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In most countries where sugarcane is grown, new sugarcane varieties are

frequently introduced to the market; however, the existing crop models are

not frequently updated. Therefore, experiments are needed to parameterize and

optimize crop and cultivar-specific parameters of crop models. In this study, we

used GEM-SA -generated output files of a study conducted to perform emulator-

based sensitivity analysis of the APSIM-Sugar model using GEM-SA software. We

compared the accuracy of simulations performed with optimized parameters

using four methods: (1) optimization of 26 parameters of the APSIM-sugar model,

(2) optimization of the six most sensitive parameters of the APSIM-sugar model,

(3) emulator-based optimization of 26 parameters of the APSIM-sugar model,

and (4) emulator-based optimization of the six most sensitive parameters. We

also evaluated the computational expensiveness of these optimization methods.

The results showed that the emulator-based optimization methods provided

fast results compared to optimization using APSIM simulations. Moreover, the

emulator-based optimization of the six selected most sensitive parameters (which

took only a few minutes) provided almost similar simulation results to those

obtained with all optimized parameters using APSIM optimization, which took

days. Considering the accuracy and computational complexity, we propose to

perform the optimization of the most sensitive parameters using an emulator-

based approach. Since the sensitivity analysis results were used in this study, this

optimization process could be directly coupledwith the emulator-based sensitivity

analysis explained by Gunarathna et al. (2019c).

KEYWORDS

cropmodel, computational complexity, sensitive parameters, sugarcane, cultivar-specific

parameters

1. Introduction

Process-based crop models play an important role in simulating the underlying

physiological processes of crops based on the given environmental, soil, abiotic stress,

cultivar andmanagement conditions (Lisson et al., 2005). APSIM-Sugar (Keating et al., 1999;

Holzworth et al., 2014) and DSSAT-Canegro (Jones et al., 2003; Singels et al., 2008) are

widely used models for sugarcane growth and yield simulation worldwide. These models are

used as decision support for irrigation scheduling (Inman-Bamber and McGlinchey, 2003;

Everingham et al., 2008), nitrogen fertilizer management (Thorburn et al., 2010; Skocaj et al.,

2013), and climate impact management (Biggs et al., 2013; Singels et al., 2014). However,
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most of these process-based crop models do not include new

improved varieties, which complicates the application of these crop

models (Sexton et al., 2017; Gunarathna et al., 2019c).

Most countries growing sugarcane regularly introduce new

sugarcane varieties suitable for modern management, pest and

disease control, and abiotic stress to ensure higher production

(Sexton et al., 2014, 2017). Since most of the crop models are

limited to a few cultivars, the current process-based crop models

such as APSIM, DSSAT, STICS, etc., have not included sugarcane

many new cultivars introduced worldwide (Gunarathna et al.,

2019c). This has also discouraged modelers from investigating the

differences between sugarcane varieties through simulation (Sexton

et al., 2017).

The parameters of process-based crop models need to be

well parameterized and calibrated to achieve higher accuracy

of simulations (Keating et al., 1999, 2000; Sexton et al., 2017).

Therefore, some models include optimization tools along with

the model release. An example is the DSSAT model (Jones et al.,

2003; Singels et al., 2008), which includes the optimization tool

GLUE (Birch et al., 1998; Soltani et al., 2006); however, this

is still a computationally intensive process. Some authors have

proposed some optimization tools for the APSIM model (Birch

et al., 1998; Soltani et al., 2006); however, none of them is ready

for use yet (Archontoulis et al., 2014). Since there are few reliable

software options, researchers have to work on their model or use

a trial-and-error method (Seidel et al., 2018). Sexton et al. (2017)

evaluated the performances of Generalized Likelihood Uncertainty

Estimation (GLUE) and Markov Chain Monte-Carlo (MCMC)

and recommended the MCMC method to optimize the cultivar

parameters of the APSIM sugar model. However, they did not

mention the computational expensiveness of these methods. Since

Monte Carlo simulation methods are easy to implement, they are

very popular among scientists working on parameter optimization.

However, MCMC depends on a large number of code runs

generated at randomly selected input points. Therefore, it may

not be practical for complex models such as process-based crop

models (Kennedy and Petropoulos, 2017). This is because using a

sufficient number of codes runs for accurate estimation may not

be practical, especially when a high-dimensional input space is

studied. Therefore, most calibration studies use a smaller number of

parameters (Seidel et al., 2018). Therefore, a more efficient solution

for parameter optimization of process-based cropmodels is needed.

