
Frontiers in Sustainable Food Systems 01 frontiersin.org

A safe agricultural space for 
biodiversity
Diego García-Vega 1,2*, Patrice Dumas 2*, Rémi Prudhomme 2, 
Claire Kremen 3,4,5 and Pierre-Marie Aubert 1,6

1 Institut du Développement Durable et des Relations Internationales (IDDRI), Paris, France, 2 Centre de 
Coopération Internationale en Recherche Agronomique Pour le Développement (CIRAD), UMR 
CIRED, Nogent-sur-Marne, France, 3 Institute for Resources, Environment and Sustainability, University 
of British Columbia, Vancouver, BC, Canada, 4 Department of Zoology, University of British Columbia, 
Vancouver, BC, Canada, 5 Biodiversity Research Center, University of British Columbia, Vancouver, BC, 
Canada, 6 Sciences Po, Paris, France

Agriculture is the main driver of the rapid collapse of biodiversity, upon which 
all life on Earth, including agricultural production, depends. As we  face the 
challenge of feeding a growing human population under a changing climate 
regime, the pressure on biodiversity is expected to further intensify. While the 
potential to expand and improve natural habitats for biodiversity conservation 
has been widely explored in large-scale scenarios of agricultural systems, 
the critical role of agricultural landscapes’ management on halting the loss 
of biodiversity remains unexplored at this scale. We  argue that, to achieve 
an effective conservation of biodiversity (both natural and agricultural), the 
combined multivariate effects of agriculture on biodiversity must be accounted 
for, including its surface area as well as its management. Based on a literature 
review, we identified the main biodiversity pressures stemming from agriculture: 
land-use change, contribution to climate change, water withdrawal, pesticide 
pollution, nutrient (nitrogen and phosphorus) pollution, and landscape and farm-
scale simplification (of croplands and pastures). For each one, we  proposed 
a critical boundary, based on reviews of studies covering a range of taxa, 
biodiversity metrics, and biomes, below or above which negative impacts on 
biodiversity are minimized or positive effects arise. Implemented simultaneously, 
the identified boundaries would integrate biodiversity conservation within and 
across farmlands and minimize agriculture’s far-reaching impacts on biodiversity. 
We present a framework called “agricultural boundaries for biodiversity” that will 
allow to explore the potential of developing agricultural systems that effectively 
reconcile food production and biodiversity conservation at large scales.
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1 Introduction

Agriculture has dramatically altered the Earth’s face, as it now claims half of the ice-free 
terrestrial surface (IPBES, 2019). Through its expansion, intensification, and major 
contribution to climate change, it is primarily responsible for today’s large-scale collapse of 
biodiversity (Ceballos et al., 2015; Newbold et al., 2016; Beckmann et al., 2019; IPBES, 2019; 
Sánchez-Bayo and Wyckhuys, 2019; Rigal et al., 2023). As the functioning of ecosystems and 
their contributions to basic human needs are contingent upon biodiversity (Cardinale et al., 
2012), agriculture is not only compromising the integrity of the biosphere, but also our 
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capacity to feed ourselves in the near future (Dainese et al., 2019; FAO, 
2019a; Seppelt et al., 2020).

Far from receding, pressure from agriculture is expected to further 
increase as the global demand for food (and especially resource-
intensive products like meat and dairy), fiber and biofuel are projected 
to double by 2050 compared to 2005 (FAO 2009; Tilman et al., 2011; 
Miyake et al., 2012; Searchinger et al., 2019). Considering that the 
pressure of climate change on agricultural production is also 
intensifying (Ray et al., 2019), that yields of the major staple crops 
have already peaked across much of the globe (Ray et al., 2012), and 
that land degradation processes are affecting 80% of the world’s arable 
lands (Prăvălie et al., 2021), sustainably feeding the growing human 
population is a critical task requiring urgent attention and action.

As we hit biophysical limits, the need to adopt more plant-based 
diets, significantly cut food waste and loss, and halt deforestation, are 
widely agreed upon (Springmann et al., 2018; Willett et al., 2019). 
However, the definition of what a sustainable agricultural system 
would look like has remained highly controversial for decades (Green 
et al., 2005; Immovili and Kok, 2020). In some circles, the debate has 
polarized into “land sparing vs. land sharing”: respectively, increasing 
yields within farmlands to free up space for wildlife conservation 
(Phalan, 2018), or integrating biodiversity conservation within 
farmlands, even if it means lower yields and a greater farmland area 
(Perfecto and Vandermeer, 2010). Although it launched an important 
conversation, the limits of this framework have become evident, 
because neither extreme is ecologically desirable (Kremen, 2015), and 
because of its limited ability to take into account market dynamics 
(Desquilbet et  al., 2017). Instead, a combination of both large, 
protected areas and hospitable farmlands are needed to achieve 
effective biodiversity conservation (Kremen, 2015; DeClerck 
et al., 2023).

