
TYPE Review

PUBLISHED 23 September 2022

DOI 10.3389/fsufs.2022.997261

OPEN ACCESS

EDITED BY

Abid Hussain,

Karakoram International

University, Pakistan

REVIEWED BY

Keith Warriner,

University of Guelph, Canada

Shaheer Hasan Khan,

Aligarh Muslim University, India

Sameh A. Korma,

Zagazig University, Egypt

*CORRESPONDENCE

Xin-An Zeng

xazeng@scut.edu.cn

Muhammad Adil Farooq

adilfarooq9156@gmail.com

Abdul Rahaman

rahaman_knabdul@ymail.com

†These authors have contributed

equally to this work

SPECIALTY SECTION

This article was submitted to

Sustainable Food Processing,

a section of the journal

Frontiers in Sustainable Food Systems

RECEIVED 18 July 2022

ACCEPTED 05 September 2022

PUBLISHED 23 September 2022

CITATION

Hassan S, Zeng X-A, Khan MK,

Farooq MA, Ali A, Kumari A, Mahwish,

Rahaman A, Tufail T and Liaqat A

(2022) Recent developments in

physical invigoration techniques to

develop sprouts of edible seeds as

functional foods.

Front. Sustain. Food Syst. 6:997261.

doi: 10.3389/fsufs.2022.997261

COPYRIGHT

© 2022 Hassan, Zeng, Khan, Farooq,

Ali, Kumari, Mahwish, Rahaman, Tufail

and Liaqat. This is an open-access

article distributed under the terms of

the Creative Commons Attribution

License (CC BY). The use, distribution

or reproduction in other forums is

permitted, provided the original

author(s) and the copyright owner(s)

are credited and that the original

publication in this journal is cited, in

accordance with accepted academic

practice. No use, distribution or

reproduction is permitted which does

not comply with these terms.

Recent developments in
physical invigoration techniques
to develop sprouts of edible
seeds as functional foods

Sadia Hassan1†, Xin-An Zeng2,3,4*, Muhammad Kamran Khan5,

Muhammad Adil Farooq6*, Amjad Ali7, Ankita Kumari2,3,4,

Mahwish8, Abdul Rahaman2,3,4*†, Tabussam Tufail9 and

Atif Liaqat6

1Department of Nutrition and Dietetics, The University of Faisalabad, Faisalabad, Pakistan, 2School of

Food Science and Engineering, South China University of Technology, Guangzhou, China,
3Guangdong Key Laboratory of Food Intelligent Manufacturing, Foshan University, Foshan, China,
4Overseas Expertise Introduction Centre for Discipline Innovation of Food Nutrition and Human

Health (111 Centre), Guangzhou, China, 5Faculty of Life Sciences, Institute of Home and Food

Sciences, Government College University, Faisalabad, Pakistan, 6Faculty of Engineering and

Technology, Institute of Food Science and Technology, Khwaja Fareed University Engineering and

Information Technology, Rahim Yar Khan, Pakistan, 7Department of Agriculture and Food

Technology, Karakurum International University, Gilgit, Pakistan, 8Institute of Home Sciences,

University of Agriculture, Faisalabad, Pakistan, 9Institute of Diet and Nutritional Sciences, The

University of Lahore, Lahore, Pakistan

For nutritional security, the availability of nutrients from food sources is a

crucial factor. Global consumption of edible seeds including cereals, pulses,

and legumes makes it a valuable source of nutrients particularly vitamins,

minerals, and fiber. The presence of anti-nutritional factors forms complexes

with nutrients, this complexity of the nutritional profile and the presence

of anti-nutritional factors in edible seeds lead to reduced bioavailability of

nutrients. By overcoming these issues, the germination process may help

improve the nutrient profile and make them more bioavailable. Physical,

physiological, and biological methods of seed invigoration can be used to

reduce germination restraints, promote germination, enhance early crop

development, to increase yields and nutrient levels through sprouting. During

sprouting early start of metabolic activities through hydrolytic enzymes and

resource mobilization causes a reduction in emergence time which leads

to a better nutritional profile. The use of physical stimulating methods to

increase the sprouting rate gives several advantages compared to conventional

chemical-basedmethods. The advantages of physical seed treatments include

environment-friendly, high germination rate, early seedling emergence,

uniform seedling vigor, protection from chemical hazards, and improved yield.

Di�erent physical methods are available for seed invigoration viz. gamma

irradiation, laser irradiation, microwaves, magnetic field, plasma, sound waves,

and ultrasonic waves. Still, further research is needed to apply each technique

to di�erent seeds to identify the best physical method and factors for seed
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species along with di�erent environmental parameters. The present review

will describe the use and e�ects of physical processing techniques for

seed invigoration.

KEYWORDS

seed germination, gamma irradiation, laser irradiation, microwaves, magnetic field,

plasma, sound waves, ultrasonic waves

Introduction

Edible seeds including cereals, pulses, and legumes are

globally used as a staple food and possess several functional

properties like antioxidant, antidiabetic, anticancer, and

antitumor effects. They are a rich source of vitamins, minerals,

and fiber and also contain enough amount of bioactive

components such as phenolics, carotenoids, lignin, β-glucan,

inulin, resistant starch, sterols, and phytates. According to

several studies, the controlled germination process is a valued

technique to improve the nutritional and medicinal values

of edible seeds (Hayat et al., 2014; Verspreet et al., 2015;

Özer and Yazici, 2019) (Figure 1). Sprouts are germinated

seeds of cereals, pulses, and legumes that grow into seedlings,

and are characterized by nutrient bioavailability and their

profile including phenolic profile, antioxidant profile, vitamins,

minerals, along with other micro and macronutrients. As

compared to the un-sprouted grains the sprouted grains are

considered an important functional ingredient due to having

major nutritional, textural, and tasteful, advantages. The edible

sprouts can help to provide essential nutrients, maintain health

status, and to prevent disease. Currently, interest in the use of

sprouted grains as functional ingredients and food is growing

with increased interest from food researchers, nutritionists,

producers, and consumers (Aloo et al., 2021; Pires et al., 2021).

The germination process can improve the levels of simple

sugars, free amino acids, and organic acids through the

catabolism of macronutrients like carbohydrates, protein, and

fatty acids (Wang et al., 2005; Shi et al., 2010; Benincasa et al.,

2019). It can also decrease different anti-nutritional factors

and indigestible components, like lectin and protease inhibitors

(Saithalavi et al., 2021). Moreover, through germination

secondary metabolites such as vitamin C and polyphenols can

accumulate in edible seeds (Toro et al., 2021).

Sprouting is the crucial phase in the plant at which fast

germination and seedling emergence are vital aspects that

can be stimulated in seeds (Sharififar et al., 2015; Lai et al.,

Abbreviations: MWs, Microwave radiations; US, Ultrasonic waves;

IR, Infrared; WLAN, Wireless router; MFs, Magnetic fields; DNA,

Deoxyribonucleic acid; ROS, Reactive oxygen species; RF, Radio-

frequency; SMF, Static magnetic field; EMF, Electric magnetic field.

