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The recent Russia–Ukraine conflict has raised significant concerns about global

food security, leaving many countries with restricted access to imported staple

food crops, particularly wheat and sunflower oil, sending food prices soaring

with other adverse consequences in the food supply chain. This detrimental

e�ect is particularly prominent for low-income countries relying on grain imports,

with record-high food prices and inflation a�ecting their livelihoods. This review

discusses the role of Russia and Ukraine in the global food system and the impact

of the Russia–Ukraine conflict on food security. It also highlights how diversifying

four areas of agrifood systems—markets, production, crops, and technology can

contribute to achieving food supply chain resilience for future food security

and sustainability.
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1. Introduction

In the past 2 years, global issues such as climate change, the COVID-19 pandemic,
and the Russia–Ukraine conflict have taken the spotlight, with reports and discussions
around these events flooding the media. This has led to intense pressure on socioeconomics,
healthcare, and food systems in a short time. Confronting us are direct consequences of
these global crises on the agrifood systems, particularly from the Russia–Ukraine conflict,
throwing food security issues into the limelight. Ukraine and Russia are in the top three
global exporters of various staple foods, including wheat, barley, maize, rapeseed, and
sunflower (FAO, 2022a). Disruptions to their exports are having strong ripple effects on the
global food market and concerns for food security (Behnassi and El Haiba, 2022).

The Russia–Ukraine conflict directly impacts global agrifood systems through trade,
production, and prices (FAO et al., 2022). The FAO estimates that the shortfall in grain and
sunflower seeds exports from Ukraine and Russia will increase international wheat prices
by between 8.75% (moderate case) and 21.5% (severe case) in 2022/23. Countries hardest
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hit by the reduction in Ukraine and Russia’s food exports in terms
of physical supply are those relying heavily on wheat and wheat
products imports—the Middle East and North Africa, developing
countries in Europe, and sub-Saharan Africa (World Bank Group,
2022), therefore impeding the efforts to eradicate malnutrition
and hunger by 2030 which is the focus in the second goal of the
United Nation’s 17 Sustainable Development Goals (SDG Target
2, Zero Hunger). This will be pronounced in net food-importing
developing countries (Figure 1), i.e., the world’s poorest countries
(UNCTAD, 2022), concentrated in sub-Saharan African nations
that imported 85% of national food requirements in 2016–2018.
The Russia–Ukraine conflict has caused a shortfall of at least
30 million tons of food in sub-Saharan African nations (African
Development Bank Group, 2022), as well as other regions (South
Asia, the Middle East, North Africa, Latin America and the
Caribbean, and East Asia) that were already facing food security
problems (UNCTAD, 2021).

This food crisis at a global scale was not unexpected. Global
food crises have occurred in the past, incurred by: (1) high oil prices
in 2007–2008, (2) increased food demand in emerging economies
(Mittal, 2009; Headey and Fan, 2010), (3) extreme weather
incidents such as drought, floods and storms in 2010–2011 in
many grain-producing countries (e.g., China, Australia, Argentina,
Russia, and Ukraine) (Johnstone and Mazo, 2011; Werrell et al.,
2013), and more recently, (4) the COVID-19 pandemic causing
global disruptions in the food supply chains (Hart et al., 2022;
Pauw and Thurlow, 2022). If past global food crises have taught us
anything, agrifood systems need to be restructured to make them
more resilient and strategies put in place to manage such crises
(Pellegrini and Fernández, 2018).

To this end, this review highlights the impact of the current
international crisis on agrifood systems. We first discuss the role
of Russia and Ukraine as the main exporters of cereal grains and
oilseed crops, followed by a discussion of the impact of the conflict
on global agrifood systems. We then highlight the over-reliance
on a few countries for a large portion of our major food staples
and its potential consequences for global food security. Lastly, we
offer suggestions on several aspects of diversification within the
agrifood systems to enhance global food security and nutrition in
this challenging time.

2. Agrifood systems

Agrifood systems comprise all players and components in
producing agricultural food products, such as crops, livestock,
fisheries, forestry, and aquaculture, and non-agricultural food
products, such as synthetic meat. The production, storage,
processing, distribution, consumption, and disposal of these
products support human food consumption and sustain life (FAO,
2021; United Nations 2021 Food Systems Summit, 2021). Agrifood
systems also encompass non-food products that are agriculturally
based, such as textiles, biofuels, fiberglass, and cosmetics, but these
are outside the context of our current discussion. The 2020 FAO
statistics record shows that the total gross value of agricultural
production (crop and livestock) worldwide equated to USD 4.79
trillion (FAOSTAT, 2022). The main players in the global agrifood
systems are those that influence international food prices and

demand through various agrifood sectors. These include major
exporters of food commodities, agriculture companies involved
in agrochemicals, commercial seed suppliers, farm equipment
suppliers, food processors, retailers, and others (ETC Group, 2022).
We discuss how we should not over-rely on major food exporters
and propose diversification as a sustainable way to achieve agrifood
system resilience.

3. Role of the Russian federation and
Ukraine in the agrifood systems

Russia and Ukraine are ranked 11 and 55 in the world economy
in terms of GDP (US$), with their top export commodities
being petroleum and agriculture, respectively (OEC, 2022). Both
countries are global contributors to a substantial share of
agricultural commodities, including raw materials for fertilizers,
and are key exporters of cereal and oilseed food crops (World
Bank Group, 2022). In 2020, Russia ranked number one in wheat
exports, and Ukraine ranked number one in seed oil exports (OEC,
2022). Figure 2 illustrates the economic contributions of exported
commodities by Russia and Ukraine in 2021 (UN Comtrade
Database Intelligence, 2021).

