemensm et al., 1993; Clemente, 2001;
Kang et al., 2012). To date, the most commonly used methods
to produce biopeptides from foods are microbial fermentation of
food products, and enzymatic hydrolysis of food proteins (Lee
and Hur, 2017).

Microbial Fermentation to Produce
Biopeptides
Bacteria or yeast are involved in microbial fermentation of
the protein-containing food to produce biopeptides. Briefly,
these microorganisms secret proteolytic enzymes during their
growth so that food proteins are hydrolysed into biopeptides.
The production of biopeptide via microbial fermentation is
straightforward. Firstly, the selected microorganism is grown
into its exponential phase in the growing media at the optimum
conditions. Subsequently, these microorganisms are harvested,
washed, suspended in sterile media and added into the target
food material as a starter to induce the fermentation and the

production of biopeptides (Daliri et al., 2016; Aguilar-Toalá
et al., 2017). During the fermentation process, the type of
microorganism, nature of the food matrix, and fermentation
conditions significantly affect the outcomes (i.e., the types and
quantities of peptides released).

To date, although dairy products are still the main
source of proteins for generating biopeptides using the
fermentation method (Wang et al., 2015; Najafian and Babji,
2018;Worsztynowicz et al., 2020; Yu et al., 2020), the preparation
and characterisation of plant-based biopeptides are drawing
significant research interests (see Table 1). For instance, Xiao
et al. (2018) fermented red bean [Phaseolus angularis (Willd.)
W. F. Wight.] using Cordyceps militaris (L.) Fr to release small
peptides. The authors observed significant inhibitory effects
of the fermented bean on angiotensin I converting enzyme
(ACE), with an IC50 value of 0.63 mg/mL. As reported by Wu
et al. (2018), whole-grain oats were fermented by Lactobacillus
plantarum B1-6, Rhizopus oryzae, or their combination for
72 h, resulting in an increased degree of hydrolysis when both
microorganisms were applied. In addition, the fermented oats
had a higher ACE inhibitory activity, with an IC50 value of 0.42
mg/mL. Enhancement of bioactivity during fermentation has
been associated with degradation of the rigid cell wall of plants
by microbial enzymes, resulting in enhanced protein digestibility
and biopeptide release (Di Stefano et al., 2019).

Enzymatic Hydrolysis to Produce
Biopeptides
Compared with the fermentation method, the hydrolysis of
food proteins using enzymes to produce biopeptides has the
advantages of time effectiveness, ease in scaling up, and
better predictability. The general flow diagram of biopeptide
preparation using this approach is shown in Figure 1. Essentially,
the first step involves extraction of food proteins from the food
to avoid interference of other non-protein components (Görgüç
et al., 2020). For instance, enzyme activity can be significantly
inhibited by phenolic compounds (Cirkovic Velickovic and
Stanic-Vucinic, 2018). Subsequently, these extracted proteins
are hydrolysed using the selected enzyme(s) at controlled
temperature and pH for a certain period (He et al., 2016;
Ou and Peng, 2016). Similar to the release of biopeptide
using the fermentation method, in this enzymatic hydrolysis
process, the selected enzyme(s), nature of food proteins, and
environmental conditions during the hydrolysis significantly
affect the outcomes. In a study by Zhang et al. (2012), rice
bran protein was hydrolysed using peptidases, Alcalase, Neutrase,
papaya latex papain or porcine pancreas trypsin at 25–50◦C and
pH 7.0–8.5 depending on the nature of the enzyme. The result
showed the Alcalase hydrolysis process produced hydrolysates
with the highest degree of hydrolysis. The subsequent in vitro
test result confirmed a high micellar cholesterol inhibition ability
of the released biopeptides. To date, although the association
between specific proteolytic enzymes and the release of specific
peptides in food proteins has not been completely understood, it
is well-accepted that the biopeptides with low molecular weight
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TABLE 1 | Example biopeptides prepared based on microbial fermentation.

Protein source Microorganism Fermentation condition Identified biopeptides Descriptions References

Dairy products

Bovine milk Pichia kudriavzevii

KL84A,

Lactobacillus

plantarum LAT03,

Enterococcus

faecalis KE06

The combined culture was

mixed with milk at 1% (v/v)

and the fermentation was

performed at 28◦C for 36 h

ACE inhibitory biopeptides The fermented milk with

biopeptides (1.9 mg/mL)

exhibited a significant ACE

inhibitory effect and was not

bitter

Chaves-López et al.,

2014

Whey protein Enterococcus

faecalis 2/28

The culture was added to

whey protein with a ratio of

1:3 (w/w), followed by an

incubated at 37◦C at pH

6.9 for 48 h, under the

agitation of 300 rpm

P1: AASDISLLDAQSAPLR

P2: LDAQSAPLR

P3: LLGYGGVSLPEW

P4: LLALPMH

P5: LLPTPEGDLEIL

P6: IIAELTLIPAVF

P7: LLGYGGVSLPE

P8: LLPTPEGDLE

P9: ILDLVGINY

P10: IDALNENL

P11: VLVLDTDYL

P12: LIVTQTML

The fermentation led to the

release of 12 biopeptides. P2, 3,

5, and 8 biopeptides showed

ACE inhibitory effect; P1, 6, 10,

and 11 with antimicrobial activity,

P4, 5, 7, 8, 9, and 11 with

DPP-IV inhibitory effect; P10 with

proliferation stimulating activity

and P12 with cytotoxic activity

Worsztynowicz

et al., 2020

Goat milk Milk starter Milk starter was mixed with

goat milk at 3 and 5% (v/v),

followed by fermentation at

40 and 45◦C for 4–8 h. The

pH during fermentation

was controlled in the range

of 4.5–5

P1: LYQEPVLGPVRGPFPI

P2: YQEPVLGPVRGFPIL

P4: VQSWMHQPPQPLSPT

These 3 biopeptides significantly

reduced cholesterol levels in the

hypercholesterolemia rats

Mahdi et al., 2018

Meat

Pork protein

extract

Lactobacillus

plantarum CD101

and Staphylococcus

simulans NJ201

Microorganisms were

added into pork protein

extract at 107 CFU/mL,

followed by an incubation

at 30◦C for 4 days

P1: MDLR

P2: PYLR

P3: FDLR

P4: EAAPYLRL

P5: EAAPYLR

P6: AAPYLR

P7: LALLS

P8: VLAR

P9: LPLL

P10: ALLPA

P11: VNGFGR

P12: LLPA

P13: YGRAL

P14: VVFL

P15: APARLF

P16: LPVSPL

P17: THLDT

P18: FLSNH

P19: VLVG

P20: AALLPA

P21: LLAAP

P22: LPVSPLL

P23: LLVFH

P24: LPVSPLLL

P25: VLLFH

Mixed culture was able to

degrade sarcoplasmic and

myofibrillar pork protein to

produce 25 biopeptides. The

ones made from sarcoplasmic

proteins showed strong

antioxidant activity

Yu et al., 2020

Beef and camel

sausage

Starter culture

(Pediococcus

pentosaceus and

Staphylococcus

carnosus) or

Lactobacillus

plantarum

KX881772 or their

mixture

Microorganisms were

added to the sausage at

107-108 CFU/kg and

fermentation was

performed at 30◦C for

48 h, followed by 21-day

storage at 15◦C and

relative humidity of 90%.

The final pH after

fermentation was 5.3

Not specified The water-soluble biopeptide

based on fermentation of camel

sausage showed strong ACE-I,

antioxidant and cytotoxicity

properties against Caco-2 cell.