The emulator-based approach can replace the computationally

intensive process-based models as a computationally inexpensive

surrogate (Yurko et al., 2015). An emulator is a probabilistic

response, a very practical approach because the emulator’s

contribution to the overall uncertainty can be incorporated into

the Bayesian calibration process. Therefore, an uncertain emulator

would limit the posterior parameter accuracy compared to

calibrating the parameters with the tedious optimization methods

(Yurko et al., 2015). It is necessary to create accurate emulators that

are as accurate as a computermodel and limit the influence of errors

and uncertainties on the results.

The selection of input parameters with an appropriate

parameter prior distribution is a crucial aspect in the development

of high-performance emulators. The selection of parameter prior

distribution is controversial and depends heavily on expert

opinions. Gunarathna et al. (2019c) used the parameter ranges of

existing cultivars as the prior distribution range to determine the

sensitivity of 26 cultivar/plant parameters to the selected outputs

of APSIM-Sugar. Some authors used screening algorithms to

identify statistically significant input parameters (Inman-Bamber

and McGlinchey, 2003; Everingham et al., 2008). Regardless of the

approach, the input parameters and their prior distribution must

be specified, as proper prior distribution of input parameters can

significantly increase efficiency (Kennedy and Petropoulos, 2017).

The emulators used in this work are based on the Gaussian

process model (GP) and are considered Bayesian analysis of

computer code output (BACCO) method, which assumes that

the output is deterministic (Kennedy and Petropoulos, 2017).

The tremendous efficiency of Bayesian methods with emulation

(O’Hagan, 2006) inspires BACCO in this study.

In this study, the performance (accuracy and computational

expensiveness) of emulator-based optimization was

evaluated against simulator-based optimization using the

APSIM-Sugar model.

2. Materials and methods

Gunarathna et al. (2019c) proposed an emulator-based

sensitivity analysis method to determine the most sensitive

parameters of the APSIM-Sugar model. In this study, they

evaluated 26 parameters, including 14 cultivar parameters (some

with different levels) and two plant parameters (with different

levels) (Table 1). In this study, they developed 200 test points for

each parameter using the apsimr package of R software. Then they

developed emulators using the software GEM-SA and evaluated

the accuracy of these emulators using the built-in error estimation

methods. They found that these emulators behaved linearly and the

accuracy was satisfactory. In addition to the results of the GEM-SA

interface, GEM-SA generated a series of files (Table 2) related to the

development of the emulators and the evaluation of their accuracy.

In this study, we used the generated output files (Table 2) for the

emulators developed in the above-mentioned study by Gunarathna

et al. (2019c).

2.1. APSIM simulation

The APSIM crop model combines biophysical and

management modules in a central engine to simulate crop

growth and yield under different cropping systems (Keating et al.,

2003; Holzworth et al., 2014). The APSIM sugar model simulates

dry weight accumulation due to intercepted radiation in a daily

time step. The accumulated dry weight is then partitioned among

leaves, immature stem tips, structural stems, roots, and sucrose.

Ultimately, APSIM-Sugar simulates key outputs such as fresh

cane weight, sugar yield, and sucrose content (Keating et al., 1999;

Sexton et al., 2017). This process is controlled by environmental

factors, crop type, and cultivar-specific parameters (Keating et al.,

1999, 2000; Dias et al., 2019).

Gunarathna et al. (2019c) conducted an APSIM simulation

of sugarcane biomass from January 1, 2000 to December 31,
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TABLE 1 Selected parameters used to assess the parameter sensitivity by Gunarathna et al. (2019c).

Parameter as listed in APSIM-Sugar
model (Description)

Level Code Unit Lower and
upper bound

Leaf_size (Leaf area of the respective leaf) Leaf_size_no= 1 LS1 mm2 500–2,000

Leaf_size_no= 14 LS2 mm2 25,000–70,000

Leaf_size_no= 20 LS3 mm2 25,000–70,000

Cane_fraction (Fraction of accumulated biomass partitioned

to cane)

∗CF gg−1 0.65–0.80

Sucrose_fraction_stalk (Fraction of accumulated biomass

partitioned to sucrose)