In exploring how to reconcile the food and biodiversity 
imperatives, we  argue that three key elements need to be  better 
accounted for: (1) the importance of conserving agricultural 
biodiversity to maintaining the long-term functioning of 
agroecosystems, and the critical effects of agricultural management on 
natural biodiversity through (2) the structuring of the landscape 
matrix and (3) the spillover of biodiversity stressors beyond the limits 
of the farm.

Firstly, productive landscapes and their species communities 
represent a significant part of the biosphere, including many 
endangered species (Wintle et al., 2018). Millennia of low-intensity 
farming and extensive grassland management have formed unique 
ecological communities of high conservation value throughout 
Europe (Pärtel et al., 2005; Halada et al., 2011; Lomba et al., 2015). 
Further, agricultural biodiversity contributes, among others, to 
nurturing soils (Wagg et al., 2014), pollinating crops (Klein et al., 
2006; Dainese et  al., 2019), reducing pests’ pressures (Pretty and 
Bharucha, 2015; Dainese et  al., 2019), and increasing the overall 
performance of crops (Wan et al., 2022). Maintaining the productive 
capacity of agroecosystems in the long run largely depends upon the 
conservation of agrobiodiversity (Altieri, 1999; Kremen and Miles, 
2012; Seppelt et al., 2020). Despite its critical ecological and productive 
value, agricultural biodiversity is systematically unaccounted for in 
large-scale biodiversity assessments and prospective models exploring 
scenarios of sustainable agriculture. Some of the most commonly used 
biodiversity indices do not capture farmland communities: the 
Biodiversity Intactness Index (BII) and Mean Species Abundance 

(MSA) measure the richness and abundance of remaining “original” 
species communities, based on primary vegetation or pre-industrial 
era records (e.g., Alkemade et al., 2009; Newbold et al., 2016; Gerten 
et  al., 2020; Leclère et  al., 2020). Thus, “novel” species found in 
farmlands cannot score high, even if they form ecologically diverse 
and functional communities (Vačkář et al., 2012). Other indices like 
the Living Planet Index (LPI) only consider wild vertebrate species, 
which are also overrepresented in measures of Red List Index (RLI) 
and extinction risk and rate due to sampling bias (e.g., Tilman et al., 
2017; Willett et al., 2019; Leclère et al., 2020; WWF, 2022), and thus 
omit most agrobiodiversity. Finally, agricultural area has been widely 
used as a proxy of biodiversity impacts (e.g., Foley et  al., 2011; 
Balmford et al., 2018; Springmann et al., 2018, 2020), which implicitly 
disregards the value of agricultural biodiversity. Specific indices have 
been developed for farmland communities, like the Agrobiodiversity 
Index (ABDI) (Jones et al., 2021), but are yet to be widely integrated 
into prospective studies of food systems, and require large amounts of 
consistent and fine-scale global data.

Moreover, the management of agricultural landscapes has 
critical effects on natural biodiversity, as farmlands provide 
connectivity between fragmented patches of natural habitat, where 
wild species would otherwise remain isolated and progressively 
decline (i.e., extinction debt; Hylander and Ehrlén, 2013). Wildlife-
friendly farmlands could facilitate their movement, provisioning, 
dispersal, gene flow, and capacity to adapt to climate change, thus 
promoting species persistence (Kremen and Merenlender, 2018). 
When placed along the edges of fragmented forests, closed-canopy, 
low-input agricultural systems like agroforestry can protect forest 
biodiversity by buffering microclimatic changes (Meza-Elizalde and 
Armenteras-Pascual, 2021). It is argued that our success to conserve 
the world’s wildlife will largely depend upon the hospitality of 
agricultural lands (Mendenhall et al., 2014; Brennan et al., 2022). 
This ecological function of farmland is never accounted for in large-
scale assessments of sustainable agriculture scenarios, except 
perhaps for the minor integration of crop diversity in Folberth et al.’s 
(2020) simulations.