At the other hand, the

bioactivities of biopeptides from

fermented beef sausage was not

as significant as those from

camel sausage

Ayyash et al., 2019

(Continued)
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TABLE 1 | Continued

Protein source Microorganism Fermentation condition Identified biopeptides Descriptions References

Pork protein from

ground pork

Koji Koji was mixed with ground

pork at 10% (w/w) and the

meat was fermented at

30◦C for 24 weeks

QYP Fermented meat showed high

antioxidant activity. Functional

biopeptide (QYP) was separated

using LC-MS exhibited extremely

high antioxidant activity (>90%)

against pH-radical

Ohata et al., 2016

Plants

Soybean Lactobacillus

delbrueckii subsp.

bulgaricus and

Streptococcus

thermophilu

The microorganism was

added to the soybean at 3

× 106 CFU/mL, followed

by fermentation at 40◦C for

10–12 h

Not specified After fermentation, the content of

antioxidant biopeptides in the

soybean was increased and the

amount of peroxides was lower

in the fermented soybean

Tonolo et al., 2019

Kidney bean Lactobacillus

plantarum

The starter was mixed with

bean at 108 CFU/mL and

fermentation was

performed at 37◦C for

96 h, under the agitation of

350 rpm

Not specified The biopeptide extract with high

γ-aminobutyric acid content

(6.8–10.6 mg/g) showed

ACE-Inhibitory effect (>90%) and

potential antihypertensive activity

Limón et al., 2015

Pea seed Lactobacillus

plantarum 299V

Lactobacillus plantarum

299V was mixed with pea

seed at 22◦C for a

fermentation period of 7

days

LEDDEEEEQGEEE After in vitro digestion for 7 days,

the hydrolysate exhibited high

ACE-I activity at IC50 value of

64.04µg/ml

Jakubczyk et al.,

2013

are more bioactive than ones with high molecular weight (Ruiz-
Ruiz et al., 2013; García-Tejedor et al., 2014). The third step
is usually the termination of protein hydrolysis by inactivating
the enzyme(s), followed by fractionation to separate hydrolysates
or peptides from the reaction mixture (containing residual
unhydrolysed proteins and buffer components). This separation
process is usually performed using desalting and membrane-
filtration technologies. Finally, the peptides can be recovered
using freeze-drying technique, followed by characterisation of
their physicochemical and biological properties.

In their study, Ferri et al. (2017) digested rice byproducts
with five commercial proteolytic enzymes. The resulting
digesta was then fractionated into four molecular weights
using cross-flow membrane filtration techniques. This allowed
bioactivity characterisation such as anti-tyrosinase, anti-
inflammatory, cytotoxicity, irritation capacity, antioxidant, and
anti-hypertensive activities to be performed. Similarly, in their
studies, Nimalaratne et al. (2015) and Zhang et al. (2016) used
various proteases to hydrolyse chicken egg white protein and
Pseudosciaena croceamuscle, respectively. The hydrolysates were
separated using desalting and ultrafiltration methods before the
permeate was freeze-dried and characterised. It is worth noting
that in both studies, reverse-phase high-performance liquid
chromatography (RP-HPLC) was used to purify the peptide
fraction further, but this was more for analytical purposes.

BIOACTIVITIES AND/OR HEALTH
BENEFITS OF BIOPEPTIDES

Generally, a wide range of bioactivities or health benefits has
been reported for biopeptides, such as antioxidant, antimicrobial,

anticancer, hypocholesterolemic, antihypertensive,
immunomodulatory and opioid-like activities, etc. These
bioactivities are significantly affected by the nature of the
peptide, i.e., the type of amino acid, their sequence, and
molecular weight, etc.

Antioxidant Activity
To date, many clinical trials have reported the correlation
between the oxidative stress caused by reactive oxygen species
(ROS) and the development of various chronic diseases including
rheumatoid arthritis, diabetes, inflammation and even cancer
(Sayin et al., 2014; Ibrahim et al., 2018). Therefore, the
intake of a diet rich in antioxidants is well-recommended by
clinicians, dietitians and health organisations. Meanwhile, food
ingredients with antioxidant activity are also desired by the food
industry, because these foods can delay and/or prevent oxidative
deterioration of macromolecules in food product matrices, such
as proteins and lipids, to improve the quality and shelf life of the
food (Nwachukwu and Aluko, 2019).

Depending on the composition, structure, and
hydrophobicity, some biopeptides show antioxidant properties
to varying extents. For example, among 20 amino acids, Xu et al.
(2017) observed stronger antioxidant activity in tryptophan,
methionine, histidine, lysine, cysteine, arginine and tyrosine,
than in others. Generally, biopeptides with antioxidant activities
usually have short chains made from about 4 to 16 amino acids
and low molecular weight in the range of 0.4–2 kDa.

The exact mechanism of antioxidant activities of these
biopeptides is a continuing research endeavour. These peptides
have been reported and used in different settings, such as
inhibiting lipid peroxidation, scavenging free radicals, and
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FIGURE 1 | Preparation of biopeptides based on enzymatic hydrolysis of food

proteins.

chelating transition metal ions via various mechanisms (Wu
et al., 2003; Rajapakse et al., 2005; Moure et al., 2006). For
instance, in their studies, Ajibola et al. (2011) and Esfandi
et al. (2019a,b) suggested that the scavenging of free radicals
happens via hydrogen atom and single electron transfer by
the tyrosine- and cysteine-containing biopeptides, respectively.
In other studies, the histidine-containing biopeptides acted as
antioxidants via the donation of hydrogen atom, entrapment
of lipid peroxyl radical, and the chelating of metal ions by the
imidazole group (Khan et al., 2014; Walters et al., 2018). Sarmadi
and Ismail (2010) reported the antioxidant activity of cysteine
due to sulfhydryl (-SH) groups’ reacting with free radicals to form
the disulfide bond (-SS-).

Some plant-based biopeptides with antioxidant properties
are shown in Table 2. Other examples are given below. For
instance, Megías et al. (2008) hydrolysed sunflower protein using
pepsin and pancreatin and the hydrolysate exhibited significant
copper-chelating properties due to the presence of histidine
and arginine in the peptide sequence. Similarly, in a study
by Girgih et al. (2014), hemp protein isolate was hydrolysed
using pepsin, followed by pancreatin to generate biopeptides.
Subsequently, the sequences of 23 peptides were identified in
this protein hydrolysate and the subsequent in vitro and in vivo

tests indicated the superior antioxidant properties of WVYY
and PSLPA biopeptides. This indicates that gastrointestinal
proteases can potentially generate antioxidant biopeptides during
digestion of dietary proteins. Furthermore, Supawong et al.
(2018) used Protease G6 to hydrolyse rice bran protein and the
resultant biopeptides exhibited significant antioxidant activity.
Subsequently, these peptides were incorporated into the fried
fish cake as an example application. The authors reported
that 2% (w/w) rice bran hydrolysate addition was able to
reduce lipid oxidation by 79.8%, which was as equally effective
as adding 0.02% (w/w) butylated hydroxyanisole/butylated
hydroxytoluene (BHA/BHT). This demonstrates the potential of
using biopeptides to preserve the quality of food products.

Antimicrobial Activity
The incorporation of food ingredients with antimicrobial activity
can help prolong the shelf life of the food product, as well
as retain food quality during storage (Lucera et al., 2012). For
this purpose, the mechanism and application of various natural
antimicrobial compounds, such as essential oils from plants (e.g.,
basil, clove, and rosemary), enzymes from animals (e.g., lysozyme
and lactoferrin), short-chain organic acids (e.g., acetic and citric
acid), and biopolymers (e.g., chitosan) have been investigated
and explored.

Some peptides exhibit antimicrobial activity due to their
unique structural features such as having unusually long chains
(with 20–46 amino acid subunits), the presence of basic groups
such as lysine or arginine, and an amphipathic nature (Toldrá
et al., 2018; Ahmed and Hammami, 2019). Generally, many
antimicrobial peptides contain cationic amino acids and they
usually have a high content of some particular hydrophobic
residues such as leucine, isoleucine, valine, phenylalanine
and tryptophan (Fjell et al., 2012). These biopeptides can
form channels and/or pores on the surface of microbial
membranes, leading to membrane disruption and even cell
division (Yadavalli et al., 2016; Toldrá et al., 2018). The
mechanism of antimicrobial activity of biopeptides was reported
by Fjell et al. (2012), Barreto-Santamaría et al. (2020), and
Li et al. (2021). Firstly, these biopeptides interact with
oppositely charged groups on microbes’ membrane surfaces.
Subsequently, the biopeptides attach onto this surface (aided by
electrostatic/hydrophobic interactions). Finally, the lipids of the
microbe membrane are displaced, leading to the disruption of
cell membranes.

The antimicrobial activity of various plant-based biopeptides
have been reported, including peptide hydrolysate of chia
flour (Salvia hispanica L.) (Segura-Campos et al., 2013),
black pepper peptides with GTCVLVL, SSVVGRL, and
ALGTLLL residuals (Umadevi et al., 2018), and soybean
peptides containing PGTAVFL and ILAFLEATLVDLVVVLWTA
residuals (Dhayakaran et al., 2016). In their study, Pu and
Tang (2017) purified an antilisterial peptide (Alpep7) from
the bromelain hydrolysate of rice bran proteins and identified
LVDHFPL residual as being responsible for this antimicrobial
activity. Furthermore, a liposome system was successfully
developed to deliver this biopeptide to the listerial biofilm
to confirm its listericidal activity. Similarly, Xiao and Zhang
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TABLE 2 | Some plant-based biopeptides with antioxidant activity.