2016). Germination stimulation has been achieved through

several methods such as fertilizers, light, seed scarification, seed

stratification, salinity, temperature, humidity, and regulatory

hormones (Rifna et al., 2019b). As a substitute for chemical

invigoration techniques for plant growth stimulation, the use of

physical methods attractsmore andmore attention. The physical

techniques can improve food quality without imparting any

safety concerns, thus the applications of these methods have

increased to affect plant growth and germination (Bose et al.,

2018).

Now sprouted grains are becoming popular and consumed

all over the world. To increase the nutritional value of foods

and to improve the sensory properties of sprouted grains flour

is used in different products. Despite several efforts to explore

the utilization of sprouted grains, limited products have been

produced and introduced into the market. Thus, it is required

to conduct more research and incorporate seed sprouts into

different food industries to introduce them into the food chain

(Liu et al., 2017; Yilmaz et al., 2020).

Therefore, different physical methods have been developed

to facilitate the germination process and to improve the plants’

growth and production. This paper gives a brief overview of such

physical processing technologies including gamma irradiation,

laser irradiation, microwaves, magnetic field, plasma, sound

waves, and ultrasonic waves. Additionally, mechanisms of seed

germination promotion by processing treatments and how they

impact germination have also been discussed.

Physical seed invigoration
techniques

Throughout the transient activation of the pre-germination

metabolic activities, seed priming is a well-known and

established way to improve seed quality (good nutritional

composition along with reduction of seed dormancy, the

breakdown of the complex of anti-nutrients, and the release of

nutrients and their improved bioavailability) (Chakraborti et al.,

2021). Under adverse environmental circumstances (abiotic

stresses like water deficit, high salinity, high temperature,

submergence, etc.) seed priming has arisen as a constructive

way of improving seed vigor, germination synchronization,
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FIGURE 1

Schematic diagram of the germination process.

and seedling growth (Marthandan et al., 2020). A variety

of priming techniques is available, and some of them

are properly categorized such as hydro-priming and osmo-

priming. As compared to osmo-priming and chemical-based

conventional treatments, physical processing techniques have

shown several advantages. Due to their less damaging effects on

the environment like anthropogenic changes in the soil, water,

and atmosphere, recently the use of physical methods for plant

growth stimulation is becoming more popular (Table 1) (Bilalis

et al., 2012; Rifna et al., 2019a). In chemical-based methods,

the required chemical compounds are directly injected into the

cell while in physical methods, energy is introduced into the

cell which generates conditions for different transformations

at a molecular level (Govindaraj et al., 2017). Different

positive biological changes can be introduced in plants without

influencing their biology through the application of various

physical factors. These physical techniques decrease the on-

farm pollution of raw materials, minimize the requirement for

fertilizers, and can also be used for the disinfection of seeds

(Table 2) (Bera et al., 2021). All biological activities depend on

the exchange of energy between the cell and the environment.

Improving the germination and yield of crops by using energy

is an advanced area in research. Energy treatment stimulates the

enzymatic reactions leading to the initiation of physiological and

biochemical changes. All these changes are an indication of plant

growth and development processes which eventually improve

the quality and yield of produce (Govindaraj et al., 2017).

Ultrasound seed processing

Ultrasonic waves (US) are mechanical waves having

a frequency higher than 20 kHz and cannot be detected

by a human audition system. This technology has been

successfully used in different mass transfer processes of food

including drying, extraction, osmotic dehydration, desalting,
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TABLE 1 Di�erent physical techniques used for the seed invigoration.

Technique Principle Mechanisms References

Ultrasound Lead to cavitation phenomenon exerting

mechanical pressure on the seeds

• The fluidity of the cell wall

• Formation of cracks and micropores on the cell wall

• Enhanced exchange of water and oxygen

Hu et al., 2007

Miano et al., 2016

Microwave heating After absorption induces ionic movement and

dipole rotation

• Deformation of the electron orbits

• The fast and selective heating process

• Electronic transitions between different

rotational sublevels

Mullin, 1995

Al Mashhdani and

Muhammed, 2016

Magnetic field The perception and signaling mechanism is

mediated through the blue light photoreceptors

called cryptochromes

• Induce variations in the ionic concentrations and

membrane potential

• Increased water uptake

Shine et al., 2011

Socorro and García, 2012

Plasma treatment Reactive oxygen species (ROS) in water vapor

plasma influenced the redox reaction

• Affect the plant development by controlling thiol

groups

• Thin layers of hydrophobic and hydrophilic nature

are produced

Volin et al., 2000

Henselová et al., 2012

Gamma irradiations Reactive oxygen species (ROS) as the main

regulators produced in the seed

• Activate and amplify stress and antioxidant responses

• Affect nucleic acids and proteins synthesis leading to

metabolic activities

Borzouei et al., 2010

Esnault et al., 2010

Sound waves Enhanced the transcription level and activate the

stress-induced genes

• Stimulate the opening of leaf stomata

• Sound waves converted into or reserved as chemical

energy

• Stimulate the photosynthetic reactions

Meng et al., 2012

Xiujuan et al., 2003

Laser irradiation Synergistic effect between the polarized

monochromatic laser beam and the

photoreceptors

• Coherent laser light caused illumination of biological

tissues and speckle formation

• Strong intensity gradients in the tissues

• Induce inter-and intracellular gradient forces

• The paths and speeds of biological processes

significantly changed

Ruvinov, 2003

Hernandez et al., 2010

and hydration (Miano et al., 2016; Asfaram et al., 2019).

Nowadays to break the seed dormancy ultrasonic waves have

attracted the researcher’s attention as being a safe, easy, and

time-saving technique (Ramteke et al., 2015; Liu et al., 2016).

In recent years the mechanism of ultrasonic wave activity on

seed germination in different plant species has been explored

as mentioned in Table 3. In ultrasonic treatment, seeds are

placed into an ultrasonic wave emitting apparatus in which

water is used as a medium (Nazari and Eteghadipour, 2017).

For seed germination, oxygen availability and water uptake are

the essential parameters, so ultrasonic waves alter the seed’s

characteristics through which these factors become available

more efficiently (Liu et al., 2016).

Ultrasonic waves in water lead to cavitation, a phenomenon

creating micro-bubbles in water that exerts mechanical pressure

on the seeds. Mechanical pressure exerted by the cavitation

process further causes fluidity of the cell wall and the formation

of cracks and micropores in it (da Silva and Dobránszki,

2014; Rifna et al., 2019a). A study conducted on mung beans

showed an increase in their porosity after ultrasonic treatment.

Seeds become more porous for water and oxygen exchange

due to the production of micro-pores and micro-cracks. It

was demonstrated that ultrasound technology improved the

hydration process of mung beans, reducing the total process

time by almost 25% [increasing the water absorption rate to

∼44%] (Miano et al., 2016). In studies, conducted by Yaldagard

et al. (2008) and Sharififar et al. (2015) it has been revealed

that ultrasonic treatment increases the hydration process in

seeds, therefore leading to an increase in enzymatic reactions

especially related to alpha-amylase. Thus, the starch hydrolysis

conducted by alpha-amylase has resulted from an increment in

seed germination speed and percentage (Yaldagard et al., 2008;

Sharififar et al., 2015). A schematic presentation of ultrasonic

wave treatment in seeds is shown in Figure 2.

