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Introduction: The increased frequency of extreme climate events, many of them 
of rapid onset, observed in many world regions, demands the development of a 
crop forecasting system for hazard preparedness based on both intraseasonal 
and extended climate prediction. This paper presents a Fortran version of the 
Crop Productivity Model AquaCrop that assesses climate and soil fertility effects 
on yield gap, which is crucial in crop forecasting systems

Methods: Firstly, the Fortran version model - AQF outputs were compared to 
the latest version of AquaCrop v 6.1. The computational performance of both 
versions was then compared using a 100-year hypothetical experiment. Then, 
field experiments combining fertility and water stress on productivity were used 
to assess AQF model simulation. Finally, we demonstrated the applicability of this 
software in a crop operational forecast system.

Results: Results revealed that the Fortran version showed statistically similar 
results to the original version (r2 > 0.93 and RMSEn < 11%, except in one experiment) 
and better computational efficiency. Field data indicated that AQF simulations are 
in close agreement with observation.

Conclusions: AQF offers a version of the AquaCrop developed for time-consuming 
applications, such as crop forecast systems and climate change simulations over 
large areas and explores mitigation and adaptation actions in the face of adverse 
effects of future climate change.
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1. Introduction

The need to assess the adverse effects of extreme climate events on crop productivity and 
the urge for planning mitigation and adaptation actions has promoted the development of crop 
forecast systems (Bento et al., 2022; Chitsiko et al., 2022; Dhakar et al., 2022).

Although previous studies have demonstrated the feasibility of a crop forecast system 
based on the coupling of climate and crop models, few systems have been implemented 
in an operational mode worldwide, and none in the case of Brazil. For instance, the 
MARS-crop yield forecasting system - MCYFS, which has been used to monitor crop 
growth development, evaluate short-term effects of adverse weather events, and provide 
monthly forecasts of crop yield and production for various crops in the European Union 
(see Van der Velde and Nisini, 2018; MCYFS, 2022). Another initiative for assessing crop 
conditions for global markets is GEOGLAM – Crop Monitor for the Agricultural 

OPEN ACCESS

EDITED BY

Haikuan Feng,  
Beijing Research Center for Information 
Technology in Agriculture, China

REVIEWED BY

Asghar Azizian,  
Imam Khomeini International University, Iran
Alex Zizinga,  
Haramaya University, Ethiopia

*CORRESPONDENCE

Minella A. Martins  
 minella.martins@gmail.com

RECEIVED 30 October 2022
ACCEPTED 09 June 2023
PUBLISHED 11 July 2023

CITATION

Tomasella J, Martins MA and Shrestha N (2023) 
An open-source tool for improving on-farm 
yield forecasting systems.
Front. Sustain. Food Syst. 7:1084728.
doi: 10.3389/fsufs.2023.1084728

COPYRIGHT

© 2023 Tomasella, Martins and Shrestha. This is 
an open-access article distributed under the 
terms of the Creative Commons Attribution 
License (CC BY). The use, distribution or 
reproduction in other forums is permitted, 
provided the original author(s) and the 
copyright owner(s) are credited and that the 
original publication in this journal is cited, in 
accordance with accepted academic practice. 
No use, distribution or reproduction is 
permitted which does not comply with these 
terms.

TYPE Original Research
PUBLISHED 11 July 2023
DOI 10.3389/fsufs.2023.1084728

https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fsufs.2023.1084728%EF%BB%BF&domain=pdf&date_stamp=2023-07-11
https://www.frontiersin.org/articles/10.3389/fsufs.2023.1084728/full
https://www.frontiersin.org/articles/10.3389/fsufs.2023.1084728/full
https://www.frontiersin.org/articles/10.3389/fsufs.2023.1084728/full
mailto:minella.martins@gmail.com
https://doi.org/10.3389/fsufs.2023.1084728
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/sustainable-food-systems#editorial-board
https://www.frontiersin.org/journals/sustainable-food-systems#editorial-board
https://doi.org/10.3389/fsufs.2023.1084728


Tomasella et al. 10.3389/fsufs.2023.1084728

Frontiers in Sustainable Food Systems 02 frontiersin.org

Monitoring Information System- AMIS (Ministerial Declaration, 
2011; Becker-Reshef et  al., 2019). It encompasses some large 
producer areas in Brazil but focuses on large-scale agriculture 
and not smallholder farming.