Protein nature Enzyme Process Identified

biopeptide

Description References

Corn gluten meal Alkaline protease

and Flavourzyme

The alkaline protease was mixed

with corn gluten meal (8%, w/v),

followed by hydrolysis for 75min at

pH 7 and 50◦C. Subsequently,

Flavourzyme was used to

hydrolyse the mixture (4.2%, w/v)

for another 66min

LPF, LLPF, FLPF Low molecular weight corn gluten

meal hydrolysate (<10 kDa)

exhibited the highest antioxidant

activity, in terms of free radical

scavenging capacity, metal ion

chelating activity and lipid

peroxidation inhibitory activity

Zhuang et al.,

2013

Hemp seed

protein

Pepsin Pepsin was added to hemp seed

protein isolate solution at 4% (w/v)

and pH was maintained at 2.0 for

a 2 h hydrolysis

WVYY, PSLPA Both biopeptides show strong

antioxidant property, with 67 and

58% DPPH scavenging and 94 and

96% metal chelation activity,

respectively

Girgih et al., 2014

Wheat bran

protein

Alcalase Alcalase was mixed with freeze

dried wheat bran protein at 4%

(w/w). The hydrolysis was

performed at 50◦C and pH 8, for

3 h

NL, QL, FL, HAL,

AAVL, and ALTVF

Low molecular weight biopeptides

(<1 kDa) in the hydrolysate was

responsible for high oxygen radical

antioxidant activity

Zou et al., 2020

Rice bran protein Protease G6 Protease G6 was added into

defatted rice bran at 2% (w/w).

The hydrolysis was performed at

60◦C and pH 8 for 6 h for a

hydrolysis degree of 26.6%

Not specified Rice bran hydrolysate exhibited

significant antioxidant activity. To

prevent fried fish cake from lipid

oxidation, 2% rice bran hydrolysate

addition was found to be equally

effective as 0.02% butylated

hydroxyanisole/butylated

hydroxytoluene (BHA/BHT)

Supawong et al.,

2018

Plum kernel

protein

Alcalase or

thermolysin

The precipitated proteins were

mixed with Alcalase or

Thermolysin, separately and the

hydrolysis was performed at 50◦C

for 3 and 4 h, respectively

MLPSLPL, HLPLL,

and NLPLL

A total of seven potential antioxidant

peptides that resisted the simulated

gastrointestinal digestion were

separated and identified using

RP-HPLC–MS/MS and

HILIC–MS/MS

González-García

et al., 2015

(2012) digested Jatropha curcas meal using multiple enzymes
(including pepsin, trypsin, Protamex, Neutrase, Flavourzyme,
papain, Alcalase, or acid protease) into hydrolysates with
different degrees of hydrolysis and the authors evaluated
the antibacterial activity of the hydrolysates. Based on the
peptide sequence analysis, the CAILTHLR peptide was found
to be responsible for the inhibitory effect against various
microbes, including Escherichia coli ATCC 25922, Shigella
dysenteriae ATCC 51302, Pseudomonas aeruginosa ATCC
27553, Staphylococcus aureus ATCC 25923, Bacillus subtilis
ATCC 23631, and Streptococcus pneumoniae ATCC 49619.
The minimum inhibitory concentrations were in the range of
29–68 µg/mL.

Anticancer Activity
To date, many synthetic anticancer drugs show a wide range
of side effects, such as nephrotoxic, neurotoxic, cardiotoxic and
gonadotoxic effects (Oun et al., 2013; Ahar et al., 2014; Kamisli
et al., 2015; Gutierrez et al., 2016; Van Acker et al., 2016).
Therefore, biopeptides with anticancer activity are promising
alternatives to prevent and/or decelerate cancer (Daliri et al.,
2017). Some examples of plant-based biopeptides with anticancer
activity are shown in Table 3. In a review by Chalamaiah
et al. (2018), different mechanisms of anticancer activity of

these peptides were reported. Some of the mechanisms included
inducing cancer cell membrane damage, adhering to cell and
inhibiting topoisomerases, modulating immune response, and/or
inhibiting intracellular signalling of cancer cells.

Xue et al. (2015) reported that chickpea protein-derived
peptide RQSHFANAQP dramatically increased p53 protein level,
thereby inhibiting the proliferation of the MCF-7 and MDA-
MB-231 breast cancer cells at the EC50 values of 2.38 and
1.50 µmol/mL, respectively. In another study, based on a
2-day fermentation of rapeseed meal using Bacillus subtilis
and Actinomucor elegans, the released biopeptides significantly
inhibited the proliferation of human HepG2 liver cancer and
MCF-7 breast cancer cells (Xie et al., 2015).

Among the plant-based biopeptides with anticancer benefits,
those obtained from soybean proteins have been attracting
particular research interests (Badger et al., 2005; Hwang et al.,
2011). In a study by Rayaprolu et al. (2013), high oleic
acid soybean protein from N98-4445A and S03-543CR lines
was hydrolysed using Alcalase and the released biopeptides
inhibited the proliferation of colon, liver and lung cancer
cells. Moreover, anticancer activity has been observed in
several other biopeptides, such as lunasin (a peptide found in
soy), RLQLQGVN, GLTSL, LSGNL, GEGSGA, MPACGSS, and
MTEEY peptides (Vital et al., 2014; Fernández-Tomé et al., 2017).
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TABLE 3 | Examples of plant-based biopeptides with anticarcinogenic activity.

Protein nature Enzyme Process Identified

biopeptide

Description References

Rapeseed

protein

Alcalase and

flavourzyme

Albumin isolate (5%, w/v) was isolated

from rapeseed protein and hydrolysed

using Alcalase (0.2 AU/g of substrate, 1 h)

and Flavourzyme (50 LAPU/g of substrate,

2 h) at 50◦C and pH 8. After thermal

treatment at 80◦C for 10min and

centrifugation at 4,000 g for 10min, the

hydrolysate was collected

Not specified Tumour growth in the Female

kunming nude mice with transplanted

arcoma S180 cells was significantly

inhibited by rapeseed protein

hydrolysate

Xue et al., 2009

Corn protein Alcalase
The corn protein solution was hydrolysed

by Alcalase (0.8%, w/w) for 5 h at pH 8.0

After boiling the mixture for 10min, it was

neutralised and an ultra-filtration

membrane with molecular weight cut-off 5

kDa was used to separate the peptide

Not specified In the in-vivo study, H22-tumour in

BALB/c male mice was significantly

suppressed by the intake of corn

protein hydrolysate. Moreover, the

application hydrolysates caused

apoptotic death of HepG2 cells

Li et al., 2013

Soybean protein Thermoase Denatured soy meal was mixed with

thermoase. Hydrolysis was performed at

80◦C for 15min. After centrifugation at

10,000 × g for 10min and the

supernatant was lyophilized. Finally, the

hydrophobic peptide was isolated using

an ethanol-based purification for 12 h

XMLPSYSPY Separated biopeptide significantly

inhibited the growth and affected the

cycle of mouse monocyte

macrophage (P388D1) cell

Kim et al., 2000

Rice bran protein Alcalase, pepsin

and pancreatin De-fatted rice bran was treated with

Alcalase and this hydrolysate was passed

through simulated gastrointestinal juices

and fractionated using ultrafiltration

fractionation columns

Ion exchange resin was further used to

separate the peptide

Peptides of >50,

10–50, 5–10, and

<5 kDa. EQRPR

The rice bran hydrolysate with

biopeptides showed an inhibitory

effect on the growth of Caco-2,

HCT-116, MCF-7, MDA-MB-231, and

HepG2 cancer cell

Kannan et al.,

2008, 2010

Algae (Chlorella

vulgaris) protein

Pepsin Algae protein waste was hydrolysed by

pepsin with an enzyme to substrate ratio

of 2% (w/w) at pH 2 and 50◦C for 15 h.

The digestion was neutralised and boiled,

followed by filtration through a 0.45µm

philtre to collect peptides

VECYGPNRPQF The algae protein hydrolysate

suppressed the proliferation of human

gastric cancer cell and induced a

post-G1 cell cycle arrest

Sheih et al., 2010

Common bean

(Phaseolus

vulgaris) protein

Pepsin and

pancreatin Bean protein isolate was treated by

sequential enzymatic digestion using

pepsin (1:20, w/w) and pancreatin (1:20,

w/w) at 37◦C, for 1.5 for each enzyme

After stopping the hydrolysis by heating,

the suspension was centrifuged and the

supernatant was dialysed, followed by

freeze drying

GLTSL, LSGNL,

GEGSGA,

MPACGSS and

MTEEY

The use of peptide inhabited human

colon cancer cell growth (HCT-116,

RKO, and KM12L4) and modified the

expression of cell cycle regulatory

proteins p53, p21, cyclin B1, BAD,

cytC, c-casp3, Survivin, and BIRC7

Vital et al., 2014

Rapeseed

(Brassica

campestris)

protein

A neutral

protease, B.

subtilis and A.

elegans

Rapeseed meal was mixed with protease,

B. subtilis and A. elegans at solid–liquid

ratio of 1:1.35 and a B. subtilis–A. elegans

ratio of 4:1, respectively, for fermentation.