Stress factor= 1 SF gg−1 0.50–0.70

Sucrose_delay (Sucrose accumulation delay) SD gm−2 0–600

Min_sstem_sucrose (Minimum stem biomass before

partitioning to sucrose commences)

MSS gm−2 450–1,500

Min_sstem_sucrose_redn (Reduction to minimum stem

sucrose under stress)

MSSR gm−2 0–20

Tt_emerg_to_begcane (Accumulated thermal time from

emergence to beginning of cane)

∗EB ◦C day 1,200–1,900

Tt_begcane_to_flowering (Accumulated thermal time from

beginning of cane to flowering)

BF ◦C day 5,500–6,500

Tt_flowering_to_crop_end (Accumulated thermal time from

flowering to end of the crop)

FC ◦C day 1,750–2,250

Green_leaf_no (Maximum number of fully expanded green

leaves)

∗GLN No. 9–14

Tillerf_leaf_size (Tillering factors according to the leaf

numbers)

Tiller_leaf_size_no= 1 TLS1 mm2 mm−2 1–6

Tiller_leaf_size_no= 4 TLS2 mm2 mm−2 1–6

Tiller_leaf_size_no= 10 TLS3 mm2 mm−2 1–6

Tiller_leaf_size_no= 16 TLS4 mm2 mm−2 1–6

Tiller_leaf_size_no= 26 TLS5 mm2 mm−2 1–6

Transp_eff (Transpiration efficiency coefficient) Stage_code= 1 (Sowing) TE1 kg kPa/kg 0.008–0.014

Stage_code= 2 (Sprouting) TE2 kg kPa/kg 0.008–0.014

Stage_code= 3 (Emergence) TE3 kg kPa/kg 0.008–0.014

Stage_code= 4 (Beginning of cane) ∗TE4 kg kPa/kg 0.008–0.014

Stage_code= 5 (Flowering) TE5 kg kPa/kg 0.008–0.014

Stage_code= 6 (End of crop) TE6 kg kPa/kg 0.008–0.014

Rue (Radiation use efficiency) Stage_code= 3 (Emergence) ∗RUE3 g/MJ 1.2–2.5

Stage_code= 4 (Beginning of cane) ∗RUE4 g/MJ 1.2–2.5

Stage_code= 5 (Flowering) RUE5 g/MJ 1.2 – 2.5

∗Most sensitive parameters.

2010 under rainfed and irrigated conditions in two locations as

Okinawa, Japan and Sevanagala, Sri Lanka. Although Gunarathna

et al. (2019c) used four conditions (two locations and two water

regimes), for this study we selected one condition (Sri Lankan

sugarcane under irrigated conditions) to minimize other impacts

to get the maximum effect of varietal and cultivar parameters.

For this simulation, they used soil data derived using pedotransfer

functions (Gunarathna et al., 2019a,b, 2020) and from a Soil Science

Society of Sri Lanka (Dassanayake et al., 2010). They also used

meteorological data extracted from the AgMERRA global gridded

climate dataset (ElliottMüchller et al., 2015) using the NetCDF

Extractor v. 2.0 tool from AgriMetSoft (https://www.agrimetsoft.

com). Gunarathna et al. (2019c) explained more information

about the climate and management conditions used for the

APSIM simulation.

2.2. Gaussian emulation machine for
sensitivity analysis

The Gaussian Emulation Machine for Sensitivity Analysis

(GEM-SA) software can create emulators from a set of given inputs
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TABLE 2 List of output files generated by GEM-SA.

Name of the file Description

Emulator_ainv.txt Inverse correlation matrix

Emulator_training_inputs.txt Training data inputs

Emulator_mu_out.dat Estimated regression parameters

Emulator_precision_out.dat Estimated Gaussian process

precision= 1/variance

Emulator_ainvh.txt Inverse correlation matrix times Hessian

(ainv.H)

Emulator_rough_out.dat Estimated function roughness (one element

per input)

Emulator_g.txt Inverse gain matrix (ainv.(y-Hb))