4. Impact of the Russia–Ukraine
conflict on agrifood systems

4.1. Food export bans and restrictions

The Russia–Ukraine conflict has produced shocks in the
commodity markets for food, feed, fertilizers, and energy (OECD,
2022a) and impacted agrifood systems in many areas. As of
early April 2022, 16 countries had imposed food commodities
export bans following the escalation of the Russia–Ukraine conflict,
equating to about 17% of total calories traded globally (Glauber
et al., 2022). This is to ensure a sufficient supply of food within
their own countries. With the closure of main Ukrainian ports at
the Black Sea and the effects of multiple global economic sanctions
imposed on Russia, both countries have evidently contributed to
the largest percentage of food exports restrictions, equating to 42%
of total calories (European Parliament Think Tank, 2022; Glauber
et al., 2022). Other countries introduced export bans on various
agricultural products, such as palm oil from Indonesia (Office of
Assistant to Deputy Cabinet Secretary for State Documents and
Translation, 2022) and grain products from Turkey, Kyrgyzstan,
and Kazakhstan (CGIAR, 2022; Donley, 2022).

While some of these export bans were temporary and have
been lifted, this exercise could potentially generate a domino
effect with other exporting countries then implementing their own
import/export restrictions in response to deviations in food prices.
This will further destabilize the food supply in global markets with
almost immediate inflation of food prices, severely affecting Central
Asian countries and North African countries which rely on imports
of wheat and maize, while India, Pakistan, and Bangladesh rely on
imports of vegetable oils (Giordani et al., 2016; Glauber et al., 2022).

Frontiers in Sustainable FoodSystems 02 frontiersin.org

https://doi.org/10.3389/fsufs.2023.1124640
https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org


Neik et al. 10.3389/fsufs.2023.1124640

FIGURE 1

Net Food Importing Developing Countries (NFIC) vulnerable to food system disruption due to exogenous events such as the Russia–Ukraine conflict

including sub-Saharan Africa, South Asia, the Middle East, North Africa, Latin America and the Caribbean, and East Asia (FAO, 2022b) (Figure

re-produced with permission from FAO Copyright O�ce).

4.2. Food price hike

The rise in food prices is not solely a direct consequence of the
Russia–Ukraine conflict, as an increasing trend has been apparent
since 2020, but 2022 saw a “giant leap” in the food price index
(Figure 3) (FAO, 2022c; Weersink and von Massow, 2022).

The increasing trend in food prices from 2020 to early
2022 is mainly shaped by the COVID-19 pandemic, with travel
restrictions and lockdowns within and outside countries causing
farm production to slow down, creating bottlenecks in the food
supply chain [OECD Policy Responses to Coronavirus (COVID-
19), 2020]. Other causes of food price hikes include the upward shift
in food, feed, and fuel demand as the world gradually recovered
from the pandemic and some crop production losses due to
unfavorable weather patterns in Brazil and the USA (Sova andMan,
2021). The conflict in Ukraine during the first quarter of 2022 held
back the reduction of food and energy inflation, thus increasing the
global commodity prices in 2022–2023 (OECD, 2022b).

In the longer term, food prices are predicted to continue to
increase even after the Russia–Ukraine conflict ends, as we continue
to face reduced crop production due to volatile weather patterns
induced by climate change (Cowling et al., 2019; Sultan et al.,
2019; Anderson et al., 2020), such as the recent extreme heat,
drought and flood conditions in Europe, the USA, the Horn of
Africa and China, among others (Lodewick, 2022; WFP, 2022).
Models have also predicted yield declines of up to 21.5% in
maize on the US Great Plains due to erratic climate patterns
(Irmak et al., 2022) and a reduction of up to 12.5% in wheat
production in South Africa due to extreme heat (Shew et al.,
2020). Moreover, studies have shown that extreme weather events
are likely to occur more frequently and will be more intense
in the future, directly and indirectly impacting crop yields and
further threatening global agrifood systems and supplies with long-
term implications for increasing food prices (Diffenbaugh et al.,
2018).

4.3. Threat to food security

According to the Bill and Melinda Gates Foundation
(BMGF) Goalkeepers Report (Bill and Melinda Gates Foundation
Goalkeepers Report 2022, 2022), achieving SDG target 2 (Zero
Hunger) by 2030 is too ambitious. Yet understanding the current
status of global agrifood systems and food security is critical in
facilitating the eradication of hunger (FAO et al., 2022).

In 2021, ∼193 million people across 53 countries faced acute
food insecurity at crisis level or worse (IPC/CH Phase 3 or above;
1 = minimal/non, 5 = catastrophe/famine) (Integrated Food
Security Phase Classification, 2022), almost doubling from 2016
levels, with a concerning figure of 570,000 people categorized as
in catastrophe conditions (IPC/CH Phase 5) in Ethiopia, South
Sudan, southern Madagascar, Yemen, Afghanistan, and Somalia,
where conflict is the primary driver of severe food insecurity
(Global Report on Food Crises, 2022;WFP and FAO, 2022) because
it disrupted agriculture-based livelihoods, restricted food access,
impeded humanitarian operations and displaced populations
(mainly smallholder farmers).