This mixture was further extracted using

water, followed by centrifugation and

filtration through a 0.45µm membrane to

obtain the peptide

WTP Rapeseed protein hydolysate

inhibited proliferation of Hep G2 cell,

significantly changed its morphology

and induced apoptosis

Wang et al., 2016

Peptides from

spirulina

platensis

Pepsin, trypsin,

and

chymotrypsin

Extracted protein was digested

sequentially using pepsin (6%, w/w, pH 2

for 2 h), trypsin (3% w/w, pH 8 for 3 h) and

chymotrypsin (5% w/w, pH 8 for 3 h) at

37◦C, with a boiling process for 10min

in-between to stop the hydrolysis

After centrifugation and freeze drying,

peptide was prepared

HVLSRAPR Biopeptides showed strong

anti-proliferation activity on three

cancer cells (MCF-7, HepG-2 and

SGC-7901 cell)

Wang and Zhang,

2017
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Lunasin is a peptide with 43 amino acid residues and a molecular
weight of 5 kDa (Udenigwe and Aluko, 2012; Rizzello et al.,
2016).Within this peptide, the RGD residue and polyaspartic acid
chain with nine aspartic acid residues have been reported as being
responsible for its anticarcinogenic activities (Dia and de Mejia,
2011). In an in vitro study by Lumen (2005), lunasin showed the
ability to entermammalian cells within a fewminutes when orally
ingested, followed by localisation in the nucleus to inhibit histone
acetylation and prevent skin cancers. Similarly, in vitro and in
vivo studies have confirmed the inhibitory effect of lunasin on
murine Lewis lung carcinoma (LLC) and B16-F0 melanoma cells,
but do not affect the growth rate of normal cell lines.

Hypocholesterolemic Activity
Cholesterol levels of around 50 mg/dL in the serum are required
by the human body to maintain normal functions (Steinberg and
Witztum, 2009). However, excessive amounts of cholesterol in
the blood may result in the formation of plaques in the arteries,
resulting in cardiovascular diseases (Daliri et al., 2017). Although
many synthetic drugs have been developed to lower blood
cholesterol, side effects including liver injury or failure, myopathy
and diabetes have been reported from their consumption (Carter
et al., 2013; Mancini et al., 2016). Therefore, there is an increasing
demand in sourcing natural and food-based alternatives of
these drugs.

Hypocholesterolemic activity has been observed in some
plant-based biopeptides, including ones from rice bran (Zhang
et al., 2012), cowpea (Marques et al., 2015; Hernandez and
de Mejia, 2017), cumin seed (Siow et al., 2016), and soy
(Duranti et al., 2004; Lammi et al., 2015). Recently, Coelho
et al. (2018) hydrolysed chia seed protein into biopeptides using
Alcalase and Flavourzyme. After purification via ultrafiltration,
the separated biopeptides with low molecular weight (<3 kDa)
showed a significant inhibitory effect on cholesterol synthesis
in vitro, by reducing the enzymatic reaction velocity of 3-
hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase
by up to 80.7%. Similarly, Lammi et al. (2016) reported that
lupin biopeptides produced by enzymatic hydrolysis significantly
inhibited the ability of HepG2 cells to secrete mature proprotein
convertase (PC) subtilisin/kexintype 9 (PCSK9) in patients with
moderate hypercholesterolaemia.

Some soy protein hydrolysate or biopeptides also exhibit
hypocholesterolemic activities. For example, Lammi et al.
(2015) treated HepG2 cells with three peptides separated
from hydrolysed soy glycinin. The peptides were IAVPGEVA,
IAVPTGVA and LPYP. The result showed that these three
biopeptides significantly affected the catalytic activities of
HMG-CoA reductase. Moreover, the cholesterol metabolism
was modulated by the three peptides based on the activation
of low-density lipoprotein receptor-sterol regulatory element-
binding protein 2 (LDLR-SREBP2) pathway, finally promoting
cellular uptake of low-density lipoprotein by the cultured
hepatocytes. In an in vitro study by Pak et al. (2005), the
hypocholesterolaemic activity of soy 11S globulin peptide was
observed based on the binding of Bile acid. This biopeptide has
the amino acid sequence of IAPGEVA, and a molecular weight of
755.2 Da. After bile acid was bound with peptide, it could not be

reabsorbed through the enterohepatic circulation, which further
stimulates the transformation of cholesterol into bile acids in
the liver.

Antihypertensive Activity
The overall prevalence of hypertension (i.e., high blood pressure)
in the global population is estimated to be 1.13 billion people
in 2015 and it is expected to be approximately 1.56 billion by
2025 (Kearney et al., 2005; Mills et al., 2016; World Health
Organisation, 2021). The correlations between hypertension
and many serious non-communicable diseases have been well-
established (Lee and Hur, 2017). Therefore, the demand for
functional foods or food ingredients with antihypertensive
activity is increasing (Bhat et al., 2017). Unfortunately, many
synthetic antihypertensive drugs have multiple side effects,
including dizziness, dysgeusia, headache, angioedema, and cough
(Daliri et al., 2017).

In the renin-angiotensin-aldosterone system of the human
body, angiotensin I-converting enzyme (ACE) catalyses the
conversion of angiotensin I to angiotensin II, finally increasing
blood pressure. Therefore, compounds that influence this system
have been drawing much research attention. Interestingly,
some peptides have shown ability to lower blood pressure
by inhibiting the activity of ACE. Piovesana et al. (2018)
reported that ACE-inhibiting biopeptides usually have 2–
12 amino acid subunits in the chain. Particularly, they
often contain acidic (Aspartic and Glutamic acid), positively
charged (in particular, an alkyl group at the C-terminus) and
hydrophobic amino acid subunits. This is also confirmed in
the study by Wu et al. (2006), where the correlation of ACE-
inhibiting activity and structure of 168 di- and 140 tripeptides
were investigated.

In a study by Marambe et al. (2008), flaxseed proteins
hydrolysed using Flavourzyme (0.67 mg/mL) and the hydrolysate
showed strong ACE inhibitory activity at a low IC50 values of
0.07 mg/mL. Similarly, Wang et al. (2017) hydrolysed protein
derived from rice bran using trypsin to obtain YSL peptide with
a molecular weight of 395 Da, which exhibited strong ACE
inhibitory activity at an IC50 value of 76µM. Li and Aluko
(2010) hydrolysed pea protein using Alcalase and the separated
IR, LF and EF peptides showed significant inhibition of the
activities of ACE and renin. These peptides had IC50 values
below 25mM. ACE inhibitory effects have been observed in
biopeptides from soy (Wu and Ding, 2002), bamboo shoots (Liu
et al., 2013) and cocoa beans (Sarmadi et al., 2011). Interestingly,
Roy et al. (2010) suggested that the pea-based ACE inhibitory
peptides were more resistant to digestion than the ones derived
from milk.

Immunomodulatory Activity
The immune system of the human body is comprised of
many biological structures and a healthy immune system
that can identify and kill invading microorganisms (Yang
et al., 2018). However, this vital system can be negatively
affected by a wide range of factors including stress, unhealthy
diet and lifestyle, and overwhelming presence of pathogens
and/or antigens (Segerstrom and Miller, 2004). Although
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TABLE 4 | Examples of plant-based biopeptides with immunomodulatory activity.

Protein nature Enzyme Process Identified

biopeptide

Description References

Green microalga

(Chlorella vulgaris)

protein

Pancreatin Microalga cell mass was mixed with

pancreatin at 20 AU/mg of protein,

pH 7.5 and 45◦C for 4 h

Main peptides with

molecular weight <5

kDa

In mice subjects, haemopoiesis,

leukocyte count, peritoneal exudate

cells, macrophage activity, and

stimulated both humoral and cell

mediated immune functions were

improved by the application of

biopeptides

Morris et al., 2007

Yellow pea seed

protein

Thermolysin Thermolysin was added to yellow pea

seed protein isolate at the ratio of

0.5% (w/w protein). The hydrolysis

was performed at 55◦C and pH 8.0

for 3 h

Low molecular

weight biopeptide

<1 kDa

Phagocytic activity of peritoneal

macrophages in mice was effectively

stimulated by the biopeptides, as well

as the gut mucosa immune response

Ndiaye et al., 2012

Flaxseed protein Pepsin, ficin, trypsin,

and papain

Flaxseed protein dispersion was

mixed with pepsin (pH 2.0–2.2), ficin

(pH 7.0), trypsin (pH 8.0), papain (pH

6.5), or thermolysin (pH 8.0) at 37 or

40◦C for a 4 h hydrolysis

Peptides <1 kDa In this in vitro study,

lipopolysaccharide (LPS)-induced

nitric oxide (NO) production in RAW

264.7 macrophages was significantly

inhibited by flaxseed biopeptide

Udenigwe et al.,

2009

Amaranth protein Pepsin and

pancreatin

Amaranth flour dispersion was mixed

with pepsin (662 units/mg;

enzyme/substrate, 1:20 w/w; pH 2.0),

followed by pancreatin (8 × USP;

enzyme/substrate, 1:20 w/w; pH 7.5).