Several crop simulation models are available in the literature. 
Among them, it is worth mentioning the APSIM (Holzworth et al., 
2018), DSSAT (Hoogenboom et al., 2019), WOFOST (de Wit et al., 
2018), and the AquaCrop model (Raes et al., 2009; Steduto et al., 
2009). In the case of AquaCrop, the model was designed to simplify 
the complex processes involved in crop development to facilitate 
its use in regions with scarce information. Because of this, 
AquaCrop has been used in many applications worldwide for 
supporting agriculture practices and research studies involving 
irrigation (Geerts and Raes, 2009) and sowing management (Abrha 
et al., 2012); to support farming economic models (García-Vila and 
Fereres, 2012); seasonal crop forecasts (Bussay et al., 2015; Martins 
et al., 2018); climate change impacts (van Oort and Zwart, 2017; 
Martins et  al., 2019); food security (Muluneh et  al., 2016); 
irrigation and fertilizer assessment (Shrestha, 2014; Akumaga 
et al., 2017; Guo et al., 2019; Ranjbar et al., 2019); among many 
others (Pirmoradian and Davatgar, 2019; Sandhu and Irmak, 2019; 
Chibarabada et al., 2020; de Roos et al., 2020).

AquaCrop is a freeware package1, running in a graphical user 
interface – GUI hereafter denoted “AquaCrop GUI.” Since simulations 
of AquaCrop GUI are limited to a single field location, a plug-in 
version of the software is also available, allowing multiple site 
simulations. Both versions (plug-in and standalone) are available as 
executable files that cannot be modified for specific applications.

However, an operational crop forecast system requires 
manipulating and processing large amounts of detailed atmospheric 
forecasts, high time-spatial resolution imagery, and ground 
information. Regional climate model outputs are generally provided 
in specific formats (such as NetCDF - Network Common Data Form 
which is specific for array-oriented scientific data), which is not 
compatible with the graphical interface codes of AquaCrop GUI, 
despite its user-friendly and didactic character. With the increased 
frequency of drought, often accompanied by rapid intensification 
linked to evaporative demand- a phenomenon known as ‘flash 
drought’ (Otkin et al., 2017) - both under current climate conditions 
(Christian et al., 2021) and projected future climate change (Vijay and 
Srinivas, 2022), it becomes evident that there is an urgent need for new 
tools. These tools can assist in timely decision-making on intraseasonal 
or seasonal climate scales, as well as aid in designing adaptation 
strategies to address future climate change.

Considering those limitations, this study aims to present an open-
source crop forecast model based on the AquaCrop, denoted as 
AquaCrop Fortran (AQF). The software includes the soil fertility 
module based on the AquaCrop GUI module (van Gaelen et al., 2014; 
Raes et al., 2018), enabling the estimation of actual (on-farm) yield in 
applications where the yield gap accounting is relevant.

Several tests were performed to compare the outputs of AQF and 
AquaCrop GUI. We also compared AQF against field observations to 
prove the capability and flexibility of the fertility module, both in 
controlled and on-farm applications.

1 Available at http://www.fao.org/aquacrop/en/.

2. Methods

2.1. AQF model development

Since AquaCrop GUI is freeware available only as an executable 
file, Foster et al. (2017) presented an open-source version, namely, 
AquaCrop-OS, based on Matlab, which was used as an initial source 
for AQF development. AquaCrop-OS includes most AquaCrop GUI 
features (v 6.1), except for soil fertility, salinity stress, and 
weed infestation.

In the case of an operational forecast system, the effects of fertility 
stress on crop productivity are of particular interest because of the 
yield gap. Thus, the difference between farmers’ yields and the 
potential yields (Fischer, 2015) is generally the result of soil 
deterioration due to erosion, fertility, or structural decline, particularly 
among low-income small-scale agriculture in Brazil (Sietz et al., 2006; 
Vieira et al., 2020). Consequently, we developed AQF, including all the 
basic features of AquaCrop-OS, and added a fertility module approach 
proposed by van Gaelen et al. (2014), which has been validated for 
various crops and climates and is also included in AquaCrop 
GUI (v6.1).

For the sake of brevity, considering that the fundamental 
difference between AquaCrop GUI and AQF lies in the fertility 
module, this section briefly describes the fertility module approach 
and highlights the difference between both models. The other details 
about the AquaCrop model formulation are described in Raes et al. 
(2009) and Steduto et al. (2009).