Through several studies, it has been investigated that

ultrasound is a promising method to break seed dormancy and

enhance germination. A summary of the findings regarding

the effects of ultrasound treatment on the seed germination

percentage of different edible seeds has been provided in Table 3.

Yaldagard et al. (2008) reported a 6% increase in germination

Frontiers in Sustainable FoodSystems 04 frontiersin.org

https://doi.org/10.3389/fsufs.2022.997261
https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org


Hassan et al. 10.3389/fsufs.2022.997261

TABLE 2 Advantages and limitations of novel processing techniques.

Technique Advantages Limitations References

Ultrasound • Safe, easy, and time saving

• Induce mechanical pressure on seeds

• No chemical contamination

• Has a small size of apparatuses

• Scaling-up is required to manufacture huge

ultrasound demitting sets

Nazari et al., 2014

Ramteke et al., 2015

Liu et al., 2016

Nazari and Eteghadipour,

2017

Microwave heating • The short startup, precise control, and

volumetric heating

• Have the fast and selective heating ability

• Under field conditions, the uneven temperature

distribution is one of the problems

Warchalewski et al., 2011

Brodie, 2012

Motallebi, 2016

Magnetic fields • Less toxicity

• Easy to manipulate

• Cost-effective and safe method

• Helpful to overcome the effect of salt stress

• Having an impact on seed recovery applications

when seeds have low quality, for specific plant species

Balouchi and Sanavy, 2009

Rácuciu, 2011

Plasma treatment • Low temperature and treatment duration

• Can be used for thermally sensitive materials

• Appropriate for a large range of materials and

shapes

• Absence of potentially

environmentally-harmful chemicals

• Avoidance of toxic reagents or by-products

• Low-pressure radio frequency plasma systems have

limitations in terms of environmental and economic

costs

• Also has processing restrictions regarding

vacuum processing

Filatova et al., 2009

Šerá et al., 2009

Ling et al., 2014

Zhou et al., 2016

Gamma irradiations • Cause small variations in food components

• Requires minimal sample preparation

• No use of catalyst

• Excellent penetration

• Causes no increase in temperature

during processing

• Requires optimization of the treatment parameters

including temperature, exposure time, and dose

Selcuk et al., 2008

Grover and Khan, 2014

Bashir and Aggarwal, 2016

Sound waves • Reduce resource usage

• Decrease the requirements for chemical

fertilizer and pesticide

• Causes noise pollution and confusion

• Have contradictions in terms of frequencies and

exposure periods

• The sound pressure level falls inversely proportional

to the distance from the sound source

Carlson, 2013

Hassanien et al., 2014

Laser irradiation • Suitable to radiate a large number of seeds

• Diodes have low costs

• Avoid the use of harmful fungicides

• Laser beams are narrow

• The whole surface of the seed is not evenly exposed

Claudia et al., 2011

Sharma et al., 2015

percentage of barley (Hordeum vulgar L.) seeds after ultrasound

waves’ treatment as compared to control. Application of

sonication treatment on Norway spruce (Picea abies L.) Karsten

seeds increased germination by 22% (Rîşca and Fártáiş, 2009).

Goussous et al. (2010) showed that ultrasonic waves’ application

to chickpeas (Cicer arietinum), wheat (Triticum aestivum), and

watermelon (Citrullus vulgaris) increased their germination

percentage by 36, 2, and 2%, respectively, in comparison

to control. Another investigation conducted by Aladjadjiyan

(2011) revealed a 4 and 6% increase in the germination of

wheat (Triticum aestivum) and lentils (Lens culinaris, Med.),

respectively. According to an investigation by Wang et al.

(2012) on switchgrass (Panicum virgatum L.) seeds, sonication

enhanced germination by up to 23.2%.

The application of ultrasonic waves on sunflower

(Helianthus annuus L.) seeds, enhanced their germination

maximum by up to 43.38% (Machikowa et al., 2013). Another

in vitro study conducted on snail medick [Medicagoscutellata

(L.) Mill] seed indicated that ultrasound increased germination

up to 63.3% (Nazari et al., 2014). In a study conducted on

peas (Pisum sativum), as compared to control, sonication

treatment caused a 13.1% increase in seed germination. The

operating parameters were time and temperature at specific

input power. Pea seeds were subjected to an ultrasonication

treatment of 40 kHz for 1min at 25 celsius (Chiu and Sung,

2014). A similar study conducted by Sharififar et al. (2015)

showed that ultrasound treatment applied to big saltbush

(Atriplex lentiformis), cumin (Cuminum cyminum), and caper
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TABLE 3 E�ect of ultrasonic waves on seed germination (%).

Plants Working conditions Control

germination

Ultrasound

germination

References

Barley (Hordeum vulgare) Frequency 20 kHz, Wave amplitude

210µm, Power 460W

93% 99% Yaldagard et al., 2008

Chickpea (Cicer arietinum)

Wheat (Triticum aestivum)

Frequency 40 kHz, Output 100W,

Power supply 220V 50Hz

61%

98%

97% 100% Goussous et al., 2010

Wheat (Triticum aestivum)

Lentil (Lens culinaris)

Frequency 42 kHz, Power 100W 90%

92%

94% 98% Aladjadjiyan, 2011

Sunflower (Helianthus annuus)

Norway spruce [Picea abies (L.) Karsten]

Frequency 40 kHz, Power 250W 54.6%

46%

98% 68% Machikowa et al., 2013

Snail clover [Medicago scutellata (L.)Mill] Frequency 42 kHz 33.3% 96.6% Nazari et al., 2014

Saltbush (Atriplex lentiformis)

Cumin (Cuminum cyminum)

Frequency 42 kHz 40%

44%

68% 80% Sharififar et al., 2015

Russian wildrye (Psathyrostachys juncea Nevski) Frequency 40 kHz, Power 200–500W 39.3% 89.3% Liu et al., 2016

FIGURE 2

Schematic diagram of the ultrasound seeds processing.

beans (Zygophyllum eurypterid) significantly increased their

germination percentage up to 28, 36, and 35.7%, respectively,

in comparison to control treatment. Overall in agreement with

the positive effects of ultrasonic waves studied in most cases

of tested species, it’s clear that ultrasonic waves can affect seed

germination positively.

Microwave seed treatment

The microwave component of the electromagnetic spectrum

includes radiation having a frequency within the range of 300

MHz to 300 GHz and wavelength ranging between 1m down

to 1mm. Now it is recognized that microwave radiation (MWs)

after absorption as non-ionizing electromagnetic radiation

causes different changes in biological systems which are mostly

thermal and non-invasive (Bera et al., 2021). MWs can induce

various biological changes depending on different factors such

as field strength, frequencies, waveforms, modulation, and

duration of exposures (Vian et al., 2006). Mostly the effect

of MWs on humans and animals was extensively studied

and addressed, while there is a very small number of studies

related to the effect of MWs on plants (Jayasanka and

Asaeda, 2013). Most of the available work described the

effect of radiations having the 2.45 GHz frequency, which is

absorbed in living cells through water molecules (Creţescu

et al., 2013). After absorption into living cells and tissues,

MW radiations induce ionic movement, and dipole rotation

leading to the deformation of the electron orbits which

finally causes a fast and selective heating process (Mullin,

1995; Rifna et al., 2019a). The schematic diagram of the

experimental set-up for microwave treatment is given in

Figure 3.