Emulator_inv_hainvh.txt inverse of (H’.ainv.H) (H’.ainv.H)−1

Emulator_minmax.txt Minimum and maximum values of each

input

Emulator_scale.txt Mean and standard deviation of output

scaling

and outputs. It uses the BACCO approach to perform prediction,

uncertainty analysis, and sensitivity analysis with a smaller number

of code runs than Monte Carlo-based methods (Kennedy and

Petropoulos, 2017). The underlying mathematical procedures used

in GEM-SA are described in detail by Kennedy and O’Hagan

(Kennedy and O’Hagan, 2001) and Kennedy and Petropoulos

(Kennedy and Petropoulos, 2017). In addition to the results of the

GEM-SA interface, all mathematical constants associated with the

emulators and the data used to develop and evaluate the emulators

are stored in files. Table 2 shows the list and description of the

output files generated by the GEM-SA software (hereafter referred

to as GEM-SA generated output files). These files can be used

for applications other than the integrated analyzes of GEM-SA

(Kennedy and Petropoulos, 2017). Kennedy et al. (2012) used such

a set of emulator definition files to develop a probabilistic model for

assessing bystander and resident exposure. In this study, we used

the output files of the emulators from GEM-SA, which refer to the

total aboveground biomass of irrigated sugarcane under Sri Lankan

conditions. In developing the emulators, Gunarathna et al. (2019c)

set the “prior mean” option for each input as linear and evaluated

the emulators using the leave-one-out cross-validation procedure

of GEM-SA. Based on the results, they confirmed the linearity of

the developed emulators (Gunarathna et al., 2019c).

2.3. Parameter optimization with the
DEoptim and apsimr packages

Since some model parameters are not directly or easily

measurable, parameter optimization plays an important role in

model development. In model optimization, selected parameters

are allowed to vary within predefined bounds until the optimization

objective is achieved (Song et al., 2012). Parameter optimization can

be global, where the algorithm searches for the global optimum

by using mechanisms to search larger parts of the search space,

or local, where the algorithm searches for a local optimum of

the objective function for a specific region of the input space.

When there are many parameters in a model, the optimization

process can become complex. Therefore, global optimization can

achieve good results compared to local optimization. However,

global optimization is time consuming and therefore characterized

by high computational costs.

There is an increasing interest in meta-heuristics and

improvements in their application to optimization problems

(Song et al., 2012). For example, the College of Arizona’s

Shuffled Complex Evolution method (SCE-UA) (Duan et al., 1992)

and dynamic programming (DP) for optimization use genetic

algorithms, differential evolution, particle and swarm optimization

(Song et al., 2012). Differential evolution (DE) is suitable for finding

the global optimum of a real-valued function with real-valued

parameters (Mullen et al., 2011). DE uses arithmetic operations

instead of logical operations. It shows remarkable performance

as a global optimization algorithm for continuous numerical

minimization problems (Price et al., 2006). In DE, the population

is represented by floating point elements. Therefore, it requires

specified vectors containing lower and upper bounds with the same

length as the parameter vector (Mullen et al., 2011).

In this study, we used the apsimr (Stanfill, 2015) and DEoptim

(Ardia et al., 2020) packages of the R software (R Core Team, 2018)

to perform the optimization of the parameters of APSIM-Sugar.

The apsimr package contains functions to create, edit, run

APSIM simulations and visualize the results in the R software

(Stanfill, 2015). It also includes functions for performing sensitivity

and uncertainty analyzes of APSIM using third-party packages

designed for sensitivity and uncertainty analyzes.

The DEoptim package (Mullen et al., 2011; Ardia et al., 2020)

is the R implementation of the differential evolution strategy (DE)

developed using the differential algorithm explained by Price et al.

(2006). The DEoptim function is the core function of the DEoptim

package. It searches for the minima of the objective function

between the lower and upper bounds of each parameter to be

optimized. For this purpose, it uses some arguments such as fn:

the function to be optimized, lower, upper: two vectors indicating

scalar real lower and upper bounds for each parameter to be

optimized, control: a list of tuning parameters and itermax: the

maximum number of iterations, which is 200 by default (Ardia

et al., 2011). The DEoptim package has been used in several

parameter optimization studies, including parameter optimization

of process-based crop models (Lopez et al., 2017; Liu et al., 2018).

We tested four conditions: (1) optimization of 26 parameters of

the APSIM sugar model, (2) optimization of the six most sensitive

parameters (see Table 1) of the APSIM sugar model, (3) emulator-

based optimization of 26 parameters of the APSIM sugar model,

and (4) emulator-based optimization of the six most sensitive

parameters of the APSIM sugar model. We developed two R codes,

with an option to select all parameters (A) or selected parameters

(S), to run the optimization of APSIM-Sugar and the emulators

developed to represent the APSIM simulations, respectively. We

used the rootmean square error (RMSE) as the evaluation criterion.