To simulate the effect of different soil fertility levels on crop 
development, van Gaelen et al. (2014) proposed a semi-quantitative 
empirical approach. In this approach, fertility’s effects on 
productivity are simulated using stress functions rather than 
simulating nutrient cycles as in other crop models. Four stress 
coefficients are derived from stress functions by applying the value 
of a stress indicator that varies from 0, which corresponds to 
non-limiting fertility, to 100% when production is not possible. 
These coefficients (1) reduce canopy expansion, causing a slower 
canopy development; (2) reduce the maximum canopy cover that 
can be  reached; (3) reduce the water productivity and, 
consequently, biomass accumulation; and (4) cause a gradual 
decline of canopy cover once the maximum canopy cover 
is achieved.

The first three stress coefficients vary as a function of the 
fertility stress indicator between 1 (no fertility stress) to 0 (full 
stress) according to the stress functions of the form given by 
Equation 1:
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Where the subscript i = 1, 2, 3 indicates the stress coefficients Ki’s 
that reduce canopy expansion, maximum canopy development, and 
biomass, respectively; FS is the stress fertility indicator, and fi’s are 
coefficients that define the shape of the relationships between the 
stress coefficients and the fertility stress indicator.

Finally, the fourth stress coefficient varies between 0 (no stress) to 
a maximum of 1% of the decline rate according to the stress function 
given by Equation 2:
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Where fdecline (%) indicates the rate of canopy decline (trigger after 
the crop reached maximum development) due to fertility stress; and 
fi (i = 4) is a coefficient that defines the relationships between fdecline and 
the stress indicator.

Since the relationships between the stress indicator and the stress 
coefficients are non-linear, the shape of the curves is determined by 
the value of the fertility stress coefficients fi (i = 1, 2, 3 defined in 
Equation 1; i = 4 defined in Equation 2), which are estimated 
by calibration.

The calibration requires field observations of the maximum canopy 
cover and the total above-ground biomass production in a field with 
non-limiting fertility conditions and in a stressed field with limited 
fertility, both under non-limiting water availability (van Gaelen et al., 
2014). The fertility stress indicator is estimated based on Equation 3:
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Bs and Bu indicate biomass accumulation under stressed and 
non-stressed conditions, respectively.

Due to the empirical nature of the stress coefficients given by the 
approach, it is necessary to estimate the stress coefficients (Ki i = 1, 2, 
3 and fdecline) that match the field observations of the reduction in the 
maximum canopy and biomass of the stressed field and then derives 
the values of the fertility stress coefficients fi (i = 1, 4) by inverting 
Equations 1, 2. Once the shape coefficients are calibrated, the stress 
coefficients for other fertility conditions are calculated directly from 
Equations 1, 2.

To derive the fertility stress coefficients fi (i = 1, 4 of Equations 1, 2), 
we  implemented an iterative optimization algorithm that follows 
three steps:

 • Assuming that N-paired of field observations of biomass decline 
and maximum canopy cover reduction due to fertility stress are 
available, the algorithm runs several model simulations searching 
the value of each of the stress coefficients Ki,j, and fdeclinej (i = 1, 
3; j = 1, N) that minimizes the squared difference between 
simulation and observations of maximum canopy decline and 
biomass for each observation (stress level). It uses a 
uni-variational approach, changing each stress coefficient at a 
time until the best value is attained. Then, the optimum value is 
searched using incremental/decremental steps in the forward or 
backward direction depending on whether simulated values 
become closer or further to observations. For the specific case of 
the canopy-expansion stress coefficient, its value was limited 
enough to allow canopy development until the maximum canopy 
over the time required to reach the full canopy.

 • Since each of the stress coefficients Ki,j, and fdeclinej are associated 
with a value of the fertility stress indicator FS, the algorithm then 
estimates the values of fi that provide the best fit to all the 
optimized Ki,j, and fdeclinej inverting Equations 1, 2

 • Finally, each fertility stress coefficient fi is fine-tuned to minimize 
the sum of square errors of biomass and maximum canopy cover 
for the N observations.

Such a simple optimization method is justified since field 
experiments involving fertility stress are usually limited to a small 
number (less than 4–5). Furthermore, this study showed that the 
optimization takes less than 1 min to converge to the optimum. In 
addition, using more than a unique pair of field observations of 
fertility stressed levels in the optimization, besides allowing regional 
application where more field data is available, narrows the range of 
variability of the optimized stress coefficient and reduces uncertainties.