MWs treatment can also result in electronic transitions

between different rotational sublevels. In the organic molecules

between vibrational levels transitions mostly occur in near

Infrared (IR) regions (750 to 1,300 nm) of the electromagnetic

spectrum, while between rotational levels occur in far IR regions

and near microwave regions (1mm to 1m) (Al Mashhdani and

Muhammed, 2016). Intermediated frequency levels of radiation

(2,450MHz) applied to seeds showed higher enzymatic reactions

and increased growth rates. Still, the mechanism of MWs is

not as yet fully understood but according to Rajagopal (2009)

exposure to microwaves, 2.45 GHz and 650W for 30 s are

enough to ensure a high germination rate. In several studies,

lethal level MWs have been used for preventing the growth

of weeds in the soil while non-lethal level MWs treatments

have been widely used for seed decontamination before sowing

(Scialabba and Tamburello, 2002; Knox et al., 2013; Sahin,

2014). Application of MWs caused heating of soil up to 80◦C

which results in suppressed germination of the weed. Thus,

in greenhouses from horticultural/ornamental plant nurseries,
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FIGURE 3

Experimental set-up for microwave exposure.

TABLE 4 E�ect of microwaves waves on germination parameters.

Plants Working conditions Effects References

Wheat (Triticum aestivum) Frequency 2.45 GHz, Power 750W • Reduced seed vigor

• Seed-borne infestation of Fusarium

graminearum decreased

Reddy et al., 1998

Radish (Raphanus sativus) Frequency 10.5 and 12.5 GHz, Power 8 and

14 mW

• The reduction in germination % and rate

• Reduced hypocotyl growth

Scialabba and Tamburello,

2002

Lentil (Lens culinaris) Frequency 2.45 GHz, Output power 450 and

730W

• Seed germination % and rate not affected

• Seedling length stimulation

Aladjadjiyan, 2010

Potato (Solanum tuberosum) Frequency 38, 46 and 56 GHz, Output

power 4 mW

• Increased biomass growth Jakubowski, 2010

Barley (Hordeum vulgare) Frequency 2.45 GHz, Output power 800W • Increased germination and vigor index Creţescu et al., 2013

Rice (Oriza sativa) 2,450 MHz • Germination % and rate enhanced

• Increased length of primary shoot and root

Talei et al., 2013

MWs appeared as an effective non-chemical alternative method

for weed management (Velázquez-Martí et al., 2006).

There is very limited literature about the use of MWs

radiations as seed stimulation treatment in a few plants, affecting

their germination performance. Through different studies, it was

investigated that application of 2.45 GHz MWs radiation has no

major influence on seed germination, but in some plant species

including wheat, green gram, moth bean, and Bengal gram, it

showed a beneficial effect on biomass accumulation and growth

(Jakubowski, 2010; Talei et al., 2013). A summary of the findings

of the effects of microwave treatment on seed germination of the

mentioned plant species has been provided in Table 4. The effect

of microwave irradiation at 935.2–960.2 MHz with intensities of

0.07–0.15 mW/cm2 on maize grains was studied and revealed

a clear increase in germination and seedlings development

(Khalafallah and Sallam, 2009). Aladjadjiyan (2010) conducted

an experiment stating that microwave pretreatments with

frequency 2.45 GHz for 5, 10, 15, 20, and 25 s and seeds showed

enhanced germination parameters as compared with controls.

Best results were obtained with an exposure time of 30 s and

output power of 450W giving 10% longer shoot length and 7%

root length than the control one. Ragha et al. (2011) used the

low power MWs (frequency range of 8.5–10.27 GHz) having

non-thermal intensity having a frequency of 1 kHz and studied

their effect on the wheat (Triticum aestivum), Bengal gram (Cicer

arietinum), green gram (Vigna radiate), and moth bean (Vigna

Aconitifolia). Effects of different parameters like frequency (8.5

to 10.27 GHz), power (−1.0 to 3.5 dBm), exposure time (12

to 28min), and power density (1.5 to 5.5 cm) were studied to

evaluate their effect on germination. As compared to control the

different treatments induced stimulating effects on germination

%, seedling vigor, and biomass % of plants including wheat,

green gram, moth bean, and Bengal gram, especially when used

with low levels of power, exposure time, and power density

while high frequency stimulated seed germination as compared

to control (Ragha et al., 2011).

In an experiment effect of MWs using a wireless router

(WLAN: 70 mWm−2) and mobile devices (GSM: 100 mWm−2)

was studied on three different aromatic plant seeds including

parsley (Petroselinum crispum L. cv. Plained Leaved), celery
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(Apium graveolens L. cv. Pascal Giant), and dill (Anethum

graveolens L. subsp. hortorum cv. Common) (Soran et al., 2014).

Different plant parameters were studied regarding MWs effect

including leaf structure, essential oil content, and emission of

volatile compounds. The results exhibited thatWLAN frequency

MWs appeared to be more harmful than GSM-frequency

MWs, and the MWs treatments caused both structural and

chemical alternations (Soran et al., 2014). Like other radiation

treatments, the efficiency of MWs application depends on

different parameters such as plant species, growth stage,

exposure duration, frequency, and power density (Jayasanka

and Asaeda, 2013). Different studies in this area revealed that

MWs treatment showed a positive effect on some plants while

negatively influencing other plants; which recommended that

the influence of MWs is related to radiation frequency, exposure

duration, and environmental circumstances (Khalafallah and

Sallam, 2009).

Magnetic fields for seed processing

The use of magnetic fields (MFs) also showed positive

responses regarding the rate of germination, growth, and crop

yield along with the decreased incidence of pathogenic diseases.

In a study annual medics and dodder seeds were treated with

an electromagnetic field which shows a significant effect on

germination rate. Annual medics seeds were treated at 80 µT

for 10min and 30min, and 128 µT for 10min while dodder

seeds were treated at 88 µT for 12 h in a wet state, and 128

µT for 24 h in dry seeds (Balouchi and Sanavy, 2009; Araújo

et al., 2016). The exposure of MFs depends on flux density

and duration of exposure which defines its dose and MFs

dose influences the germination, seedling growth, and yield

(da Silva and Dobránszki, 2016). The schematic representation

of the experimental MFs setup is shown in Figure 4. The

flux density of the magnetic field changes with the static or

alternating magnetic fields, thus increasing the germination

percentage and affecting the preliminary growth stages (Hozayn

et al., 2019). In a study, magnetically treated water was used

as a hydro-priming technique which as result enhanced the

germination rate and plant growth (Morejon et al., 2007). Along

with plant growth, the application of MFs also influenced the

enzymatic activities, phytochemical reactions, and respiration

process (Carbonell et al., 2000; Martinez et al., 2000; Rifna et al.,

2019a). MFs treatment results in speeding up the plants’ growth,

root development, and protein biosynthesis (Kordas, 2002).

The mechanism behind perceiving MFs and then regulating

of signal transduction pathway is still not understood. However,

according to Ahmad et al. (2007), the mechanism of MFs

signaling is facilitated by blue light photoreceptors which

are known as cryptochromes. Chloroplast has paramagnetic

characteristics therefore, MF treatment induces metabolic

reactions in the seed which stimulate the germination

FIGURE 4

The schematic representation of the experimental magnetic

fields.