The hydrolysis was performed at

37◦C for 3 h for each enzyme

Peptide with

molecular weight

<2,064 Da

Amaranth biopeptide significantly

reduced production of nitric oxide

(NO), Tumour necrosis factor α

(TNFα), Prostaglandin E2 (PGE2) and

Prostaglandin-endoperoxide synthase

2 (COX2) in lipopolysaccharide (LPS)

stimulated THP-1 and RAW 264.7

cells in vitro

Montoya-Rodriguez

et al., 2014

Wheat germ globulin Alcalase, neutrase,

papain, pepsin, and

trypsin

Extracted wheat germ globulin was

hydrolysed using various enzymes at

their optimum temperature, with the

same hydrolysis time (3 h) and

enzyme/protein ratio (10,000 u/g)

Peptide with

molecular weight in

the range of

300–1,450 Da

In this in vitro study, Biopeptides

improved proliferation of lymphocyte,

and the phagocytosis of Tumour

necrosis factor α (TNFα). The

secretion of interleukin 6 (IL-6) and

nitric oxide (NO) was also inhibited

Wu et al., 2016

some drugs have been developed to modulate the human
immune responses, they also have disadvantages like
toxicity and high cost (Gertsch et al., 2011). This makes the
modulation of the immune system via the intake of food-based
compounds promising.

Immunomodulatory activities have been observed in some
plant-based biopeptides, including the ones from soybean,
wheat, yellow pea seed and rice (Morris et al., 2007; Egusa
and Otani, 2009; Ndiaye et al., 2012; Hartati et al., 2017;
Wu et al., 2017). Some examples of these biopeptides are
shown in Table 4. Although the exact mechanism(s) of how
biopeptide affects the immune system has not been fully
understood, Chalamaiah et al. (2018) suggested that some
peptides exhibit this bioactivity via activating macrophages,
stimulating phagocytosis, increasing the amount of leukocytes,
improving immune modulators (e.g., cytokines, nitric oxide,
and immunoglobulins), stimulating natural killer cells, and
enhancing the stimulation of splenocytes, CD4+, CD8+, CD11b
+, and CD56+ cells.

Udenigwe et al. (2009) used pepsin, ficin and papain
to hydrolyse flaxseed proteins, followed by releasing and
separating biopeptides with a molecular weight below 1 kDa.
These peptides showed significant inhibitory effects on the
production of nitric oxide induced by lipopolysaccharide

in RAW 264.7 macrophages. No cytotoxicity was observed.
On the other hand, Kong et al. (2008) hydrolysed soy
protein using various enzymes to produce low-molecular
weight peptides (<1,000 Da), which improved lymphocyte
proliferation and phagocytosis of peritoneal macrophages in
mice. Interestingly, the authors observed the positive correlations
between the immunomodulating activity and content of
positively charged peptides.

Opioid-Like Activity
Opioids such as morphine have been used as drugs due to
their pain modulation functions (Bagley and Ingram, 2020).
However, their long-term use leads to the development of
tolerance and opioid use disorder. Therefore, biopeptides with
opioid-like activity can be good alternatives to these drugs.
Toldrá et al. (2018) described that YGGF and YP residuals as
the common motifs present in most opioid peptides. Based
on the study in the fundamental signalling mechanisms of
opioid receptors, it is generally accepted that the three types
of opioid receptors (µ, δ, κ) are activated by endogenous
peptides derived from three different precursors, namely
proopiomelanocortin, proenkephalin, and prodynorphin (Liu
and Udenigwe, 2019). Unlike the animal-based opioid peptides
which bind to µ receptors, the plant-based ones usually interact
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with δ receptors, except for soymorphins (Yoshikawa et al.,
2003).

To date, researchers have identified opioid peptides from
various plant proteins, including wheat (gluten, gliadin, and
glutenin), barley (hordein), maize (zein), oats (avenin), rye
(secalin), soybean (soya α-protein and cytochrome b), and
spinach (rubiscolin) (Kaur et al., 2020). Leo Pruimboom and
de Punder (2015) overviewed the degradation of gluten in the
gastrointestinal tract and suggested that gluten exorphins, a
morphine-like substance can be released. Following this, in
Garg’s et al. (2018) study, high opioid activity was observed
in the gluten peptides containing YPG, YYPG, and YIPP
motifs. Similarly, Yang et al. (2001) demonstrated that
YPLDL and YPLDLF peptides identified in pepsin-digested
spinach D-ribulose-1,5-bisphosphate carboxylase/oxygenase
(RuBisCo) showed opioid activity in mouse vas deferens
(MVD) assay.

THE BITTERNESS PROPERTY OF
BIOPEPTIDES

As discussed in the previous sections, food proteins can be
transformed into peptides with desired functional properties
and biological activities. However, the sensory characteristics
of the biopeptides are also changed dramatically. From
application perspective, it is still quite challenging to directly
use biopeptides as novel functional food ingredients due to their
bitterness property.

Formation of Bitterness in the Biopeptides
Generally, most food proteins are not bitter. However, after
proteolysis using some enzymes, the resultant hydrolysates or
peptides may have bitterness. This bitter taste is due to the release
of hydrophobic amino residues, which are usually buried within
the native protein structure (Acquah et al., 2018) but get exposed
after hydrolysis of the protein. For example, phenylalanine,
tyrosine, tryptophan, and leucine, which are usually buried
within the molecule, have bitter tastes in nature. During the
hydrolysis of the proteins, these hydrophobic amino acid residues
are gradually exposed and their bitterness can be detected
by human bitter taste receptors (Maehashi and Huang, 2009).
Generally, the bitterness of biopeptides intensifies with increase
in degree of hydrolysis, since more hydrophobic amino acids
are released. However, bitterness decreases when the proteins
are intensively hydrolysed into peptides with low molecular
weight or into free amino acids (Adler-Nissen, 1986; Fu et al.,
2018). When native food protein is hydrolysed into peptides, it
has been reported that the peptide bitterness intensity usually
increases with the increase of hydrolysis degree and decrease
of molecular weight, until the hydrolysis gives peptides with
seven or fewer residues (Kim and Li-Chan, 2006; Maehashi
et al., 2008; Kohl et al., 2013). Cho et al. (2004) investigated
the correlation between the bitterness of soy protein hydrolysate
and peptide molecular weights and showed that the hydrolysate
with the strongest bitterness had a molecular weight of 4
kDa, while the least bitter hydrolysate was the one with a

molecular weight of below 1 kDa. Contradictory results have
also been reported. Humiski and Aluko (2007) found that the
bitterness in pea hydrolysates was not related in any way to
molecular weight.

Quantification and Prediction of Bitterness
in Biopeptides
In order to quantify the bitterness of biopeptides using their
structures, Ney (1979) developed the Q-rule to illustrate
and predict the bitterness of a peptide. Briefly, the average
hydrophobicity, Q, is calculated by summing the amino acid side
chain hydrophobicity of a peptide and dividing this value by the
number of amino acid residues in the peptide. A mathematical
representation of the Q value is as follows:

Q =

∑
1f

n
(1)

where Q is the average hydrophobicity of a peptide (cal/mol), 1f
is the free energy of transfer of the side chains in the amino acid
residues (hydrophobicity, cal/mol) and n is the number of amino
acid residues (dimensionless).

According to this method, peptides with Q value over 1,400
cal/mol and molecular weights below 6 kDa are likely to be bitter,
while those with Q-value below 1,300 cal/mol and molecular
weights below 10 kDa should not be bitter. This principle
was successful to a certain extent in interpreting the bitterness
property in some peptides or hydrolysate from casein and soy
(Murray et al., 2018; Iwaniak et al., 2020). However, there is
an increasing number of studies confirming the correlation
of amino acid position and their sequence and the bitterness
property of peptides. For example, Kim et al. (2008) used
computer simulation to study the structures of NALPE peptide
and its 6 analogues. The results showed that the intensity of
peptide bitterness could also be affected significantly by spatial
orientation of hydrophobic regions in the structure, as well as
proximity between polar groups and hydrophobic regions within
the same plane space.