AquaCrop GUI (v6.1) derives the values of the fertility stress 
coefficients fi (i = 1, 4) through a recursive optimization. Unlike the 
approach used in AQF, where several field observations are considered 
in the fertility stress coefficient estimations, the recursive algorithm of 
AquaCrop GUI uses a single pair of biomass observations and 
maximum canopy reduction of a field under fertility stress conditions. 
Furthermore, to narrow the search, AquaCrop GUI allows an a priori 
selection of the decline coefficient (Equation 2) in qualitative ranges 
(strong, medium, and weak), which in practice reduces the range of 
variation of the stress shape coefficient f4.

AquaCrop Fortran was compiled using Intel® Parallel Studio XE 
2019 Version 19.0.0052.16, which can be run either in Windows or 
Linux. Input and output files follow the same layout as the 
AquaCrop-OS (Foster et al., 2017) version. The output files contain 
information about the variables related to the crop’s growth in the 
canopy (transpiration, canopy cover, biomass), soil water balance 
(irrigation, precipitation, runoff, infiltration), and final yield.

2.2. Experimental procedures

Several test simulations were carried out from three sites (Table 1): 
Tunis, Chitwan, and Araripina.

For the first site, namely Tunis, Tunisia (36° 48’N, 10° 10′E), 
dominated by a semiarid climate, we compared simulation results of 
AQF and AquaCrop GUI to assess the differences in the simulation 
outputs between both codes. The experiments were selected from the 
dataset provided with the AquaCrop installation package, used for 
checking and training the software (Raes and van Gaelen, 2016). 
We compared the final yield and total irrigation for successive growing 
seasons generated by both versions. In addition, daily biomass, canopy 
cover, and water contents simulations were compared through the first 
growing season. The experiments include simulations under rainfed, 
partial, and full irrigation for different initial conditions (T1–T3, 
respectively); a comparison of both codes’ performance for a hundred-
year simulation (T4); and models outputs for a different level of 
fertility stress (T5) using the fertility stress data of Table 2. The initial 
soil condition for experiments T1, T4, and T5 is wet topsoil and dry 
subsoil, wilting point for T2 and T3, and field capacity for T6 to T13.

Several experiments indicated as T6–T11 in Table 1, were carried 
out for wheat (W) and maize (M) in the second experimental site, 
Chitwan, Nepal (27°39’ N, 84°21′ E), characterized by a tropical 
monsoon climate with high humidity. In these experiments, 
we assessed AQF simulations against field observations regarding 
water and fertility stress on crop productivity for different stress levels 
(Table 2). First, we calibrated fertility stress coefficients using the two 
fertility stress levels in the case of wheat and a single point of the effect 
of fertility stress for maize (Table 2). Then, we evaluated the stress due 
to the combination of water and soil fertility stress for maize (M) and 
wheat (W) experiments (T6–T11).
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The third experimental site, Araripina (7°55’ S, 40°56’ W), is 
located in Brazil’s semiarid region, which is characterized by 
highly variable interannual and intra-seasonal rainfall. Maize is 
produced using low technological resources. Consequently, yield 
gaps are the largest in the country. We used AQF with a seasonal 
climate forecast model to predict maize yield for two different 
experiments (T12 and T13). The crop forecasts were compared 
to in-situ data under optimum (non-stress) fertility conditions 
collected by the Brazilian Agriculture Research Corporation – 
EMBRAPA (Martins et al., 2018); and against on-farm yield with 
soil fertility stress (provided by the Brazilian Institute of 
Geography and Statistics – IBGE, 2007). In the latter case, fertility 
stress parameters were calibrated based on the yield gap  
estimated under favorable rain conditions (2006) and then 
directly applied to the irregular rainy crop season (2004). In 

Supplementary material Section S1 provides more detailed 
information about experiments T1–T13.

Finally, Table  3 describes the soil types and properties of the 
experimental sites.

2.3. Performances indices

We used statistical indices to compare the outputs of both 
versions and simulations against field observations: the 
coefficient of determination (r2); the index of agreement (d) 
(Willmott et  al., 1985; Legates and McCabe Jr, 1999); the 
normalized root-mean-square error (RMSEn) (Loague and 
Green, 1991); and the mean bias error (MBE) calculated through 
the following equations:
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TABLE 1 Description of the reference experiments in Tunis and the observational experiments in Chitwan and Araripina (Source: Shrestha, 2014; van 
Gaelen et al., 2014; Martins et al., 2018).