(Aladjadjiyan and Ylieva, 2003). Another work performed by

Racuciu et al. (2008) showed that the application of a magnetic

field enhanced the enzymatic activities. According to Copeland

and McDonald (2012), the efficiency of MFs stimulation is

assessed by two factors germination energy and germination

capacity. Higher germination energy frequently leads to stronger

radicle development and increased biomass percentage.

For several years in research studies influence of MFs

affecting the plant, and germination parameters have been the

subject of interest. Lately, many researchers have stated the

positive effects of MFs on germination %, seedling growth,

growth of meristem cells, and chlorophyll contents (Qados and

Hozayn, 2010; Hozayn et al., 2014). Chickpea (Cicer arietinum)

seeds were treated with MFs for 1–4 h in steps of 50 mT intensity

from 0 to 250 mT and increased germination speed, seedling

length, and dry weight as compared to control (Vashisth and

Nagarajan, 2008). Static MFs having intensities 4 or 7 mT with

0, 2, 6, and 10 atm osmotic pressure created with sucrose or

salt were applied to bean or wheat seeds. The MFs treatment

improved the germination ratios, without having any influence

of increased osmotic pressure. The greatest germination and

growth rates observed in both wheat and bean plants were

exposed to 7 mT MF as compared to the untreated seeds. In

wheat seedlings, the root and shoot length was 7.63 ± 0.08

and 9.62 ± 0.07%, respectively. In bean seedlings, the root and

shoot length was 5.46 ± 0.09 and 7.65 ± 0.08%, respectively

(Cakmak et al., 2010). Application of non-uniform MFs having

intensities of 60, 120, and 180 mT for different durations of 5,

10, and 15min, respectively, resulted in significant improvement

in pea germination. The high germination leads to increased

emergence index, and vigor index by 86 and 205%, respectively

(Jamil and Ahmad, 2012). Similarly, in another experiment

treatment of corn seed with the pulsed electric magnetic field

(EMFs) for different time durations of 0, 15, 30, and 45min

enhanced germination %, vigor, chlorophyll content, leaf area,

fresh and dry weight, and yields (Bilalis et al., 2012).
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TABLE 5 E�ect of magnetic fields waves on seedlings germination parameters.

Plants Working conditions Effects References

Soybean (Glycine max) Magnetic field strength 1,500 nT, Frequency

0.1, 1, 10, and 100Hz

• Increased protoplasts fusion and germination Nedukha et al., 2007

Radhakrishnan and Kumari,

2013

Wheat (Triticum aestivum) Magnetic field strength 20 nT-0.1 Mt • Activation of esterases

• Growth reduction

Aksenov et al., 2000

Chickpea (Cicer arietinum) Magnetic field strength 0–250 mT, DC

power supply 80 V/10A

• Improved germination

• Increased root length, surface area, and volume

Vashisth and Nagarajan, 2008

Soybean (Glycine max) Magnetic field strength 150 and 200 mT, DC

power supply 80 V/10A

• Reduced level of reactive O2-radical

• Increased Rubisco

Baby et al., 2011

Shine et al., 2011, 2012

Radhakrishnan and Kumari,

2012

Barley (Hordeum vulgare) Magnetic field strength 125 mT • Increase in length and weight Martinez et al., 2000

Rice (Oriza sativa) Magnetic field strength 125 and 250 mT 250

mT

• Reduced germination Flórez et al., 2004

Wheat (Triticum aestivum) Magnetic field strength 4 and 7 mT • Increased germination

• Amyloplast displacement

• Higher catalase activity

• Low peroxidase activity

Cakmak et al., 2010

Hasenstein et al., 2013

Payez et al., 2013

Mung bean (Vigna radiata) Magnetic field strength 600 mT 600 mT • Promotion of germination

• Malondialdehyde reduction

• Increased activity of NO and NOS

Chen et al., 2011

Mahajan and Pandey, 2014

Maize (Zea mays) Magnetic field strength 125–250 mT • Enhanced germination

• Increased fresh weight

• Amyloplast displacement

• Low hydrogen peroxide and enzymatic activity

• Reduced antioxidant activity

• Increased stomatal conductance and

chlorophyll content

Florez et al., 2007

Turker et al., 2007

Javed et al., 2011

Bilalis et al., 2012

Anand et al., 2012

Shine and Guruprasad, 2012

Hasenstein et al., 2013

Mung bean (Vigna radiata) Magnetic field strength 0.5 µT−75 mT,

Power 220 volts

• Improved germination, seed vigor, and

starch metabolism

Reddy et al., 2012

After overnight soaking wheat grains were treated for

consecutively 4 days and 5 h/day with a 30 mT static magnetic

field (SMF) and a 10 kHz EMF. Results showed an increased

germination speed and seedling growth compared to the control

group (Payez et al., 2013). An MF applied to dormant seeds of

barley, corn (Zeamays), wheat, and beans significantly enhanced

the rate of their seedling growth. Exposure of mung bean (Vigna

radiata) seeds to static MFs having an intensity of 87 to 226 mT

for a duration of 100min, resulted in a direct enhancement in

germination % with increasing MFs intensity. At an intensity

level of 0.194 T, the maximum germination of ∼80% was

observed as compared to the control (Mahajan and Pandey,

2014). Calculated mean values of germination time, germination

rate, germination rate coefficient, magnetic constant, transition

time, and water uptake, showed the positive effect of static

MF in improving germination (Mahajan and Pandey, 2014). A

summary of the findings of the effects of magnetic fields on

seedling performance of the different plant species has been

provided in Table 5.

Plasma seed treatment

In the agriculture sector, applications of plasma treatment

are also gaining attention to influence germination and plant

growth (Hayashi et al., 2011; Klämpfl et al., 2012). In various

studies, scientists showed improved germination and growth

pattern through the application of plasmas with various

vapors and gases such as aniline, cyclohexane, and helium,

respectively (Jiayun et al., 2014). In this regard, different types

of plasma techniques have been used such as atmospheric

plasma, microwave plasma, and magnetized plasma (Zhou et al.,

2011). Figure 5 represents the schematic setup of the plasma

seeds treatment. The influence of different gases used in plasma
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FIGURE 5

Schematic diagram of the plasma seeds treatment.

treatment is generally investigated. Different studies discovered

that active oxygen species such as O, O−

2 , O3, and OH in water

vapor plasma influenced the redox reaction which in results

affects the plant development by controlling thiol groups’ redox

status (Henselová et al., 2012). In substitution for scarification

and stratification, non-thermal plasma techniques were used

as a seed priming method (Dhayal et al., 2006; Mahendran

et al., 2017). Plasma application has several benefits including

less seed destruction and being environment friendly having

no chemical utilization (Volin et al., 2000; Dhayal et al., 2006;

Bourke et al., 2018). Besides improving seed quality and plant

growth, plasma can sterilize seeds and also cause variations of

enzymatic reactions (Sera et al., 2010; Henselová et al., 2012).