Mathematical models can be used to predict the bitterness
of peptides. For instance, quantitative structure-activity
relationship (QSAR) models were developed for this purpose,
based on physicochemical properties of peptides, such as
electronic charge, hydrophobicity and steric properties (Iwaniak
et al., 2015; Agyei et al., 2016). Furthermore, Yin et al. (2010)
introduced a descriptor, E, to the QSAR model, based on the
multidimensional scaling of 237 physicochemical properties of
the natural amino acid side chains. This improved the model’s
success in predicting the bitterness of 48 dipeptides (R2 =

0.97). Kim and Li-Chan (2006) used a database of 224 di-
to tetradecapeptides and five amino acids to investigate the
correlation between peptide structure and bitterness. The results
showed that bulky hydrophobic amino acids at the C-terminus
and bulky basic amino acids at the N-terminus of peptides
significantly impacts peptide bitterness. Later on, Soltani et al.
(2013) developed several models, including multiple linear
regression, support vector machine, and artificial neural network
models, to quantify the correlation between peptide structures
and bitterness.
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Detection and Quantification of Bitterness
in Biopeptides
Because biopeptides are promising food ingredients, the
importance of detecting and quantifying the perception of
bitterness in food biopeptides cannot be underestimated. So
far, methods for the detection and quantification of bitterness
in biopeptides involve sensory evaluation, use of databases,
electronic tongue, and/or calcium imaging technique.

Sensory Evaluation
The sensory evaluation of peptides and/or food products
incorporated with biopeptides is the most straightforward
method to detect and quantify bitterness. Most of the time,
trained experts or a consumer panel is used for this purpose. In
a study by Seo et al. (2008), soy protein was hydrolysed using
various proteases and the bitterness of the diluted hydrolysate
solutions was quantified by a sensory panel using the taste
dilution analysis method. The results showed that bitterness of
the hydrolysate increased with increase in degree of hydrolysis,
and that the developed taste dilution analysis method can be
applied as an alternative to the conventional hedonic scale
sensory evaluation method. Moreover, Yu et al. (2013) studied
the impact of adding soybean peptides on the sensory profile of
a beverage product. The panellists reported that the bitter taste
is the major sensory attributes affecting the overall acceptability
of the beverage. In addition, the optimum peptide content in the
formulation was 5%.

However, despite the fact that sensory evaluation methods
have been widely used, they have some disadvantages. (1)
The inherent bitterness from other food compounds such
as polyphenols may interfere with the result. (2) Human
panel method is well-associated with low objectivity and
reproducibility. (3) Sensory evaluation can be time-consuming
and not appropriate for screening purpose. And (4), the possible
toxicity and allergenicity of some peptides need to be investigated
before the sensory evaluation can be conducted.

Use of Bitterness Databases
Generally, the preparation and characterisation of biopeptides
can be time-consuming. Therefore, some databases have been
established to allow researchers to source the information
(Table 5). For example, BitterDB database has more than 550
reported compounds with bitter taste, together with their
molecular structures and bitterness intensities (Wiener et al.,
2012). EROP-Moscow database allows researchers to search for
many key features of oligopeptides as well as perform statistical
analysis of the data (Zamyatnin et al., 2006). This database
has 84 peptides with characteristic sensory attributes and most
of them exhibit bitterness. BIOPEP-UWM database (formerly
BIOPEP) can also be used as an effective tool. Iwaniak et al.
(2016) incorporated 347 peptides and 10 amino acids with
experimentally confirmed sequence, taste, and molecular and
monoisotopic masses into this database. Researchers can even
use this database to simulate the peptide release using selected
proteolytic enzymes and predict the bitterness property of the
peptides. For example, Pooja et al. (2017) predicted the dipeptidyl
peptidase 4 inhibiting property, physicochemical characteristics

and sensory profile of rice bran peptide produced using ficin
using this database; however, they did not validate the bitterness
property using human sensory panel or other methods.

Electronic Tongue
Electronic tongue is a multisensory system that consists of a
number of low-selective sensors. It uses advanced mathematical
procedures to process the collected signals and/or analyse
multivariate data (Vlasov et al., 2005). During the last decade,
detection, quantification and prediction of the peptide bitterness
using electronic tongue has been reported (Ding et al., 2017;
Zhang et al., 2018; Xu et al., 2019). For example, Newman
et al. (2014a) used an electronic tongue to detect the bitterness
of caffeine and dairy protein hydrolysates as well as trained
panellists. Furthermore, the electronic tongue successfully
detected weak bitterness in the sample and differentiated the
bitterness between whey- and casein-based hydrolysates. This
suggests that the electronic tongue was more sensitive and
reliable than human panellists. Later on, the authors evaluated
the bitterness of 19 dairy protein hydrolysates using an electronic
tongue and correlated this data with the one generated by a
trained sensory panel (Newman et al., 2014b). In this study,
partial least square regression models were developed using
the data from electronic tongue, molecular weight and relative
hydrophobicity. These models can be potentially used to predict
the bitterness of dairy protein hydrolysates.

Calcium Imaging Method
Proteins/genes named receptor type 2/taste receptor family B
(T2R/TRB) were discovered for their putative functional activity
as bitter taste receptors (Adler et al., 2000; Matsunami et al.,
2000). So far, around 30 T2R candidate bitter taste receptors
have been identified. In some taste receptor cells containing
α-gustducin, a G-protein complex that is involved in sweet,
bitter, and umami taste transduction, T2R proteins/genes can
be invariably expressed (Wong et al., 1996). The latter elicits
Ca2+ release from internal stores and/or promote Ca2+ entry
into the cells (Ogura et al., 2002). Therefore, the amount of
intracellular Ca2+ is correlated to bitterness and the released
Ca2+ can be quantified using fluorescence calcium indicators.
However, this new technology is still at the early stage and it
has only been used to detect the cell response to pharmaceutical
compounds. To date, there are no studies available using the
calcium signalling method to detect or measure the bitterness in
food-derived biopeptide products.

DEBITTERING OF BIOPEPTIDES

Regardless of the source of peptides, their bitterness dramatically
limits their application in food and/or nutraceutical products.
As a result, a variety of approaches such as separation of
bitter peptides, enzymatic treatment, and encapsulation have
been trialled to reduce, mask and/or eliminate this bitterness.
However, the debittering of biopeptides is at the development
stage and most of the reported debittering methods used animal-
based peptides as examples. Therefore, some of these techniques
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TABLE 5 | Biopeptide database available online (accessed in July, 2021).

Name Website Description References

AHTPDB http://crdd.osdd.net/raghava/

ahtpdb/

A database of experimentally confirmed antihypertensive peptides. It

contains around 6,000 entries of about 1,700 unique peptides

Kumar et al., 2015

BindingDB http://www.bindingdb.org/bind/

index.jsp

Data was extracted from literature, focusing on the proteins that are either

drug-targets or candidate drug-targets, with structural data available in the

Protein Data Bank. This database provided 20,000 measured binding

affinities and supports over 1 million binding data

Gilson et al., 2016

BIOPEP-UWM

(former BIOPEP)

http://www.uwm.edu.pl/

biochemia/index.php/pl/biopep

This database contains information 740 proteins, 4,325 bioactive peptides,

135 allergenic proteins with their and 493 sensory peptides and amino acids

Minkiewicz et al.,

2019

BitterDB http://bitterdb.agri.huji.ac.il/ BitterDB is a database for information on bitter-tasting molecules and their

receptors. Now there is more than 1,000 bitter molecules available

Dagan-Wiener et al.,

2019

BRENDA https://www.brenda-enzymes.org/ BRENDA is a database with collections of enzymes and their functional

data. Currently, some 6,500 enzymes are covered

Schomburg et al.,

2017

ChEMBL https://www.ebi.ac.uk/chembl An open bioactivity database, with data largely extracted from medicinal

chemistry literatures. Currently, it contains 6,900 compounds and 9,800

activities

Bento et al., 2014

EROP-Moscow http://erop.inbi.ras.ru./ EROP-Moscow is a curated oligopeptides (2–50 amino acid residues)

sequence database, providing high level of annotations

Zamyatnin et al.,

2006

MEROPS http://www.ebi.ac.uk/merops/ This database is manually curated information for proteolytic enzymes, their

inhibitors and substrates. Currently, the database includes 4,000 individual

peptidases and inhibitors

Rawlings et al., 2018

PepBank http://pepbank.mgh.harvard.edu/ PepBank is a database of peptides based on sequence text mining and

public peptide data sources. At the time of writing, it has 21,691 individual

peptide entries

Shtatland et al.,

2007

PubChem https://pubchem.ncbi.nlm.nih.gov/ PubChem is an open chemistry database which provided comprehensive

information about biopeptide including structure, bioassay and relevant

literature and patents etc

Kim et al., 2016

SuperSweet http://bioinf-applied.charite.de/

sweet/

This is a database with arbout 8,000 natural and artificial sweetners and it

can be used to predict toxicity profile and molecular targets

Ahmed et al., 2011

are covered in this section to provide insights for debittering
plant-based peptides.