Experimental Sites Crop Period Water management Fertility stress Planting-harvest 
date

Tunis – T1 Wheat 1979–2002 Rainfed No 15/10–13/04

Tunis – T2 Wheat 1979–2002 Deficit irrigation No 01/12–29/05

Tunis – T3 Wheat 1979–2002 Full irrigation No 01/12–29/05

Tunis – T4 Wheat 1979–2078 Full irrigation No 15/10–13/04

Tunis – T5 Wheat 1979–2002 Rainfed Non limiting, about a 

half and very poor

15/10–13/04

Chitwan – T6W/M Wheat (W)

Maize (M)

2010–2011 Irrigated No 14/12–14/04 (W)

28/03–30/06 (M)

Chitwan – T7W/M Wheat (W)

Maize (M)

2010–2011 Irrigated Moderated 14/12–14/04 (W)

28/03–30/06 (M)

Chitwan – T8W/M Wheat (W)

Maize (M)

2010–2011 Irrigated Strong 14/12–14/04 (W)

28/03–30/06 (M)

Chitwan – T9W/M Wheat (W)

Maize (M)

2010–2011 Rainfed No 14/12–14/04 (W)

28/03–30/06 (M)

Chitwan – T10W/M Wheat (W)

Maize (M)

2010–2011 Rainfed Moderated 28/03–30/06 (M)

28/03–30/06 (M)

Chitwan – T11W/M Wheat (W)

Maize (M)

2010–2011 Rainfed Strong 14/12–14/04 (W)

28/03–30/06 (M)

Araripina – T12 Maize 2004–2006 Rainfed No 22/01–20/05

19/01–18/05

Araripina – T13 Maize 2004–2006 Rainfed Strong 22/01–20/05

19/01–18/05

TABLE 2 Input data used to calibrate the fertility stress experiments.

Experiment Crop Brel CCx Decline

T5 Wheat 50 41 small

T6W/T8W Wheat 46 50 small

T6W/T7W Wheat 88 76 small

T6M/T8M Maize 53 52 Strong

T13/T12 Maize 22 80 Medium

Brel indicates relative biomass accumulation; CCx decline of canopy cover at maximum 
development (Source: Shrestha, 2014; van Gaelen et al., 2014).
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Pi and Ri refer to the predicted and reference values of the studied 
variables; n is the number of observations, M is the reference average, 
and ME is the predicted average. The coefficient of determination (r2) 
measures how well reference values are replicated by the model 
simulations, while the index of agreement (d) is an accuracy metric. 
On the other hand, the normalized RMSEn (%) calculates the relative 
difference between simulated versus reference data. Lastly, the mean 
bias error (MBE) represents the tendency of the model to overestimate 
(positive values) or underestimate (negative values) the 
reference values.

3. Results and discussion

3.1. Tunis experiments

Figure 1 compares the final yield calculated by AquaCrop GUI 
and AQF for the T1 experiment in Tunis. The average wheat yield 
simulated by AQF and AquaCrop GUI was 8.65 (±0.29) ton ha−1. The 
mean bias error for yield was −0.004ton ha−1 while the RMSEn was 

0.84%. Regarding water productivity, AQF simulated 3.23 (±0.17) 
kg.m−3, while AquaCrop GUI simulated 3.20 (±0.16) kg.m−3.

In supplementary material, Supplementary Figure S1 compares 
daily values of canopy cover development, biomass production, 
harvest index, and soil water content over the growing season for both 
models for the first year of the simulations. Although AquaCrop 
Fortran compared well with AquaCrop GUI simulations for all the 
variables tested, minor differences occurred at the end of the growing 
season. Daily time step comparisons revealed that AQF presented a 
more rapid canopy decline. In contrast, the canopy cover in the 
AquaCrop GUI case was less sensitive to reducing soil water content 
at the end of the growing season than the Fortran version. However, 
root water extraction and canopy cover feedback likely explain soil 
water content differences (Figure S1). Despite these differences, 
aggregated values for the whole period are very similar.

Using deficit irrigation on Tunis’s wheat for 23 years (experiment 
T2), AquaCrop GUI simulated an average yield of 6.22 (±1.42) ton. 
ha−1, against 6.14 (±1.48) ton. ha−1 for AquaCrop Fortran (Figure 2A). 
Both models produced very similar results in terms of water 
productivity response (Figure 2B).