Even before the conflict in Russia–Ukraine, ongoing social
unrest in several countries concentrated in Eurasia, namely
Afghanistan, Bangladesh, Iraq, the Syrian Arab Republic, Yemen,
and Ukraine, resulted in as many as 52.8 million people
experiencing food insecurity at a crisis level (IPC Phase 3 or above)
in 2021, up from 30.9 million in 2016, with nearly 16.8 million
people displaced due to conflict (Global Report on Food Crises,
2022). That this is a continuous issue is supported by the findings
that in 2014 food insecurity across sub-Saharan Africa, particularly
in South Sudan andNigeria, was driven by conflict (Anderson et al.,
2021).

Based on FAO estimations, the Russia–Ukraine conflict will
increase the number of undernourished people globally by 13.1
million in a worst-case scenario, added to the current 733.9
million undernourished people not impacted by the onset of the
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FIGURE 2

Top exported commodities in (A) Russia, and (B) Ukraine in 2021 (UN Comtrade Database Intelligence, 2021).

conflict (FAO et al., 2022). Sub-Saharan Africa, the Middle East,
and North Africa are the most vulnerable population groups
impacted by the Ukraine conflict (FAO et al., 2022). Adding to
the malnutrition problem, food insecurity positively correlates
with social unrest, particularly in developing countries, leading
to further insecurity (Arezki and Bruckner, 2011; Weinberg and
Bakker, 2015; Soffiantini, 2020).

4.4. Livelihood struggle among the rural
poor

The Russia–Ukraine crisis has impacted poor and rural
households due to fuel, food, and fertilizer price hikes. Countries

such as Kenya (Breisinger et al., 2022), Egypt (Abay et al., 2022),
Bangladesh (Diao et al., 2022b), and Ethiopia (Diao et al., 2022a)
have witnessed declines in food consumption and diet quality. The
increase in fertilizer prices also caused a heavy toll on local farmers
in these countries, whose livelihoods depend on agriculture. If
farmers reduce fertilizer use due to price hikes, their production
often declines, impacting rural household incomes.

Typically, most farmers in developing countries in East
Asia and the Pacific, South Asia, and sub-Saharan Africa are
smallholders (farm owners operating agricultural land areas <2
ha). They account for 84% of global farms, contributing about 35%
of the world’s food (Ricciardi et al., 2018; Lowder et al., 2021).
These smallholder farmers often live in remote areas and produce
a wide variety of foods in addition to the main crop, but often
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FIGURE 3

Annual FAO food price indices from 2006–2022 (FAO, 2022c).

with low productivity (Rapsomanikis, 2015). They are vulnerable to
food insecurity due to sociodemographic factors (e.g., family size,
education level of family members, farming experience) and have
low resilience to changing circumstances, such as weather shocks
and pest and disease outbreaks, as reflected in household surveys
conducted in Central America (Guatemala and Honduras) (Alpízar
et al., 2020) and Africa (Madagascar) (Harvey et al., 2014).

Using satellite data images of croplands in Ukraine, studying
the impact of the conflict on winter wheat production across 2019–
2021, Deininger et al. (2022) revealed that smallholder farmers are
the most vulnerable group. They own 60% of the agricultural land
and have experienced the most severe output losses, perpetuated
by agricultural resource shortages such as labor, seed, fertilizers,
and pesticides.

5. Over-reliance on major food
exporters/importers and inequalities in
agrifood business

Although the Russia–Ukraine conflict is not the sole cause of
the current global food crisis, it has highlighted deeply inequitable
agrifood systems (Hawkes et al., 2022). One of the inequities is the
over-reliance on major food exporters, driven by the high global
demand and reliance on a few major cereal crops, such as wheat,
maize, and rice, much of which are consumed by populations in
developing countries, and maize is also highly used for feed and
biofuel applications (Figure 4).

Often, global staple food producers are concentrated in a
small number of countries. For example, for the top staple
commodities based on gross production value—rice, maize, wheat,
and soybean—the biggest net producers and exporters are China,
India, the USA, Brazil, and Russia (FAOSTAT, 2022) (Figure 5).
The top rice-producing countries are China and India, producing
50% of global rice production. The top maize-producing countries

are the USA, China, and Brazil, producing 60% of global maize
production. China, India, Russia, and the USA produce 49.6% of
the world’s wheat, while Brazil and the USA produce 66.3% of
the world’s soybean (FAOSTAT, 2022). The Middle Eastern, North
African, and East Asian regions are the largest net importers of
these commodities, yet also have the highest rates of food insecurity
(OECD/FAO, 2022b).

Major agrifood players are key in ensuring global food security
through international trade. However, models of the relationships
between population growth, food production, and trade dynamics
have shown that over-dependence on food imports impairs global
food security (Suweis et al., 2015). Low-income food-deficit
regions, such as Africa, the Middle East, and Latin America,
are most vulnerable to price shocks in food trade and least able
to protect themselves against domestic food production shocks
(Grassia et al., 2022). Worse still, the UN International Labor
Organization said in its 2021 report that people in these countries
live withmuch lower rates of social welfare protection. For example,
Africa has the lowest level, with 17.4% of the population having
access to social welfare protection, compared to Europe and Central
Asia, where 84.0% of the population have access to social welfare
protection (International Labour Organization, 2021). Consumers
in low-income countries spend relatively more on food (40% of
spending in sub-Saharan Africa) than high-income countries (17%
in advanced economies) (Bogmans et al., 2022), such that food

price variabilities potentially result in poor people being unable to
afford enough, presenting a conundrum for these affected countries
because they increasingly need to import food to meet the needs of
rapid population growth (van Berkum, 2021).