Finally, certain agricultural practices within fields can have long-
range negative impacts on biodiversity. Nutrients and pesticides 
applied to farms can travel far and wide across landscapes (Simonich 
and Hites, 1995; Peñuelas et al., 2013) and alter species communities 
around the globe (Alkemade et al., 2009; Tang et al., 2021). Natural 
protected areas may not effectively stop the loss of wild species unless 
the pressures spilling over from intensive farmlands are halted 
(Phoenix et al., 2006; Hallmann et al., 2017). Farmlands may further 
affect distant biodiversity through the withdrawal of water for 
irrigation, which is a major driver of the rapid collapse of freshwater 
biodiversity (Vörösmarty et  al., 2010), as well as through climate 
change, as agricultural production contributes a significant part of 
global greenhouse gas (GHG) emissions (Pörtner et  al., 2021), 
although at highly variable rates across products and production 
systems (Poore and Nemecek, 2018). However, these stressors are not 
weighed in the calculations of the biodiversity impacts of agricultural 
scenarios in large-scale assessments, which solely account for the 
direct effects of land use change. Only attributing biodiversity loss to 
the area occupied by agriculture, and not taking into account the 
important off-farm effects, can lead to proposals to further intensify 
agriculture that exacerbates stressors like global nutrient pollution 
(e.g., Foley et al., 2011; Tilman et al., 2011).
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To refine those assessments, and better integrate all forms of 
biodiversity in food systems scenarios, we need a framework that 
accounts for the combined multivariate effects of agriculture, 
instead of individual stressors (Benton et al., 2003). Treating drivers 
of biodiversity loss like N (e.g., de Vries et al., 2021) and P pollution 
(e.g., Carpenter and Bennett, 2011), GHG emissions (e.g., Popp 
et  al., 2017), or water withdrawal (e.g., Jägermeyr et  al., 2017) 
individually, rather than as interacting components behind 
biodiversity loss, may lead to partial solutions for 
biodiversity conservation.

Hereafter, we  present such a framework that accounts for the 
multivariate stressors stemming from agriculture, to define a safe 
space for biodiversity across the world’s farmlands, which can be used 
to refine our understanding of the “biophysical option space” to feed 
the world while minimizing impacts on biodiversity. This framework 
relies on the identification of a set of boundaries for agricultural 
systems that, implemented simultaneously, would integrate 
biodiversity conservation within and across farmlands, and minimize 
agriculture’s far-reaching impacts on biodiversity. While it would need 
to be adapted to specific local contexts for management purposes, this 
framework can be generalized to the global scale.

2 Agricultural boundaries for 
biodiversity

2.1 Our approach: overview

Based on an extensive but not systematic literature review, 
we  identified the main biodiversity pressures stemming from 
agriculture and proposed a critical boundary, for each one that would 
ensure biodiversity conservation. Boundaries include ceilings below 
which negative impacts on biodiversity are limited, as well as 
thresholds at or above which positive effects on biodiversity arise. 
Depending on the nature of the pressure and its relationship to 
biodiversity, as well as the evidence available, boundaries may apply 
to pressures and then translate into agricultural practices, or apply 
directly to practices. Figure  1 illustrates the resulting agricultural 
system, constrained by the multiple boundaries that would ensure 
effective biodiversity conservation, which we expand upon in Table 1. 
Table  2 summarizes the proposed boundaries identified in 
the literature.

We considered five key dimensions of biodiversity conservation, 
which we understand as requirements for effective conservation of 
global biodiversity, including both natural and agricultural 
biodiversity (see Table  1). Two dimensions are important for the 
conservation of agrobiodiversity: providing habitat and resources for 
species inhabiting agricultural landscapes (Benton et  al., 2003; 
Estrada-Carmona et al., 2022), as well as conserving functional groups 
that provide critical ecosystem services at the field level (i.e., 
pollinators, natural enemies, and soil biota) (Potts et al., 2010; Kremen 
and Miles, 2012). Key dimensions for natural biodiversity are the 
conservation of natural habitats for wildlife (Watson et  al., 2018; 
Wintle et al., 2018), the connectivity across landscapes (Perfecto and 
Vandermeer, 2010; Brennan et al., 2022), and limiting the external 
impacts of farmland management across the globe (i.e., pesticide and 
nutrient pollution, GHG emissions, and water withdrawal) 
(Vörösmarty et al., 2010; Peñuelas et al., 2020; Sánchez-Bayo, 2021). 

These dimensions affect biodiversity at its three levels: genetic (e.g., 
gene flow is facilitated by landscape connectivity; Gómez-Fernández 
et al., 2016, plant genetic diversity is enhanced by pollination; Feigs 
et  al., 2022), interspecific (e.g., species co-existence is allowed by 
resource partitioning and complementation of habitats; Sirami et al., 
2019), and ecosystemic (e.g., ecosystems’ composition, structure, and 
functions are affected by atmospheric fertilization; Bobbink 
et al., 2010).