For the full irrigation experiment (T3), wheat yield simulated by 
AQF slightly overestimated AquaCrop GUI simulations (Figure 3A). 
Regarding the seasonal water requirements, AQF is lower than 
AquaCrop GUI simulations, on average 25 mm per season, equivalent 
to 10.7% on average (Figure 3B).

We compared the computation time of both versions by running 
a long-term simulation (Experiment T4) using an i7-10510u CPU 
1.80 GHz  - 2.30 GHz Intel processor with 16GB RAM. While the 

TABLE 3 Soil properties for the three experimental sites: PWP corresponds to the permanent wilting point; FC Field capacity; SAT water content at 
saturation, and Ksat saturated hydraulic conductivity (Source: Shrestha, 2014; van Gaelen et al., 2014; Martins et al., 2018).

Experimental site Soil texture 
class

Soil layer (m) Soil water content (%) Ksat 
(mm d−1)

PWP FC SAT

Tunis Sandy Loam 4.0 10.0 22.0 41.0 1200.0

Chitwan Sandy Loam 0.80 8.9 23.0 51.4 1250.0

Araripina Sandy Clay Loam 0.09 9.8 17.2 40.6 2630.7

0.22 8.1 16.6 39.5 2984.3

0.60 11.4 20.6 41.2 2127.4

1.40 11.7 21.2 41.4 2109.4

2.40 13.1 22.5 42.3 1923.8

FIGURE 1

Comparison of AquaCrop GUI and AQF for wheat yield (A) and water productivity (B) under rainfed conditions over 1979–2002.
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AquaCrop GUI required approximately 215 seconds to run a hundred-
year simulation (1979–2078), AQF demanded about 1 second. Results 
between both versions in terms of final yield, biomass and water 
productivity were quite similar, though AQF underestimated the 
AquaCrop GUI’s irrigation requirements (see Figure S2  in 
Supplementary material). Therefore, the efficiency of the AQF in 
terms of computational time opens the possibility of a whole new 
range of numerical experiments and detailed simulations in an 
operational crop forecast system. Moreover, test runs of AQF for the 
seasonal forecasts experiments of Martins et  al. (2018) and crop 
productivity predictions under climate change (Martins et al., 2019, 
2023) corroborated the efficiency of the code in terms of computational 
time and reproducibility.

Finally, in Figure  4, we compared the outputs of AQF and 
AquaCrop GUI for different values of the soil fertility stress. The 
average wheat yields simulated by AQF were 8.65 (±0.29), 4.15 
(±0.15), and 2.53 (±0.10) ton ha–1, for non-limiting, about a half, and 
very poor soil fertility, respectively, while the correspondent values of 
AquaCrop GUI were, respectively, 8.65 (±0.29), 4.46 (±0.12), and 2.34 
(±0.06) ton ha–1. Water productivity – WP was also very close in all 
simulations: AQF simulated an average of 3.23 (±0.17), 1.75 (±0.14), 
and 1.19 (±0.13) kg.m−3 for, respectively, non-limiting, about a half, 
and very poor fertility level; while AquaCrop GUI estimations were 
3.20 (±0.15), 1.76 (±0.20) and 1.04 (±0.11) kg.m−3.

The daily time-step analysis (Supplementary Figure S2) 
revealed that AQF presented a faster canopy decline, particularly 

in the case of very poor soil fertility, resulting in an earlier end of 
the crop cycle compared to the GUI version. The length of the 
growing season in AquaCrop GUI appeared to be insensitive to the 
fertility stress, and an abrupt decline in canopy cover simulations 
was observed at the end of the cycle. Contrary to canopy 
development, the growth rate of biomass and yield is higher in 
AQF, compensating for the effects of a shorter cycle, resulting in 
similar values of both versions at the end of the season. These 
differences are qualitatively similar to those observed in experiment 
T1 (Supplementary Figure S1).

The analysis results in terms of the performance indices, resulting in 
both models’ comparisons, are presented in Supplementary Table S1. In 
general, differences among both versions were minor (less than 10.5%), 
except for the net irrigation requirements (Supplementary Figure S2), 
where differences among models reached 23.6% in 100 years of simulation 
(T4). In this case, daily time-step results (data not shown) indicated that, 
during very dry periods, AquaCropGUI generated lower moisture values 
at the top of the soil profile compared to AQF. Since net irrigation is 
determined by the amount of water needed to keep the soil profile to field 
capacity in the root zone, a drier soil profile results in a higher irrigation 
requirement. Nonetheless, we verified that the net irrigation requirements 
in AQF were similar to those of AquaCrop-OS for the same experiment 
(Foster et al., 2017).