The Russia–Ukraine conflict has exposed inequalities in the

international agribusiness sector. In the last decades, there has
been a trend toward consolidation of corporations that supply

food and agricultural inputs through large-scale mergers such
as Kraft and Heinz, Dow and Dupont, Bayer and Monsanto,
with each company’s worth reaching over US$60–100 billion after
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FIGURE 4

Cereal use in developed and developing countries (OECD/FAO, 2019) (Figure re-produced with permission from PubRights@oecd.org).

merging (Clapp, 2022). These companies play a crucial role in
global food supply, at the same time influencing the volatility of
the international price of food commodities. In the agrochemical
industry, the top four companies—Syngenta Group (China), Bayer
(Germany), BASF (Germany), and Corteva (USA) dominate 62%
of the global agrochemical market, where Bayer and Corteva also
control 40% of the global seed market (ETC Group, 2022).

6. Role of diversification in four
aspects of agrifood systems

6.1. Market diversification

The projected increase in global food demand of 1.4% per
annum over the coming decade, stimulated by a large growth in
the world’s population and per capita income (OECD/FAO, 2022a),
will place tremendous pressure on major food exporters to ensure
consistent agricultural outputs and to develop high resilience to
various shocks. The main exporters of wheat and other staple
products are sometimes major importers of the same crop. For
example, Asia’s top five wheat producers (China, India, Pakistan,
Turkey, and Iran) contributed 332.94 Mt to global production,
compared with 260.23 Mt in Europe in 2019. However, their wheat
imports (74.19 Mt) exceeded their exports (6.61 Mt), attributed
to the limited countries in Asia that meet the required growth
conditions for bread wheat (Sendhil et al., 2022). However, with
modern breeding technologies, many cereal crop varieties can
withstand adverse climatic patterns, providing breakthroughs that
allow crops to be grown outside their typical environments. For
instance, high-yielding, heat-tolerant wheat varieties have been
developed from large-scale field trials and germplasm screening
in the Senegal River, a joint effort by ICARDA and the Swedish
University of Agriculture (Bassi, 2017; Sall et al., 2018). Abandoned
land in many developing countries could be used to cultivate staple

food crops that fit the region’s ecology, despite originating from
other geographic regions.

To minimize the global impact of the food crisis, it is critical
to diversify the import/export sources of food crops. For example,
New Zealand has recently diversified its avocado export markets
from Australia, where it previously shipped 79% of its total exports
in the last 5 years, to Asian countries such as Singapore, Hong
Kong, and South Korea after a decline in Australia’s import demand
(F+B Tech, 2022; Piggott, 2022). This is a win-win situation for
establishing food resilience where the exporting country retains
its role as the food supplier while the importing country benefits
from securing food products to meet domestic food demands.
Singapore imports 90% of its food from more than 170 countries,
with food items coming from geographically diverse regions; the
country continues to identify new food sources as part of its strategy
to ensure market diversification with constant food supply (Teng,
2020; Singapore’s Food Supply, 2022). The FAO measurement of
countries with multiple food trade partners to ensure food security
and nutrition—using the dietary sourcing flexibility index (DSFI)—
is an attractive approach to market diversification and minimizing
the adverse impact of a food crisis. The DSFI index measures
food supply diversity based on multiple sourcing pathways of
food commodities, imports, and available stocks. Countries with
high DSFI values, such as Israel, Lebanon, Norway, and the UK,
have a high capacity to absorb shocks with multiple options for
food suppliers coming from diverse trade partners and multiple
commodities. This contrasts with countries such as Indonesia,
Madagascar, Pakistan and the Republic of Moldova with limited
trade partners and fewer food commodity options (FAO, 2021).

Food market diversification on the international front requires
trade agreement policies between nations, with transparent,
updated information provided to all nations regarding agricultural
markets. For example, the Agricultural Market Information System
(AMIS), comprising G20 members with additional major exporters
and importers of agricultural commodities, makes concerted efforts
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FIGURE 5

Import and export quantities (kilo tons) for the four major staple crops (wheat, rice, maize, and soybean) (FAOSTAT, 2022).

to enhance international food trade policy using real-time data of
foodmarkets to prevent price hikes (Hertel et al., 2021; Agricultural
Market Information System, 2022). At the regional level, for

example, the project initiative “Agricultural Transformation and
Market Integration in the ASEAN Region: Responding to Food
Security and Inclusiveness Concerns (ATMI-ASEAN),” supported
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by the International Food Policy Research Institute (IFPRI),
addresses food security issues within the ASEAN region to
increase smallholder farmer competitiveness in regional agrifood
markets by identifying diverse crops with high impact value,
with cooperation between agricultural stakeholders in member
countries—Cambodia, Lao PDR, Myanmar, Viet Nam and the
Philippines (Southeast Asian Regional Center for Graduate
Study and Research in Agriculture, 2017). In addition, market
diversification involves shifting part of the demand and supply for
staples to non-staple foods such as fruits, vegetables, and pulses,
considered high in protein and micronutrients, entering such food
markets for amore balanced diet and nutritional outcomes (Pingali,
2015).