We ran the optimization for 200 iterations and estimated the

error and computational expensiveness (CPU processing time) of

four methods.
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TABLE 3 Optimized parameters of plant and cultivar specific parameters of APSIM sugar model using di�erent optimization methods.

Parameter Q117 Optimized values based on di�erent optimization methods

Method 1 Method 2 Method 3 Method 4

LS1 1,500 1,758 1,506

LS2 55,000 46,547 31,684

LS3 55,000 50,380 56,995

CF 0.70 0.69 0.70 0.66 0.70

SF 0.55 0.67 0.62

SD 0 290.4 131.5

MSS 800 1,155 911

MSSR 10 6.2 19.4

EB 1,900 1,706 1,898 1,475 1,820

BF 6,000 5,667 6,136

FC 2,000 2,220 1,997

GLN 13 11 13 14 13

TLS1 1 5.4 3.1

TLS2 1.5 3.9 2.0

TLS3 1.5 3.9 4.8

TLS4 1 1.0 4.3

TLS5 1 1.4 4.5

TE1 0.008 0.012 0.009

TE2 0.008 0.011 0.011

TE3 0.008 0.012 0.011

TE4 0.008 0.012 0.013 0.012 0.012

TE5 0.008 0.010 0.012

TE6 0.008 0.011 0.012

RUE3 1.8 1.68 1.76 2.00 1.88

RUE4 1.8 2.14 2.05 1.89 1.93

RUE5 1.8 1.75 1.63

Method 1: optimization of 26 parameters of APSIM sugar model, Method 2: optimization of most sensitive six parameters of APSIM sugar model, Method 3: emulator-based optimization of 26

parameters of APSIM sugar model and Method 4: emulator-based optimization of most sensitive six parameters of APSIM sugar model.

2.4. Statistical analysis

Since a single statistical index is not sufficient for evaluating

the simulations, we used multiple indices (Mereu et al., 2019)

to evaluate the accuracy of the simulations performed with the

plant and cultivar parameters optimized by the four methods.

We used the root mean square error (RMSE; equation 1), the

coefficient of determination (R2; equation 2), the coefficient of

residual mass (CRM; equation 3), and the index of agreement

(d-index; equation 4). The RMSE indicates the standard deviation

of the model prediction error (Zambrano-Bigiarini, 2017), while

the R2 estimates the combined dispersion versus the single

dispersion of the observed and estimated values (Krause et al.,

2005). The CRM indicates how much the model is underestimated

or overestimated overall (Aliyu and Bello, 2017). The d-index is

a standardized measure of the degree of model prediction error

and represents the ratio between the mean squared error and the

potential error (Willmott, 1981; Krause et al., 2005).

RMSE =

√

∑n
i = 1 (Ei −Mi)

2

n
(1)

R2 =

[
∑n

i = 1 (Ei − E)(Mi − E)
]2

∑n
i = 1 (Ei − E)

2 ∑n
i = 1 (Mi −M)

2
(2)

CRM =

∑n
i = 1 Ei

∑n
i = 1 Mi

(3)

d = 1−

∑n
i = 1 (Ei −Mi)

2

∑n
i = 1 (

∣

∣Ei −M
∣

∣ +
∣

∣Mi −M
∣

∣)
2

(4)

Where, Ei and Mi are the simulated and measured

biomass of the ith year, respectively, n is the number yield
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records, and E and M are the mean simulated and observed

biomass, respectively.

3. Results and discussion

3.1. Optimized parameters

Table 3 shows the optimized values of plant- and cultivar

specific parameters of the APSIM sugar model obtained by

four optimization methods. We performed 200 iterations in the

optimization process for all methods except the optimization of

26 parameters of the APSIM sugar model. For the optimization of

26 parameters of the APSIM sugar model, we performed only 100

iterations due to practical difficulties.

3.2. Accuracy of biomass predictions

After optimizing the parameters with each optimization

method, the respective crop and cultivar parameters were replaced

with the optimized values and the biomass of sugarcane was

simulated. The simulated biomass values were compared with the

observed values and the accuracy of the simulations was evaluated

using RMSE, CRM, R2, and d-index values (Table 4).

The results showed that all methods provided a good estimate

of the plant- and cultivar-specific parameters of the APSIM sugar

model, so that the simulations were close to the observations.