Separation of Bitter Peptides
Since the exposed hydrophobic amino acid residues during
food proteins hydrolysis result in bitterness in peptides, the
separation of those bitter peptides from the hydrolysate seems
like a reasonable approach.

Based on the π-π stacking interactions with aromatic side
chains of peptides, activated carbon or macroporous resin can be
used for debittering peptides (Clark et al., 2012). The separation
efficiency depends on the affinity of the peptides to the adsorptive
material. For example, 98.4 and 64.5% of phenylalanine was
removed from whey protein hydrolysate using macroporous
resin and activated carbon columns, respectively (Bu et al.,
2020). Also, some bitter peptides can be removed by extraction
using selected alcohols. Sinthusamran et al. (2020) studied
the efficacy of different alcohols on decreasing the bitterness
of salmon frame protein hydrolysates. The authors reported
that 2-butanol worked more efficiently than iso-propanol in
lowering the hydrolysates hydrophobicity and their bitterness
intensity. Later on, 2-butanol and β-cyclodextrin were further
used in combination to successfully debitter salmon frame
protein hydrolysates (Singh et al., 2020).

However, it is worth noting the disadvantage of debittering
peptides via the separation of hydrophobic amino acid

residues. This process has been associated with the loss of
essential hydrophobic amino acids and low processing efficiency.
Moreover, the reported studies only focused on the development
of debittering process and the bioactivity of debittered peptides
still needs to be investigated.

Enzymatic Treatment of Biopeptides
The activity of a particular protease significantly affects the degree
of hydrolysis of a protein, which is associated with the bitterness
of peptides. For example, compared with the pea protein
hydrolysed by papain, trypsin, bromelain and chymotrypsin, the
hydrolysate prepared using Alcalase and Esperase had higher
degree of hydrolysis and bitterness intensities (Arteaga et al.,
2020). Similarly, soy protein hydrolysed by Alcalase was more
bitter than the ones treated by Neutrase, papain, Corolase,
and Flavourzyme (Meinlschmidt et al., 2016a). Generally, based
on the mechanism of action and catalytic sites, proteases can
be categorised into two groups: exopeptidases (E.C.3.4.11–
3.4.19) and endopeptidases (E.C.3.4.21–3.4.99). Exopeptidases
cleave free amino acids and/or low molecular weight peptides
from the end of a polypeptide chain while endopeptidases act
within a polypeptide chain (Stressler et al., 2015). Exopeptidases
exhibit lower activity against intact protein molecules than
endopeptidase and some exopeptidases show specificity toward
hydrophobic amino acid residue at the N-terminal (Stressler
et al., 2019). Therefore, exopeptidases can be used to cleave
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the bitter hydrophobic amino acid residue exposed during
the protein hydrolysis by endopeptidases. For this purpose,
aminopeptidases have been commonly used (Raksakulthai and
Haard, 2003).

Microorganisms are a promising source of aminopeptidases
and, to date, over 100 aminopeptidases have been identified
from the genus Lactobacillus. Generally, aminopeptidase N
(PepN, EC 3.4.11.2) and the proline-specific X-prolyl dipeptidyl
aminopeptidase (PepX, EC 3.4.14.11) are two aminopeptidases
that have been used for debittering purposes (Gonzales and
Robert-Baudouy, 1996). Briefly, PepN hydrolyses almost all the
amino acids from the amino (N-) terminus of a polypeptide
chain, unless proline is present at the second position (which
stops the hydrolysis) (Stressler et al., 2013). PepX is a proline-
specific dipeptidyl peptidase that releases X-Proline dipeptides
from the amino (N-) terminus of a polypeptide chain, as long
as there are no proline or hydroxyproline at the second position
(Stressler et al., 2014). Recently, Ewert et al. (2018) observed the
superiority of PepN in debittering sodium caseinate hydrolysates,
compared with PepX or aminopeptidase A (PepA). This might
be due to the high specificity of PepX and PepA. PepX releases
X-Proline dipeptides from the N-terminal of peptides, as a
proline-specific aminopeptidase, while PepA is specific for the
hydrophilic amino acids, such as Gtamic acid, Aspartic acid, and

Serine. These amino acids are not associated with bitterness.
During the enzymatic treatment, PepN was capable of cleaving
bitter amino acids such as Leucine, Phenylalanine, Isoleucine,
or Valine from N-terminus of most peptides. The debittering
potential of PepN has been reported previously in a combination
with PepX (Barry et al., 2000). Moreover, since aminopeptidases
are released by microbes during microbial growth (Stressler
et al., 2014), some particular strains have been used directly as
debittering starters to produce protein hydrolysates. For example,
the addition of Lactobacillus perolens, Rhizopus oryzae, and
Actinomucor elegans significantly reduced the bitterness intensity
of soy protein hydrolysates (Meinlschmidt et al., 2016b).

Alternatively, cross-linking of the peptides using
transglutaminase (TG) has been used to decrease their bitterness.
TG catalyses intra- and intermolecular cross-linking between
glutamine and lysine residues in the peptide chain (Báez et al.,
2011). This increases the molecular mass of peptides so that
hydrophobic groups, which cause bitterness, can be buried again
in the cross-linked polypeptide chain. As reported by Song et al.
(2013), TG increased the content of 1,000–5,000 Da peptides
in soybean protein hydrolysates via enzymatic cross-linking.
The authors observed a significant decrease in the amount of
bitter amino acids and improvement in sensory profile of the
crosslinked peptide. However, it should be noted that the use of

TABLE 6 | Examples of encapsulation of food protein hydrolysates and peptides.

Peptide source (Core) Carrier agent (Wall) Process Encapsulation

efficiency

Major findings References

Casein hydrolysate Soy protein isolate Spray drying Not specified The results of the panel sensory test showed

that the encapsulated casein hydrolysate was

less bitter than the non-encapsulated one

Molina Ortiz et al.,

2009

Casein hydrolysate Gelatin and soy protein

isolate

Spray drying Not specified The bitterness of casein hydrolysate was

attenuated with the mixture of gelatin and soy

protein isolate. The microcapsules were

spherically shaped and had many concavities

Favaro-Trindade

et al., 2010

Casein hydrolysate Maltodextrin Spray drying 96% Morphology showed that the microcapsules

were hollow particles with a matrix-type

structure. Microencapsulation with maltodextrin

was effective to reduce the bitterness intensity

of the hydrolysates

Sarabandi et al.,

2018

Whey protein concentrate

hydrolysate (WPCH)

Whey protein

concentrate (WPC) and

sodium alginate (SA)

Spray drying

Freeze drying

Not specified Compared with non-encapsulated WPCH, the

one encapsulated by WPC and WPC/SA

showed reduced bitterness intensity

Ma et al., 2014

Mussel protein hydrolysate Maltodextrin and

octenyl succinic

anhydride (OSA) starch

Spray drying Not specified According to the sensory evaluation of

encapsulated mussel hydrolysate by 120

consumers, no evaluator recorded the

perception of bitterness

Breternitz et al.,

2017

Casein hydrolysate Soy protein isolate and

pectin Complex

coacervation

Freeze drying

78.8%-

91.6%

Casein hydrolysate encapsulated by complex

coacervation with wall material to core ratio of

1:1 showed the highest encapsulation

efficiency and attenuation of the bitter taste of

the hydrolysate

Mendanha et al.,

2009

Soy protein hydrolysate Partially hydrogenate

cotton seed oil Solid lipid

microparticles

Spray chilling

96%
The solid lipid microparticles prepared by spray

chilling of emulsion had a higher encapsulation

efficiency than by spray chilling of suspension

However, the effect of encapsulation on

reducing bitterness was not investigated

Salvim et al., 2015
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transglutaminase may compromise the functionality, biological
activity and/or solubility of protein hydrolysates. Therefore, this
approach may not be appropriate for certain food applications
(Meng et al., 2020).