Another way to diversify food markets is to promote the
production and commercialization of alternative foods sourced
sustainably (e.g., plant-based foods). This approach has good health
effects and diversity of flavors, tastes, and textures, increasing
consumers’ menu options and making food markets more resilient
to price shocks. For example, consumers are receptive to blending
wheat flour with cassava flour, indicating the potential use of
minor crops as alternative foods (Owusu et al., 2017). Governments
could provide funds to start-up companies involved in “ecologically
friendly” food production or businesses involved in agricultural
technologies to stimulate the demand for alternative crops,
boosting the country’s economy and supporting food security and
healthy living.

Domesticating indigenous fruit tree species (IFTs), and
herbaceous species within the broad traditional foods and
medicinal plants can also be a good option to diversify food
markets (Leakey, 2014; Leakey et al., 2022). We can achieve this
by extending the food market and value chain to include nutrient-
dense foods that fall under the radar of public attention, including
neglected and underutilized species (NUS) and indigenous fruit
tree species, such as Strychnos madagascariensis (fruit processed as
flour) from Africa countries (Chemane et al., 2022) and Garcinia

andamanica King (fruit suitable as a food additive) from Andaman
Islands, India (Bohra et al., 2021). To increase the marketability
of these alternative foods, attention should be drawn toward
strengthening independent local and regional food systems. This
can be achieved by providing a support network to farmers selling
through a direct-to-consumer channel or in short food supply
chains (SFSC) markets (Jarzebowski et al., 2020; Schreiber et al.,
2022). For instance, policymakers ought to put into action the
delivery of high-quality workflow for the value-added processing,
storage and distribution of fresh products to local communities that
can help farmers retain a larger portion of the retail value of food,
and enhance resilience to shocks in the international supply chain
(Enthoven and Van den Broeck, 2021).

6.2. Production diversification

Due to soaring costs, the Russia–Ukraine conflict has put
immense pressure on farmers and supply chains relying on
fertilizer, feed, and fuel. How we produce food crops has to
be diversified as part of food sustainability strategies. Intensive

agriculture, driven by the Green Revolution in the mid-
20th Century, emphasized monoculture, crop hybridization, and
reliance on fertilizers and other agrochemicals that increased yield.
However, these developments also resulted in increased reliance on
international supply chains and had unintended impacts on natural
resources, such as water and land, due to the heavy use of fertilizers
and other agrochemicals (United Nations, 2004; Rosa et al., 2021;
Soria-Lopez et al., 2022). In contrast, sustainable intensification
in the 21st Century seeks to leverage on least agricultural inputs
to achieve equal if not higher crop yield without incurring the
environmental impact and further expansion of cropland (Pretty
and Bharucha, 2014; Campanhola and Pandey, 2019). This involves
using improved crops, regenerative agricultural methods, and
diversified production and distribution systems. The concept of
sustainable intensification was incepted by FAO in 2011 under the
“Save and Grow” model, aiming to achieve food security through
balancing increasing productivity and positive outcomes for the
environment (Collette et al., 2011).

Diversification of agricultural practices, such as intercropping
spatially or temporally, mixed farming with crop and livestock,
adding organic material or beneficial microbes in the soil, and
reduced tillage, has contributed to biodiversity conservation,
improved soil fertility, enhanced nutrient cycling and water
regulation, and improved pest control, decreasing the
environmental burden without compromising crop yield
(Tamburini et al., 2020; Yan et al., 2022). For example,
intercropping systems with grain legumes such as pigeonpea
(Cajanus cajan) or leguminous tree species such as fliricidia
(Gliricidia sepium) in smallholder maize farming in Tanzania,
East Africa, has shown that the grain yield, caloric and protein
yields were not inferior to monoculture maize. The other benefit
is the maize-pigeonpea intercrop requires a reduced land area to
produce the same grain yields under drought and well-watered
conditions (Renwick et al., 2020). Agroforestry tree and shrub
species in semi-arid West African parklands in which forests areas
were cleared for agriculture farming purposes have been shown
to restore both soil fertility and health by providing rich organic
biomass through the burial of ramial wood or small branches
during forest management (Félix et al., 2018). Depending on the
type of tree and shrub species, for example, legume tree Leucaena
leucocephala and berry fruit tree Phalsa (Grewia asiatica), when
utilized as an intercrop or rotational crop with different food
crops including cereals, leguminous and oilseeds, would not only
improve crop yield (Sileshi et al., 2011; Rathore et al., 2022) but
provide far-reaching benefits for the farmers, environment and
food security. Farm diversification among smallholder farmers
in Bangladesh and Central Malawi, including alternative crops,
livestock and aquaculture farming, has seen a significant shift
toward diversified diets and high nutrient assimilation as these
farmers consume their farm produce and improve their household
income and food security (Mango et al., 2018; Rehan et al., 2021).