A comparison of T1–T5 revealed a close agreement between 
AquaCrop GUI and AQF for the same input data. Therefore, slight 
differences in the outputs of the Fortran and the GUI versions of 

FIGURE 2

Comparison of AquaCrop GUI and AQF for wheat yield (A) and water productivity (B) under deficit irrigation over 1979–2002.

FIGURE 3

Comparisons of AquaCrop GUI and AQF simulations for wheat yield (A) and irrigation requirement (B) over 1979–2002.
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AquaCrop are expected, which cannot be analyzed in detail because 
AquaCrop GUI is not open-source. Moreover, those differences are of 
the same order as those reported in the AquaCropR (Rodriguez and 
Ober, 2019); and AquaCrop-OSPy (Kelly and Foster, 2021).

3.2. Observational experiments in Chitwan

Table 4 shows the fertility stress shape coefficients calibrated by 
AQF for wheat and maize, using input data from the fertility response 
of Table 2.

Figure 5 compares field observations and simulations generated 
using the fertility stress coefficients of Table 4 for different water and 
fertility stress levels, for wheat and maize, in terms of final yield 
and biomass.

The average error (RMSEn) in estimating wheat yield in the 
experiments in Figure 5A was 3.44%, while in the case of biomass, the 
RMSEn was 3.67% (Figure  5B). The most significant discrepancy 
occurred in T7W (experiment with moderate fertility stress). AQF 
overestimated the observation by 0.3 ton ha−1.

In the case of maize, AquaCrop Fortran simulations overestimated 
the observed final biomass (Figure 5D) with an error (RMSEn) of 
13.94% compared to experimental values. Although the absolute error 
in final yield, measured by the MBE, was quite smaller than the 
biomass error (Figure 5C).

A possible explanation for the excellent fit between AQF 
simulation and observation for wheat compared to maize simulations 
might be related to the fact that more detailed field information about 
fertility stress is available in the first case (Table 2).

Figure 6 compares field observations and the simulations for the 
entire growing cycle of AQF for wheat (left column) and maize (right 
column) for experiments T6, T7, and T8. Simulations of biomass, 

canopy cover development, and soil water content for AQF showed 
results close to observations throughout the entire growing cycle 
(Figures 6A–C).

Although AQF simulations were also close to observation for 
maize (Figures 6D–F), they overestimated the final biomass for 
experiment T6M (Figure 6D). On the other hand, for strong soil 
fertility stress conditions (experiment T8M), AQF accurately 
predicted the final biomass (Figure  6D), though it generated a 
premature end of the canopy development cycle compared to 
observations (Figure 6E).

The only simulation in that AQF exceeded 20% in error was 
canopy cover in T8M (Figure 6E), this experiment presented strong 
stress fertility, and AquaCrop Fortran presented an error of 33.7%. As 
shown in Figure  6E, the model performance was affected by the 
observation of canopy cover greater than the maximum value used for 
calibration, recorded at the beginning of the senescence stage. It is 
unclear if this is caused by measurement error or late-season canopy 
recovery, which was unable to be captured by AQF.

For overall experiments, the final yield errors (RMSEn) of AQF 
varied from 3.44 to 13.9%, while biomass ranged from 3.6 to 15%, and 
water content was between 6.5 to 14.9%. Regarding canopy cover, 
errors varied from 3.9 to 33.7%, with only one simulation exceeding 
the error of 20% (T8M), as explained before. Table S2 (Supplementary 
material) presents the performance statistic for various output 
variables against observations in detail.

Statistical indices of all AQF simulations showed very good 
performance, precision close to one, and RMSEn values less than 10% 
in most experiments.

3.3. Aquacrop Fortran application to an 
operational crop forecast system

To demonstrate the value of AQF in an operational crop forecast 
system, Figure 7 presents an example of a forecast 45 days before the 
harvest for a case study in Araripina for two different crop seasons and 
both optimum and limited soil fertility conditions.

Figure 7A indicates considerable spread among members of 
the forecast for the wet year, particularly for non-fertility stress 
conditions (experiment T12, continuous lines) and to a lesser 
degree for on-farm yield under stressed fertility conditions 
(experiment T13, dotted lines), indicating that under optimum soil 
fertility, the forecast is more sensitive to rainfall variability among 

FIGURE 4

 Comparisons of AquaCrop GUI and AQF simulations of wheat yield (ton. ha-1) (A) and water productivity (kg.m-3) (B) under different soil fertility 
conditions. Green, yellow, and red points indicate non-limiting, about a half, and very poor soil fertility, respectively.