Plasma can affect seed germination by suspending or

enhancing the process. The new significant plasma-related

studies include the use of microwave discharges (Sera

et al., 2010) and low-density radio frequency discharges

(Bormashenko et al., 2012; Filatova et al., 2013). Plasma

treatment induced the development of thin (0.5–2µm)

hydrophobic and hydrophilic layers in the seed, which become

very helpful in different cultivation environments including

climate conditions, temperature, humidity, lighting, nutrition,

and water volume. Thus, in wet and cold soil, the hydrophobic

layers interrupt the water absorption which results overcome

the chilling injury and improving the seed viability (Volin

et al., 2000; Kavak and Eser, 2009). In another study, the use

of the plasma method caused increased hydrophilicity which

as result stimulated the water uptake and germination process

(Bormashenko et al., 2012).

The examination of several seed germination studies showed

the effect of different plasma treatments applied on various seeds

including wheat, maize, radish, oat, safflower, and blue lupine

(Lynikiene et al., 2006; Sera et al., 2010). Different examples from

the literature of the plasma treatment on different seeds have

been provided in Table 6. Safflower (Carthamus tinctorium L.

semen) seeds were treated with argon-containing low-pressure

capacitively-coupled RF plasma at a pressure of 1.6 and 16 Pa

for a time duration of 30 and 130min, respectively. Treatment

of 1.6 Pa, for 30min resulted in a 30% increase in germination

rate while a 50% increase was attained at 16 Pa, for 130min

(Dhayal et al., 2006). The authors claimed that the plasma

treatments have caused biochemical modification on the seeds

as compared to removing germination inhibitors (Kim, 2019;

Guo et al., 2020). Filatova et al. (2013) used air plasma 5.28

MHz at a pressure of 0.3–0.7 Torr to treat blue lupine (Lupinus

angustifolius), soy, honey clover, and Galega (Galega virginiana)

seeds and investigated a 10–20% increase in seed germination

and crop viability.

Henselová et al. (2012) used a low temperature diffuse

coplanar surface barrier discharge air plasma at atmospheric

pressure for 60 and 120 s and investigated the growth, anatomy,

and biochemical changes that occurred inmaize seeds (Zeamays

L.). After 60 s plasma treatment seedlings showed an increase

in root length (21%), root fresh weight (10%), and root dry

weight (14%). The authors also detected significant changes in

dehydrogenase, superoxide dismutase, catalase, and guaiacol-

peroxidase. Bormashenko et al. (2012) treated the grains of lentil

(Lens culinaris), beans (Phaseolus vulgaris), and wheat (Triticum

spp.) with non-equilibrium plasma. Filatova et al. (2013) and

Filatova et al. (2014) treated seeds wheat (Triticum aestivum

L.), narrow-leaf lupine (Lupinus angustifolius), and corn (Zea

Mays L.) for 10min with capacitively-coupled low-pressure (40–

80 Pa) RF air discharge plasma by using frequency 5.28 MHz

and specific power 0.34–0.65 Wcm3. Similarly, in another study

treatment of soybean seeds with cold plasma, treatment having

helium with 0, 60, 80, 100, and 120W for 15 s showed positive

effects on seed germination and seedling growth and water

uptake was also greater (Ling et al., 2014).

Gamma irradiations seed invigoration

In agriculture sciences, gamma radiation has several

applications including food microbiological safety, storability

subjects, slow fruit ripening, and vegetable sprouting, along with

stimulation of seed germination (Araújo et al., 2016). Among

IR, gamma (γ) radiation has high energy and is produced from

Cobalt-60. Gamma radiation can penetrate and interact with

biological materials (Islam, 2017). Units of Gray (Gy), are used

to express the level of absorbed IRs, while 1Gy dose is equal

to 1 Joule radiation energy absorbed per kilogram. Another

unit called Sievert unit (Sv) is also used to express the level of

absorbed IRs but in the case of interaction biological material,

like 1Gy, 1 Sv is equal to 1 Joule radiation energy absorbed

per kilogram of biological material. Another important factor to

consider while using the IR technique is the dose rate defined as

the rate of energy deposition (Gyh−1) (Moussa, 2006). Gamma

radiations can improve product quality, grain yield, and salinity

tolerance (Kiong et al., 2008; Majeed et al., 2018). The biological

effects of IRs depend on their chemical reactions with biological

molecules and water for producing free radicals which control

the activity of biomolecules (Araújo et al., 2016). Figure 6 gives
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TABLE 6 E�ect of plasma treatments on germination parameters of di�erent seeds.

Plants Working conditions Effects References

Corn (Zea mays)

Soybean (Glycine max)

Bean (Phaseolus vulgaris)

Peas (Pisum sativum)

• RF rotating plasma reactor

• 13.56 MHz

• C4 octadecafluro decalin, aniline,

hydrazine, cyclohexane

• Delayed, decreased germination and water

uptake for fluorocarbon plasma

• Increased germination and water uptake for

nitrogen-containing plasma

Denes et al., 2003

Safflower (Carthamus tinctorius) • Radio-frequency (RF) 13.56 MHz

• Argon plasma at 20 W

• Increased germination % Selcuk et al., 2008

Buckwheat [Fagopyrum

aescululentum (L.)Moench]

• Four different plasma treatments for 3, 5,

and 10min.

• Glid Arc, planar rotating electrode

• At atmospheric pressure, downstream,

microwave and dielectric barrier

• Improvement in germination % and lengths

of sprouts after Glid Arc treatment

Šerá et al., 2012

Lentils (Lens culinaris)

Beans (Phaseolus vulgaris)

Wheat (Triticum, aestivum)

• Inductive air plasma discharge

• 10 MHz, pressure 6.7× 10−2 Pa, power

20 W

• Decreased contact angle and germination

speed

• Increase germination %

Bormashenko et al.,

2012

Maize (Zea mays) • Diffuse coplanar surface barrier discharge

10 kV, 14 kHz (sinusoidal) 370 W

• Significantly enhanced root length, root fresh,

and dry weight

• Root anatomy and morphology are

not affected

Henselová et al., 2012

Wheat (Triticum, aestivum) • Atmospheric pressure surface discharge

• Room temperature, 15 kV, 50Hz, 24 W

• Significantly improved root length and dry

root weight

• A small increment in water imbibition

Dobrin et al., 2015

FIGURE 6

Schematic setup of the gamma irradiation treatment.

the schematic outline of the gamma irradiation setup. This leads

to the activation of an antioxidant system that prepares the

defensive mechanism of plants against stresses (Wi et al., 2007;

Ashraf, 2009).

Gamma radiations do not damage the deoxyribonucleic acid

(DNA) and structural integrity of seeds and thus can activate

various biochemical reactions in the seed (Bhosale and More,

2013). These radiations can affect the different components of

seeds like cell membranes, proteins, and nucleic acids. γ-rays can

be used as a seed priming technique to boost the germination

process but its effect depends on several factors like radiation

dose, intensity, and exposure time (Kovacs and Keresztes, 2002;

Majeed et al., 2017). The biological or molecular mechanisms

involved in the effects of radiation are not properly understood

and several ideas have been given.

The application of γ-rays in seeds produces reactive oxygen

species (ROS) as the result of water radiolysis. These species

react as regulators which can amplify the stress and activate

antioxidant responses, thus in this mechanism, ROS has an

important role as a signaling molecule [gibberellins signaling

pathway and oxidation of negative regulators of germination

like abscisic acid] (Borzouei et al., 2010; Esnault et al., 2010).