Simulation and modeling studies of sustainable intensification
in the Brazilian Amazon basin have shown that, adding
soybean cultivation to livestock production areas, has multiple
environmental and yield benefits, increasing soybean production
from 2022/2023 forecasted 144–162 Mt without deforestation and
decreasing climate warming by up to 58% (Marin et al., 2022;
USDA FAS, 2022). Cropping system diversification, for example,
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rotational sequences of cereals/grasses such as rice and maize
with legumes such as peas and mungbean in China, India, and
Bangladesh, or mixtures of pea, oilseeds, and wheat in the Boreo-
Nemoral region (Scandinavian or Northern Europe countries) have
improved system productivity through higher crop resource use
efficiencies with great potential for increasing nutrient levels and
reducing carbon footprints (Lizarazo et al., 2020; Chai et al., 2021;
Emran et al., 2022; Gora et al., 2022).

Integrated pest management (IPM) for crop protection also
taps into diversified strategies to prevent, avoid or reduce
pests using ecologically sound methods such as crop rotation,
natural and biological controls, and host plant pest resistance or
tolerance, and synergies between these strategies. One example is
biofumigation by burying into the soil the natural glucosinolate
sourced from plant members within the Brassicaceae family to
suppress the pests (Richard et al., 2022). Another example of IPM is
the control of themoth Tuta absoluta. This South American tomato
pinworm pest severely destroys tomato production worldwide,
using biological agents such as bacteria, fungi, nematodes, and
predatory arthropods (Desneux et al., 2022). Recently, IPM
technology (IPMT) has been proposed, which expands from
IPM that incorporates the components of genetically engineered
cultivar and biotechnology approaches that are relevant to today’s
agricultural setting with the focus on monitoring, identification,
assessment, and prevention of pests with minimal environmental
impacts using data-driven tools (Tanda, 2022). For example, the
Intelligent and Integrated Pest and Disease Management (I2PDM)
system was developed to capture the presence of plant pests such as
thrips and whiteflies under a controlled environment setting, which
greatly enhance the efficiency of plant disease monitoring (Rustia
et al., 2022).

Smallholder farmers play an important role in supplying
food globally (Terlau et al., 2019). All the positive outcomes of
diversification described above cannot reach their full potential
impacts in addressing global or regional food security without
providing strong socio-economic support to smallholder farmers
and ensuring that farming activities are enriching (Giller et al.,
2021). There will also need to be a transformation in agronomy
knowledge whereby on top of the hard sciences, integration
of social science disciplines such as sociology, economics,
and policy studies is embraced for future knowledge-based
sustainable farming (Struik and Kuyper, 2017; Klerkx et al., 2019).
Understanding farmers’ difficulties in farm practices, with strong
support from government agriculture agencies offering attractive
subsidies, zero- to low-interest micro-financing, proper training
and guidance, and close monitoring of agricultural outputs is
essential (Epule, 2019). On the national front, strong support from
the government through incentives, allowances, and subsidies to
smallholder farmers to reinforce crop cultivation is an effective
measure for household food security.

6.3. Crop diversification

For the past 60 years, human food sources that provide
macronutrients such as energy, protein, and fat have primarily
come from 50 crop commodities, including wheat, rice, maize,

barley, potatoes, and general vegetable and fruit commodities
comprising <100 plant species (Khoury et al., 2014; Massawe
et al., 2016; Shelef et al., 2017). With 7,039 known edible plant
species recorded across 2,319 genera (Kew Gardens, 2020), there
is still a large portion of edible plants that we could use for food
diversification, including neglected and underutilized food crops
(NUS) (Sogbohossou et al., 2018; Mustafa et al., 2019).

NUS currently have limited production and market values
compared to major staples (Khoury et al., 2022). They have been
nurtured as native crops agriculturally suited to local or regional
climates and grown in domesticated forms or introduced centuries
ago and are now established in their local environments. NUS are
breeding candidates for advanced food crops with great economic
potential (Mabhaudhi et al., 2019; Tirnaz et al., 2022). NUS cover
a wide range of crop types, including cereals, roots and tubers,
legumes, fruits and vegetables, seeds and spices, and were often
traditionally grown by indigenous people and smallholder farmers
as food for home consumption or a source of income at local
markets (Padulosi et al., 2019; Heindorf et al., 2021). NUS can be
found across various agroclimatic regions and landscapes suitable
for agriculture. For example, 77 NUS in the form of leafy vegetables,
tuber, edible wild fruits, and legumes have been found in Vietnam
highlands (Vu and Nguyen, 2017).

Research into NUS has gained momentum over the years,
with a focus on diversifying food crops to fight hunger and
provide agricultural resilience (Li and Siddique, 2020; Mustafa
et al., 2021; Siddique et al., 2021), and some could be mainstreamed
into the food system, particularly those rich in protein and
minerals or medicinal properties (Mudau et al., 2022). Bambara
groundnut (Vigna subterranea) (Mayes et al., 2019; Tan et al.,
2020), winged bean (Psophocarpus tetragonolobus) (Adegboyega
et al., 2019; Tanzi et al., 2019) and amaranth (Amaranthus spp.)
(Sarker et al., 2020; Jamalluddin et al., 2021) have high fiber
content and nutrients, such as protein, carbohydrates, unsaturated
fatty acids, and essential minerals. They are thus good candidates
to supplement food systems to overcome malnourishment in
adults and children (Talabi et al., 2022). Breeding programs
have been developed to produce improved varieties of NUS
crop species by initially characterizing germplasm. The African
Orphan Crops Consortium (AOCC), in global partnership with
biotechnology industries and research institutions, has initiated
plans to assemble the genome sequence of 101 traditional African
food crops for genetic improvement (Jamnadass et al., 2020; African
Orphan Crops Consortium, 2022). To date, the genomes of at
least 29 orphan crops in nine families have been sequenced,
including Fonio (Digitaria exilis) (Abrouk et al., 2020), African
eggplant (Solanum aethiopicum), breadfruit (Artocarpus altilis),
apple-ring acacia (Faidherbia albida), Bambara groundnut (Vigna
subterranea), jackfruit (Artocarpus heterophyllus), lablab (Lablab
purpureus), marula (Sclerocarya birrea) and moringa (Moringa