TABLE 4 Fertility stress shape coefficients calibrated for wheat and maize 
in AQF.

Wheat Maize

f1 0.097 1.332

f2 0.807 4.311

f3 −1.036 −8.836

f4 9.803 −9.18

The calibration for wheat was performed using both field observations simultaneously. In the 
case of maize, the calibration was performed using a single observation.

https://doi.org/10.3389/fsufs.2023.1084728
https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org


Tomasella et al. 10.3389/fsufs.2023.1084728

Frontiers in Sustainable Food Systems 08 frontiersin.org

FIGURE 5

Comparison of final yield from wheat (A) and maize (C) and final biomass for wheat (B) and maize (D). T6: Irrigated without fertility stress; T7: Irrigated 
with moderate stress fertility; T8: Irrigated with strong fertility stress; T9: Rainfed without fertility stress; T10: Rainfed with moderate fertility stress and 
T11: Rainfed with strong fertility stress. Vertical bars represent the standard deviation.

FIGURE 6

Biomass accumulation (A and D), canopy cover development (B and E), and soil water content (C and F). The left column shows the simulation for 
wheat, while the right column shows the simulation for maize. Vertical bars represent the standard deviation.
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the members. The average maize yield forecasted by the five 
members is 6.7 ton ha−1, compared to 5.9 ton ha−1 of the controlled 
field experiment, significantly greater than the average 1.5 ton ha−1 
on-farm yield predicted by the forecast members and the 0.9 ton 
ha−1 on-farm yield of the official statistics.

Assessments for the 2004 dry year (Figure 7B) show a much lower 
spread among members for both controlled (T12) and soil fertility 
stress (T13) experiments, which is expected since rainfall throughout 
the crop season was scarce. The average productivity of the member’s 
ensemble was forecasted at 2.25 ton ha−1, a value near 2.6 ton ha−1 of 
the controlled field experiment. On-farm yield for soil fertility stress 
simulations was estimated at 0.5 ton ha−1, close to 0.4 ton ha−1 from 
the value recorded by the official statistics.

An application of AQF for estimating on-farm yield in the 
semiarid Northeast of Brazil demonstrated the versatility of the 
software for application in operational forecast systems, particularly 
in vulnerable regions that depend on subsistence agriculture, where 
the accounting of the soil fertility level is essential to reach the 
correct forecast.

4. Conclusion

We presented an open-source version of a crop model based on 
AquaCrop aimed for operational application in crop forecast systems 

with high computational costs, including the effect of soil fertility 
stress on productivity.

The main advantage of a high-level code like AQF is the 
flexibility to modify inputs and outputs files and couple it with 
other models, like climate and hydrological models. Besides, 
coefficient calculations and estimations can be modified to suit 
specific user purposes. However, it creates several risks because 
unintended changes in the code might result in incorrect results 
and jeopardize the model version’s reliability. Therefore, any 
further changes in the source code should be done with caution, 
with expert knowledge in Fortran coding and capable of 
understanding the physical processes involved in the soil–plant-
atmosphere relationship.

Finally, the software presented in this study does not intend to 
compete with or reduce the usefulness of the AquaCrop GUI. On the 
contrary, it offers an alternative more suitable for a science 
community’s applications and crop monitoring close to our work and 
needs, such as the operational crop forecast systems we are developing 
for the Northeast of Brazil, which is feasible to implement in other 
regions of the world. Given that climate change scenarios predict the 
intensification of climate extremes in several regions of the world, 
future crop productivity will be  affected. To examine adaptation 
strategies to minimize the negative effects of climate change, tools 
capable to produce a timely early warning and long-term simulations 
over large areas, such as AQF, will be needed.

FIGURE 7

Ensemble Crop forecast Simulation for Araripina (Brazil) for 2006 (A) and 2004 (B) using five members from Eta regional climate model denoted as 
M13–M17. The continuous lines represent the simulations without soil fertility stress, while the dotted lines represent the fertility stress simulation. The 
black triangle represents the final maize yield of the controlled field experiment (OBS), while the red diamond indicates the average on-farm yield. 
(C,D) show the observed rainfall recorded during both seasons.
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