Encapsulation of Biopeptides
Encapsulation provides an opportunity to partially or completely
mask the bitterness in peptides in addition to improving their
other properties such as hygroscopicity and bioavailability. To
date, several techniques such as spray drying, freeze drying,
spray chilling, coacervation and double emulsion have been
applied to encapsulate protein hydrolysates or biopeptides.
The molecular and physicochemical properties of biopeptides,
such as molecular weight, conformation, electrical characteristic,
polarity, and stability, are the first factors to consider when
choosing an appropriate carrier, as these properties will impact
loading, retention, stability, and release from the encapsulated
systems (McClements, 2018). Generally, for food applications,
the selected carrier should meet some criteria such as edibility,
biodegradability, non-toxicity, and inexpensiveness (Mohan
et al., 2015). As a result, proteins, polysaccharides and lipids have
been used as protective carriers for the encapsulation of protein
hydrolysates, as shown in Table 6.

Spray Drying
During the spray drying of peptides, the solution/slurry/emulsion
containing peptides is atomised into droplets and these droplets
are dried into solid powder using hot air at a certain temperature
and pressure (Kurozawa et al., 2009). To date, it is still the
most economic and industrialisedmethod used for encapsulation
and this technique has been trialled to reduce the bitterness
of a wide range of peptide products, including whey protein
hydrolysates (Ma et al., 2014), casein hydrolysates (Molina Ortiz
et al., 2009; Favaro-Trindade et al., 2010; Sarabandi et al., 2018),
and mussel protein hydrolysates (Breternitz et al., 2017). In a
study by Yang et al. (2012), whey protein hydrolysate with 21.42%
degree of hydrolysis was mixed with maltodextrin (dextrose
equivalence of 10) and maltodextrin/β-cyclodextrin, respectively,
and the mixture was spray dried to produce whey protein
hydrolysates powder. The sensory evaluation result indicated
that both encapsulated whey protein hydrolysates exhibited one-
eighth the bitterness intensity of non-encapsulated hydrolysates.
The only issue with spray drying is the possibility of losing
the native structure of biopeptides at high temperatures due
to their high chemical reactivity with other peptides or food
matrix components.

Freeze Drying
Contrary to spary drying, freeze drying (also known as
lyophilisation) dehydrates the sample at low temperature and
pressure to preserve the quality of bioactive compounds.
However, compared with the compact or microsphere structure
of spray dried powder, the freeze dried one exhibited a
more porous or irregular structure so the masking of the
bitterness of peptides might be compromised (Chranioti et al.,
2016). For instance, Ma et al. (2014) encapsulated whey

FIGURE 2 | Scheme of preparation of solid lipid microparticles to encapsulate

biopeptides.

protein concentrate hydrolysate in whey protein concentrate-
sodium alginate matrix, followed by spray- or freeze-drying.
Although the sensory analysis suggested that both protein-
and protein/polysaccharide-encapsulated hydrolysate exhibited
lower bitterness intensity, the freeze-dried powder was more
bitter than the spray-dried one due to the broken lamellar
structure of the former. Meanwhile, the time consuming, high
energy consumption and high cost nature of freeze drying also
hinder its application (Sarabandi et al., 2020).

Spray Chilling
Spray chilling, also named spray cooling, congealing, or prilling,
is another atomization-based encapsulation technique. It is a
process of solidifying the atomised liquid spray into particles.
Therefore, the carriers used in this technique are usually fats,
vegetable oil or their derivatives with a high melting point
(Oriani et al., 2016). As a result, the microcapsules are also
called “solid lipid microparticles.” Briefly, the biopeptide solution
is emulsified in a lipid at an elevated temperature above the
lipid’s melting point. Then the emulsion is cooled down to
induce the crystallisation of the lipid phase and formation
of the solid particles (shown as Figure 2). To date, spray
chilling technique has been used in various applications, such as
masking undesired odour or flavour, improving the appearance,
increasing the stability, and achieving control-release property
of various bioactive compounds (Tulini et al., 2016; Gottschalk
et al., 2018; Kim et al., 2019) while the encapsulation of
biopeptides using the spray chilling technique is still at the
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FIGURE 3 | Encapsulation of biopeptides using water-in-oil-in-water (W1/O/W2) emulsion (Ying et al., 2021): (A) Molecular weight distribution of soy peptides; (B)

Effect of polyglycerol polyricinoleate concentration on droplet size of W1/O emulsion; (C) Effect of dehydration technique and peptide content in W1 phase on peptide

encapsulation efficiency in double emulsions; and (D) Morphology of reconstituted freeze dried peptide powder.

early stage. Salvim et al. (2015) reported that soy protein
hydrolysate solution was emulsified in partially hydrogenated
cotton seed oil, stabilised by polyglycerol polyricinoleate (PGPR)
at a temperature beyond 50◦C and, subsequently, the water-in-
oil emulsion was pumped into a cold chamber (15◦C) to produce
solid lipid particles containing soybean protein hydrolysate.
Although the encapsulation efficiency of the peptide was 96%
and no chemical reactions were observed among the materials,
the effect of encapsulation on the bitterness masking of the
biopeptides was not investigated.

Complex Coacervation
Complex coacervation is another promising microencapsulation
technique that has been extensively employed in the
pharmaceutical, food, agricultural and textile industries.
Complex coacervation in food ingredient encapsulation involves
the interaction of oppositely charged polyelectrolytes, such
as proteins and polysaccharides, in an aqueous form over a
narrow pH range to form a surface-active agent which can be
used for microencapsulation purpose (Timilsena et al., 2019).
Mendanha et al. (2009) used complex coacervation between
soybean protein isolate and pectin and the coacervates to
encapsulate casein hydrolysate. The encapsulated peptides

exhibited lower hygroscopicity and higher surface tension than
the free hydrolysate and the encapsulation efficiency varied in
the range of 78.8–91.62% in the microcapsule with different wall
material-to-core ratios. Moreover, sensory panellists observed
that the encapsulated hydrolysate with high encapsulation
efficiency (78.8–91.62%) was less bitter than the free hydrolysate,
indicating that encapsulation can serve as an efficient method for
attenuation of the bitter taste of biopeptides.

Double Emulsions
Double emulsions are liquid dispersions where one emulsion
is further dispersed in another liquid to produce double liquid
droplets with multiple phases. Recently, this encapsulation
system has been trailed for the stabilisation of peptides (Giroux
et al., 2016; Jamshidi et al., 2018). Ying et al. (2021) illustrated the
process of preparation of a water-in-oil-in-water (W1/O/W2) to
encapsulate soy peptides. Firstly, concentrated bioactive peptide
solution (40%, w/w) with molecular weight below 3,000 Da was
prepared and homogenised in the medium chain triglycerides
(MCT) oil, using polyglycerol polyricinoleate (PGPR) as
the hydrophobic emulsifier, to stabilise the W/O interface
(Figures 3A,B). Based on the optimisation of W1:O ratio and
PGPR concentration, optimum W1/O emulsion was prepared,
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with the droplet size of 170 nm (Figure 3B). Subsequently, the
W1/O emulsion was further emulsified in the outer aqueous
phase to produce the final W1/O/W2 emulsion using octenyl
succininc anhydride (OSA) starch and maltodextrin as the shell
material with a high peptide encapsulation efficiency (>80%).
Finally, in order to facilitate the potential application, this
W1/O/W

−

2 emulsion was further dehydrated into the peptide
powder and high peptide encapsulation efficiency (>70%) was
observed in the freeze dried powder (Figures 3C,D). The
encapsulation of peptides in the double emulsion system is also
still relatively new, and the effect of double encapsulation on
bitterness masking has not been investigated.

CONCLUSION

Due to the increasing global population and sustainability
concerns about food security and the environment, plant-
based proteins are good alternatives to animal-based ones
to produce bioactive peptides. To date, a wide range of
functional properties and biological activities including
antioxidant, antimicrobial, anticancer, hypocholesterolaemic,
antihypertensive, immunomodulatory, and opioid-like activities
have been reported for plant-based biopeptides prepared via

enzymatic hydrolysis of proteins. Although the biopeptides
can be used to develop novel functional food products with
desired functional properties and health benefits, many are
associated with undesired bitter taste due to the presence of
exposed hydrophobic residues. As a result, various bitterness
detection and quantification methods have been used to better
understand the nature and intensity of this bitterness property.
Additionally, multiple physicochemical techniques have been
developed to debitter these biopeptides with differing extent of
success. Future research is required to investigate the correlation
between functional and/or biological properties of peptides with
their structures, as well as the impact of debittering processes on
the bioactivity and bioavailability of peptides. The effect of the
debittering process on the techno-functional properties of the
peptides also needs to be studied.
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