oleifera) (Chapman et al., 2022).
Indigenous fruit tree species (IFTs), which also falls under

underutilized food crop, should be given equal emphasis as
candidates for crop diversification. Tree commodities play a crucial
role in diversifying crop production through agroforestry practices,
which contribute to sustainable development goals in Africa
(Mbow et al., 2014; Minang et al., 2021). Domesticated IFTs have
two main benefits, the first being naturally nitrogen-fixing tree

Frontiers in Sustainable FoodSystems 09 frontiersin.org

https://doi.org/10.3389/fsufs.2023.1124640
https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org


Neik et al. 10.3389/fsufs.2023.1124640

species such as leguminous type can help restore the land and
improve soil nutrient availability. Second, fruit trees offer nutritious
foods, with a surplus, can also be turned into a source of income
for farmers from fruit selling, on top of fuel wood and timber
trades (Leakey, 2014, 2020). Both benefits of agroforestry practices
have translated into overall farmers’ wellbeing, as shown from
interviews and discussions with subsistence farmers in western
Kenya (Thorlakson and Neufeldt, 2012). IFTs are valuable for
their edible fruits/nuts and most of their plant parts. For example,
Garcinia livingstonei (African mangosteen)’s stem bark has a skin
lightening effect on human skin (Mulholland et al., 2013), and its
fruit contains high levels of macro and micro elements (Joseph
et al., 2017). At least 29 IFT species within the South African
provinces have been identified as potentials for commercialization
(Nkosi et al., 2020). Domesticating IFTs through species diversity
characterization could potentially close the yield gap, thereby
increasing the harvest yield (Sulieman and Mariod, 2019).

Crop wild relatives and their associated weedy forms of
agricultural crops are great genetic resources for trait improvement
in cultivated species, including tolerance to a range of abiotic
and biotic stresses, with many carrying out the C4 photosynthesis
and thus adaptable to warm and dry environmental conditions
(Ye and Fan, 2021). With good breeding models, prediction tools
for the optimal selection of useful alleles and their introgression
into elite pools with minimal linkage drag are possible (Cowling,
2013; Cowling et al., 2017). An initiative to collect wild, weedy,
or landrace materials representing 29 target crops sourced from
their country of origin and other exotic places was carried out
by the Crop Trust Crop Wild Relatives Project, with expertise
from 170 worldwide research institutes and breeding programs
in 70 countries to conserve valuable wild germplasm in ex-situ

collections, for plant breeders, researchers and farmers (Khoury
et al., 2010; Crop Trust Annual Report 2021, 2022). Output from
the project includes the collection of eggplant Solanum genus wild
relatives from partners in 12 countries, 17 samples of wild Bambara
groundnut from Nigeria not found in genebanks previously, and
pre-breeding lines derived from crop wild relatives and landraces
of grasspea and finger millet, with more than 14,000 pre-bred lines
from 19 crops available to crop researchers and farmers (Crop
Trust, 2019; Crop Trust Annual Report 2021, 2022).

6.4. Technology diversification

Advances in agricultural practices and plant breeding methods
are key to securing food for the future. Collaborative networks
between farmers, private and government research institutions,
agronomists, researchers, and industry professionals in breeding
programs drive knowledge and technology transfer through active
dialogues and participatory research. Such an example includes
the sorghum network in Mali involving ICRISAT and farmer
organizations to strengthen the seed system (Rattunde et al.,
2021). Supported by reliable international, regional, or local
agricultural research funding bodies and expertise, integrating
farmers’ indigenous in-farm knowledge with modern scientific
knowledge in plant breeding will stimulate innovation and real-life
application to boost sustainable agriculture productivity (Dawoe

et al., 2012; Pagliarino et al., 2020). Farmer field school offers
an experiential learning approach where a group of farmers
works together with the facilitator, discussing regularly the various
situations encountered in the field and coming up with solutions
of empowering farmers’ capability in agrosystem management and
expand their knowledge base (Bakker et al., 2021, 2022).

Cutting-edge biotechnology tools, such as genome sequencing,
pangenomics, SNP marker discovery, and genotyping, genome-
wide association studies, and genomic selection approaches, have
revolutionized crop breeding with smarter and more targeted ways
to improve crop productivity (Bayer et al., 2021; Marsh et al., 2021),
as seen by the advances in many major crop species and application
in NUS crops (Tay Fernandez et al., 2022). These tools will benefit
crop breeding, provided sufficient plant material is available that
covers a wide genetic diversity for each crop species (major and
NUS) (Khan et al., 2020; Mohd Saad et al., 2021).