Therefore, γ-rays treated plant seeds easily overwhelmed the

fluctuations in daily stress conditions, including light intensity,

temperature, and water loss (Gicquel et al., 2012; Qi et al.,

2015). Low dose γ-irradiations in seeds induce positive effects

on enzymatic reactions and also affect nucleic acids and proteins

synthesis which consequently enhances metabolic activities in

the seed leading to breaking the seed dormancy and boosting

germination speed and plant development (Abdel-Hady et al.,

2008). The impact of γ-irradiation in seed technology as a seed

invigorating technique has been an impactful way to improve
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TABLE 7 E�ect of gamma irradiation on germination percentage of di�erent seeds.

Plants Working conditions Effects References

Lentil (Lens culinarisMedik) • Dose rate 1.66 kGy h−1

• 0.1–1 kGy

• Reduced germination % up to 40.87% at 0.2 kGy

• No germination at 1.0 kGy

Chaudhuri, 2002

Rice (Oryza sativa) • 150–300 Gy • Decreased germination from 100 to 97.2% Cheema and Atta, 2003

Maize (Zea mays) • 150, 300, 500, 700, 900, 1,000Gy

• Dose rate 10Gy /28.97 s

• Germination up to 90% achieved at 240Gy Mokobia and

Anomohanran, 2005

Long bean (Vigna sesquipedalis) • 300, 400, 500, 600, 800 Gy • Germination increase up to 70.56% at 400Gy

• No germination at 800Gy

Kon et al., 2007

Snap bean (Phaseolus vulgaris) • 300, 400, 500, 600, 800 Gy • Germination decreased from 75.56 to 51.11%

• No germination at 800Gy

Ellyfa et al., 2007

Chickpea (Cicer arietinum) • 100–1,200Gy

• Dose rate 1.66 kGyh −1

• Seed germination increased 60–76% with a dose

of 100–500Gy

• Germination decreased 80–96% decrease

with 700–1,200Gy

Shah et al., 2008

Wheat (Triticum aestivum) • 100–400Gy

• Dose rate of 0.864 kGy/h

• Germination % decreased from 8.8 to 5.5% Borzouei et al., 2010

Corn (Zea mays) • 10, 30, 50 kR • 30% germination at 10 kR dose while untreated

showed 50% germination

Itol, 2010

germination. Arabidopsis thaliana seeds were treated with γ-

ray’s 50Gy dose which in result showed positive results on all the

tested growth parameters such as germination index, seedling

growth, root length, and fresh weight (Qi et al., 2015).

Similarly, in another study, Oryza sativa L. cv-2233 and

Phaseolus mungo L. dried seeds were treated with γ-rays ranging

between 50 and 350Gy. Oryza sativa, showed a stimulating

response at 50Gy giving approximately plant height 19+1.4%;

panicle length 27+2.1%; seed number per panicle 64+2.8%,

tiller number 17+1.7%while Phaseolus mungo showed at 200Gy

giving approximately plant height 51+1.4%; pod length 49+4%;

seed number per pod 56+2.8% (Maity et al., 2005). Similarly,

the impact of gamma irradiation on maize (Zea mays, hybrid

Turda Star) seeds was studied, and a radiation sensitivity test was

performed to compare germination capacity, plant growth, and

photosynthetic pigment contents between treated and untreated

seeds. Again, the stimulatory effects of γ-ray were seen at

low doses (2–30Gy) (Marcu et al., 2013). Different examples

from literature about gamma irradiation affecting germination

characters of different seedlings have been provided in Table 7.

Sound waves based stimulation of seeds

Audible sound within a frequency of 20Hz to 20 kHz can

be heard by human beings. Among different environmental

factors like moisture, light, wind, and temperature affecting

plant growth, comparatively limited data is available about the

effect of audible sounds on plant growth (Hassanien et al.,

2014). Acoustic biology has become progressively more popular.

Recently different plants have been treated with sound waves

to check their effect at various physiological growth stages. The

use of sound waves as an invigoration method could reduce the

requirement for chemical fertilizers by opening the stomata, and

also enhance disease resistance in plants by strengthening the

immune system (Junfang, 2012; Carlson, 2013; Jung et al., 2018).

Naturally, plants can generate low-frequency sound waves 50–

120Hz and can also absorb or resonate specific frequencies of

external sound waves (Frongia et al., 2020). Plants emit also

ultrasonic vibrations of 20–100 kHz, measured by connecting

a sensor directly to the stem of the plant (Hassanien et al.,

2014). Plants release sound emissions from different organs

and at different growth stages or in response to different

situations. Through the use of small highly sensitive sound

receivers, it has been shown that plants emit sound from the

xylem and faint ultrasound in case of stress (Jung et al., 2018;

Khait et al., 2018). Sound waves can induce various changes

such as cell cycle changes, the vibration of plant leaves, and

the acceleration of cellular protoplasmic movement (Godbole,

2013). The experimental diagram of sound wave treatment of

seed is given in Figure 7.

It has been stated that sound waves activate stress-induced

genes and also increase their transcription level (Xiujuan et al.,

2003). Sound waves treatment enhances the uptake of dews and

sprays fertilizers by stimulating the leaf stomata. Moreover, the

process of photosynthesis is also influenced by the conversion

of sound energy into chemical energy (Meng et al., 2012).

According to previous studies, musical sounds can directly

influence the biological system and thus could significantly affect

the seeds sprouting (Creath and Schwartz, 2004).
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FIGURE 7

Experimental setup of sound wave treatment for seeds.

Several studies have been undertaken to understand the

influence of sound and music on plants and plant growth

(Table 8). Rideau wheat seeds treated with the sound frequency

of 5 kHz and pressure level of 92 dB resulted in stimulated

growth along with increased dry weight and number of roots

(Weinberger and Measures, 1979). In an experiment, paddy

rice seeds were treated with a sound frequency of 0.4–4 kHz

and a pressure level of 106–111 dB. The biological effect of

sound waves resulted in a significant increase in germination

index, stem height, fresh weight, root system activity, and

the permeability of the cell membrane (Bochu et al., 2003).

According to some studies, music or sound containing hard-

core vibrations can cause harmful effects on plant growth. While

classical music has gentle vibrations that increase plant growth

similarly violin music also induced positive effects significantly

(Aladjadjiyan and Kakanakova, 2009). Plants can use acoustic

signals from the surrounding environment and spread them

rapidly (Gagliano, 2012). A sound wave can transfer energy, to

initiate the cytoplasmic streaming and influence the membrane

materials thus resulting in variations in biological function and

increased metabolic reactions. In another study, at 0.2 and

0.3 kHz, sound frequency young root tips of Zea mays showed

a clear bend toward a sound source (Gagliano, 2012).