However, optimization of selected parameters gave much better

results than optimization of all parameters. This could be due to

an insufficient number of iterations. Therefore, we performed 400

iterations for the emulator-based optimization of the most sensitive

six parameters of the APSIM sugar model. Then we obtained the

TABLE 4 Accuracy of biomass simulated using optimized parameters.

Optimization method RMSE R2 d CRM

1. Optimization of 26 parameters of

APSIM-sugar model

71.2 0.99 0.98 0.01

2. Optimization of most sensitive six

parameters of APSIM-Sugar model

46.6 0.99 0.99 0.00

3. Emulator-based optimization of 26

parameters of APSIM-Sugar model

210.9 0.96 0.83 −0.03

4. Emulator-based optimization of most

sensitive six parameters of

APSIM-Sugar model

48.8 0.97 0.99 −0.00

comparable results (RMSE = 53.0, R2 = 0.96, d = 0.99, and CRM

= −0.00) to the parameters selected by the method.

3.3. The computational expensiveness of
the optimization

The computer used for the optimization process is an Intel R©

CoreTM i7-8550U @ 1.80 GHz processor and 8.00 GB RAM.

The operating system of the computer is WindowsTM 10 Home

Edition. The time taken for the 200 iterations was measured

and the time taken for one iteration is calculated and compared

(Table 5). The results show that the emulator-based optimization

takes significantly less time compared to the optimization of the

APSIMmodel. Therefore, we can conclude that the emulator-based

optimization method is not computationally expensive.

The complete process of emulator development, sensitivity

analysis, and parameter optimization is shown in Figure 1. It

shows that we can perform both sensitivity analysis and parameter

optimization using the same input and output combinations

and emulator results for sensitivity analysis. Therefore, we can

complete both sensitivity analysis and parameter optimization

within a short period of time compared to the conventional

sensitivity analysis and parameter optimization methods. The

accuracy of the simulations performed with the emulator-based

parameter optimization is not different from the conventional

optimization of APSIM. Therefore, we can propose the emulator-

based parameter optimization using the output files of the

software GEM-SA to drastically reduce the computational cost

of the parameter optimization process. We can complete the

whole process of emulator development, sensitivity analysis and

parameter optimization in<3 h. Since all the software and packages

used in this study are open source, this method would be feasible

for many countries, including the resource-constrained areas of

the world.

4. Conclusion

We performed parameter optimization of the APSIM sugar

model using an emulator-based approach. For this purpose, we

used the generated output files of a sensitivity analysis performed

with GEM-SA. We compared the accuracy of the performance

of the emulator-based optimization with the optimization of

the APSIM sugar model. Both methods used the differential

evolution method with the DEoptim package of the R software.

TABLE 5 Time taken to complete one iteration of di�erent optimization methods.

Optimization method Time taken to complete
one iteration (seconds)

Time requirement compared
to the method 4

1. Optimization of 26 parameters of APSIM-sugar model 2,266.68 6,899

2. Optimization of most sensitive six parameters of APSIM-Sugar model 568.56 1,731

3. Emulator-based optimization of 26 parameters of APSIM-Sugar model 1.41 4

4. Emulator-based optimization of most sensitive six parameters of

APSIM-Sugar model

0.33 -
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FIGURE 1

The complete process of emulator creation, sensitivity analysis, and parameter optimization using the apsimr and DEoptim packages of the R

software and the GEM-SA software.

Moreover, both methods were performed for two levels to

optimize all parameters and select the most sensitive parameters

reported by Gunarathna et al. (2019c). We simulated the total

aboveground biomass of sugarcane of the APSIM-Sugar model

using optimized parameters with four different methods. The

results showed no differences between the biomass simulated

using the four methods, although the optimization of APSIM

required exceptionally more computational time than the

emulator-based approach.

In addition, both optimization of selected parameters and

optimization of the entire set of parameters of the APSIM

sugar model were performed. The study concluded that the

emulator-based optimization of the APSIM model is applicable

using the output files generated by the sensitivity analysis

of the software GEM-SA. In addition, we recommend that

the sensitivity analysis followed by parameter optimization be

performed using the GEM-SA, apsimr software and the DEoptim

packages of the R software, as this procedure can drastically reduce
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the computational time without affecting the accuracy of the

APSIM simulations.
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