Viable plant materials from the world’s food crops are well
conserved in genebanks worldwide. Online resources such as
Genesys, containing the genebank database, make it convenient
for researchers to perform research and studies (Genesys, 2022).
For example, the current wheat germplasm collection contains
more than 800,000 accessions held in 80 different collections,
with CIMMYT hosting the largest wheat collection worldwide
(Crop Wild Relative Diversity, 2022). This large pool of genetic
resources, with as many as 80,000 wheat accessions sourced from
tetraploid species, wild relatives, and landraces, has been studied
for its genetic diversity using DArTseq and SilicoDArT approaches
(Sansaloni et al., 2020). The global genetic yield gap for wheat is
estimated at 51% due to suboptimal crop and soil management,
indicating that there is room to improve crop productivity through
genetic improvements by tapping into the large wheat germplasm
resources (Senapati et al., 2022). Another example is the genotyping
of the entire collection of barley accessions from the German ex-situ
collection, with 22,626 accessions, using genotyping-by-sequencing
to differentiate and track redundant material in the genebank
(Milner et al., 2019). Combining high-throughput genotyping
with high-throughput phenotyping (Danilevicz et al., 2021) using
machine learning (Khotimah et al., 2020) makes it possible to
accurately identify the diversity underlying agronomic traits.

Maize, wheat, and soybean productivity can be improved
to reduce import requirements by combining various modern
breeding techniques, such as genomics-assisted breeding,
phenomics, artificial intelligence, and gene editing (Naqvi et al.,
2022), to overcome the limitations of climate-dependent food
crops by developing tropical varieties. Besides, investing in the
latest breeding technologies would facilitate knowledge transfer
from lab to the field, potentially improving crop productivity.
For example, Japan, Korea, and China are the origin sites of
domestication for soybean; on-site plant materials collection and
data analysis supported by genomics facilities means cost-saving in
terms of time and resources at the same time, translating research
outputs into improving soybean production in their own countries
(Li et al., 2020). The International Maize and Wheat Improvement
Center (CIMMYT) developed maize hybrids acclimated to South
and South East Asia climate zones (CIMMYT, 2019).

Crop pangenomics resources are useful for plant breeding and
improvement, revealing valuable information for breeders to tap
into from the large diversity of a species (Golicz et al., 2016; Bayer
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et al., 2020, 2022a; Zanini et al., 2022). For example, the soybean
pangenome from the USDA collection revealed more genes with
lower frequencies, such as those controlling plant architecture and
seed composition, than those with higher frequencies, such as those
controlling flowering time and stress tolerance traits; this gives
breeders an idea of which genes to select from which accession
during the selective breeding process (“smart” breeding) (Bayer
et al., 2022b). In addition to genomes and pangenomes being
developed for major crops, they are also being constructed for crops
important in developing countries, such as banana (Rijzaani et al.,
2022), yam bean (Tay Fernandez et al., 2021), sorghum (Ruperao
et al., 2021), chickpea (Varshney et al., 2013) and pigeonpea (Zhao
et al., 2020). Ongoing efforts have been made to build pangenomics
resources for developing climate-ready crops (Marsh et al., 2021;
Petereit et al., 2022).

Crop mutation breeding, a plant breeding technique that
uses induced mutation in plants for better adaptability to the
environment, generates genetic variation for crop improvement
(Forster and Shu, 2012). The Plant Mutation Breeding Network
for Asia and the Pacific established by the Joint FAO/IAEA Center
successfully released improved varieties of cowpea in Zimbabwe
using the irradiation method, with improved drought tolerance
and insect resistance and increasing yields by 10–20% (Dixit
and Slavchev, 2018). With the development of genome editing
techniques, it is possible to generate precise modifications in
genomes. When this technology is combined with the knowledge
of pangenomes and associated traits, it is possible to accelerate the
production of climate-ready crops to support future food security
(Mohd Saad et al., 2021; Varshney et al., 2021a,b; Derbyshire et al.,
2022).

In summary, by considering the diversification in four aspects
of agrifood systems, we believe the goal of attaining a more
sustainable, shock-resilient, and improved global food security is
not far-reaching (Figure 6).

7. Future perspectives and conclusion

The Russia–Ukraine conflict has highlighted the vulnerability
of global food security and underscored the critical need to
achieve food resilience by transforming and diversifying agrifood
systems. We propose diversification in food markets, production,
crop, and technology to secure global food supply and build
resilience toward future shocks. Specifically, there should be
stronger support for increasing market demand for alternative
foods. It is important to consider sustainable intensification in
producing sufficient food to feed the growing global population
with minimal risks to the natural ecosystems. Concerted efforts
at the global, regional, national, and local levels are needed to
fulfill the mandate of global food security through policymaking,
increased consumer awareness, knowledge of food markets,
adding value with NUS crops, and research investments using
advanced biotechnology tools to enhance crop productivity. At
the smallholder farmers’ level, the efficiency and productivity
of production and processing markets for food crops, including
indigenous fruit trees, could be improved by creating platforms for
farmers to distribute their fresh harvest directly to consumers. Food
system experts indicate that food resilience research should focus

FIGURE 6

Diversification of four agrifood systems for global food security.

on prediction tools and high-quality, local-scale on-the-ground
data collection to determine the impact of extreme events on food
security (Mehrabi et al., 2022). Within the context of long-term
food crop trials, practical implementation via participatory on-
farm research using real-time farming challenges could provide
solutions for NGOs, consumers, academia, policymakers, and
value chain experts (Riar and Bhullar, 2020). Incorporating all
these roles, carried out by diverse players in the agri-food
industry, should combat hunger by 2030 and fight the global
food crisis.
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