Laser irradiation seed treatment

As in the agriculture field, irradiation is known as a new

branch of seed invigoration technique. Laser radiations have

features such as coherence, high density, monochromatic, and

polarization, and all these properties make laser irradiations

applicable in agriculture (Hasan et al., 2020). Various parameters

of laser radiation can affect the physiological process in seeds,

FIGURE 8

Schematic diagram of laser irradiation treatments.

these parameters include the type of laser radiation, intensity,

wavelength, intensity, and exposure time (Govindaraj et al.,

2017). The synergistic effect of different mechanisms interacting

with laser light results in a range of noticeable effects in the

agriculture field. In several studies, laser irradiation showed

a positive effect on germination and disease prevention in

different crops such as rice, maize, wheat, peas, radishes, and

corn (Aladjadjiyan and Kakanakova, 2009; Hernandez et al.,

2010). The schematic diagram of the laser irradiation treatment

is given in Figure 8.
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TABLE 8 The application of sound waves to di�erent crops a�ects their phenotype.

Plants Sound

frequency

Sound

pressure

Effects References

Rice (Oryza sativa) 400Hz 106 dB • Increased germination rate, stem height, fresh weight

• Improved rooting ability activity of root system and

penetrability of cell membrane

Bochu et al., 2003

Rice (Oryza sativa) 0.3–6 kHz 80 dB • Increased growth, yield, and quality Hassanien et al., 2014

Cowpea (Vigna

unguiculata)

0.340–3.3 kHz 40–80 dB • Increased growth and yield Huang and Jiang, 2011

Wheat (Triticum

aestivum)

0.340–3.3 kHz 40 dB-80 dB • Improved seed germination, stem height

• Increased activity of root system

Weinberger and

Measures, 1979

Mung bean (Vigna

radiate)

1–1.5 kHz

1.5–2 kHz

2–2.5 kHz

80 dB

90 dB

100 dB

• Increment in stem and root lengths

• Reduced germination period with higher sound

frequency and sound pressure

Cai et al., 2014

Laser light treatment in seeds induces a series of reactions

like accelerated maturity, improved disease resistance, improved

energy potential, alpha-amylase action, and free radical’s

concentration (Klimek-Kopyra et al., 2021). In irradiated seeds,

all these reactions lead to reduced seed dormancy, increased

rate and percentage of germination, an improved profile of

chlorophyll and carotenoid content, higher seed vigor, and a

positive effect on the process of respiration and photosynthesis

(Wang et al., 2019).

The authors also reported that in addition to serving as

a pre-sowing seed treatment, laser irradiations can also affect

the quality and quantity of production. Table 9 presents a

list of several studies about the effect of laser stimulation on

plants that can be found in the literature. In an experiment,

He-Ne laser application as a pre-sowing treatment on four

spring barley cultivars showed an increment in the germination

capacity (Szajsner and Drozd, 2003). Treatment of wheat grains

with semiconductor laser influenced their germination and

development (Hernandez et al., 2008) while irradiation of tissue

culture significantly caused changes in a lipid matrix structure

(Salyaev et al., 2007).

The application of light from a laser diode of 650 nm and a

power of 27.4 mW increased the germination of photosensitized

wheat seeds (Aguilar et al., 2008). Soybean seedlings treated

with 532 nm laser improved the photosynthesis proficiency

and enhanced the isoflavone content (Tian et al., 2010).

Irradiation treatment of A. farnesiana seeds for 9min with

He-Ne laser light at 1.70W cm−2 affected the germination

indices (Soliman and Harith, 2009). Several other studies used

He Ne laser and approved promising effects on germination,

in winter wheat genotypes, morphological characters were

studied (Szajsner, 2009), in maize hybrids seeds activity of

amylolytic enzymes was observed (Podlesny and Stochmal,

2005), and developmental phased of white lupine and fava

bean plants were observed (Podlesny and Podlesna, 2004).

Similarly, in different experiments, pre-sowing treatment of

seeds with irradiation using specific application parameters

showed significantly enhanced the production of fava bean

seeds (Podlesny, 2007), alfalfa (Dziwulska et al., 2006), wheat

(Szajsner, 2009), maize (Szajsner et al., 2007b), and barley

(Szajsner et al., 2007a).

Conclusion and future prospects

High vigor seeds represent improved establishment and

productivity of crops. Therefore, sustainable crop production

requires the use of low-cost and environment-friendly

techniques of seed enhancement. Several pre-sowing treatment

attempts have beenmade to improve the yield. Physical methods

are an innovation in the research area of seed invigoration to

improve crop yield. These physical techniques are the substitute

for chemical-based techniques in the development of new

biotech-based solutions. These techniques are environmentally

friendly and can be used on a high throughput scale. Although,

plants respond to the physical treatment but still on a

commercial scale it has not been fully exploited. Enough

facilities are present to conduct physical treatment of seeds but

still, there is a lack of information regarding pre-germinative

metabolic reactions occurring in seeds. This information gap

is hindering the successful application of these techniques, as

seen for chemical treatments. There is also needed to explain all

biochemical reactions affecting these processing technologies

which result influence the growth and development of plants.

These processing techniques have a challenge which is that not

all techniques may result in improved germination of seed.

The invigoration methods can make the seeds vulnerable to

stress conditions if an unsuitable technique is applied to seeds.

Therefore, it’s important to determine all working conditions

and protocols specific to plant seeds. Because the efficiency of
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TABLE 9 E�ect of laser irradiation stimulation on plants.

Plants Working conditions Effects References

Maize (Zea mays), Wheat

(Triticum aestivum)

Barley (Hordeum vulgare)

Laser type He and Ne, Power 40–50 mW • Better plant seedlings

• Higher resistance to cold and earlier

plant maturation

Koper, 1994

Wheat (Triticum aestivum) Laser type He and Ne • Effect on morphological characters and yield Drozd and Szajsner, 1999

Soybean (Glycine max) Laser type He and Ne, Power 7.3 mW • Reduced the number of seed-borne fungi

• Increased germination

Ouf and Abdel-Hady, 1999

Barley (Hordeum vulgare) Laser type He and Ne, Wavelength 632.8 nm,

power density-−1 mW cm−2

• Caused stimulation effect on the yield Rybiński, 2000

Wheat (Triticum aestivum) Laser type As, Al, and Ga • Stomatal density was diminished

• Modified seedling growth and morphology

Benavides et al., 2003

Wheat (Triticum aestivum) Laser type He and Ne • Increased the strength, germination energy, and

seeds respiration

Makarska et al., 2004

Wheat (Triticum aestivum) Laser type He and Ne, Output power 25 mW • Positive effects on the germination energy Dinoev, 2006

Maize (Zea mays) Laser type GaAlAs semiconductor, Output power

30 mW, Wavelength 660 nm

• Have significantly increased seed vigor Hernandez et al., 2006

Wheat (Triticum aestivum) Laser type He and Ne • Only little effect on growth and grain yield Wesolowski and Cierpiala,

2006

Wheat (Triticum aestivum) Laser type GaAlAs, Wavelength 850 nm • Caused bio-stimulated growth Hernandez et al., 2008

Maize (Zea mays) Laser type Diode, Output power 27.4 mW,

Wavelength 650 nm

• Negatively bio stimulated the seedling

emergence % and emergence rate

Hernandez-Aguilar et al.,

2009

each technique is directly linked to different factors including

plant species, cultivars, environmental conditions, type of

technique, processing treatment dose, exposure timings, etc.

There is also needed to expand the number of tested species

with each technique to identify factors best appropriate for each

physical treatment. Further, for each treatment to modulate the

seed response, the study of environmental parameters and their

impact could not be ignored.
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