To identify the main pressures through which agriculture affects 
these key dimensions of biodiversity, a broad initial search was 
conducted using key words relating to biodiversity and agriculture, 
and the arguments and evidence that have accumulated around the 
land sparing-land sharing debate were analyzed. We selected mostly 
empirical studies assessing the effects of specific agricultural variables 
on a wide range of taxa, with biodiversity metrics ranging across the 
Essential Biodiversity Variables, with evidence from across biomes, 
and preferring global meta-analyses finding consistent patterns and 
relationships across taxa and biomes. Some modeling and theoretical 
papers were also included.

We identified, as the main drivers of biodiversity change resulting 
from agricultural activities, land-use change, climate impacts, water 
withdrawal, pesticide pollution, nutrient (nitrogen and phosphorus) 
pollution, and landscape and farm-scale simplification (of croplands 
and pastures). Table 1 lists the pressures that are associated with each 
dimension of biodiversity conservation.

We did not consider other biodiversity pressures that are 
associated with agriculture, such as the degradation of the ozone layer 
or particulate matter pollution, present in the LCA-Impact framework 
(Hardaker et al., 2022), as well as the extraction of minerals and fossil 
fuels, land artificialization, construction of infrastructures, or the 
proliferation of invasive species, present in the STAR metric (Mair 
et al., 2021), because their link with agriculture is weak. Further, 
while the mechanical disturbance of soils through tilling, plowing 
and heavy machinery may be an additional key pressure of agriculture 
on soil biodiversity, the evidence was inconclusive and did not allow 
us to identify a respective boundary (see section “Discussion”).

Assessing the effects of agricultural pressures on biodiversity 
poses several challenges. Agricultural practices may affect different 
elements of biodiversity (e.g., varying effects across taxa and across 
measures of ecological dynamics, like richness, abundance, diversity, 
dominance, community composition, etc.), and they interact with 
each other (e.g., the presence of semi-natural elements within fields 
reduces the impacts of pesticides on insects; Garibaldi et al., 2021, or 
buffer strips along river banks reduce nutrient losses to freshwater 
ecosystems; Borin et al., 2010). Thus, studies seeking to measure the 
effects of agricultural pressures on biodiversity have to make 
assumptions and simplifications like focusing on a specific pressure 
(e.g., agricultural area), or a specific element of biodiversity (e.g., a 
reference taxon, a partial metric of diversity). We do not define our 
biodiversity-safe agricultural system based on any specific ecological 
measure, instead, we identify conservative, critical boundaries to the 
key agricultural pressures that would prevent impacts on a wide array 
of biodiversity elements and would preserve functioning ecosystems, 
based on broad literature reviews ranging, to some extent, across taxa, 
metrics, and biomes. While this methodology is not exempt from 
assumptions, it allows to better account for the multivariate and 
interacting effects of agricultural practices on biodiversity (Benton 
et al., 2003).
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Putting all the critical boundaries of agricultural pressures 
together results in a framework describing an agricultural system that 
is compatible with effective biodiversity conservation (see Figure 1). 
The framework is flexible and can be updated as new information 
becomes available. Further, while it is designed to be generalized at 
large scales, such as for studies of global agricultural systems, the 
boundaries may be adapted to specific local or regional conditions for 
the landscape scale.

The need to move beyond the assessment of broad strategies like 
land sparing and sharing, and advance toward the definition of the 
specific management strategies that could reconcile biodiversity 
conservation with food production, has been called for years (Kremen, 
2015). Following is our proposed framework for such an 
agricultural system.

2.2 Agricultural area

Over the last three centuries, the Earth’s lands have shifted from 
mostly wild to mostly anthropogenic. In 1700, half of the ice-free land 
was wild, and another 45% was semi-natural (Ellis et al., 2010). By 
2015, wild ecosystems with minimal human use were reduced to 28% 
of the land surface (12% of which being barren lands), and the rest was 

FIGURE 1

Diagram illustrating the critical boundaries delimiting an agricultural system that is compatible with effective biodiversity conservation. Red boundaries 
are pressures that need to be contained under a critical limit, while green boundaries are key determinants of biodiversity that need to be maintained at 
or above a minimal threshold or management regime. Dashed lines indicate that there is continuity and exchange between agricultural, semi-natural, 
and wild habitats and biodiversity. The relative areas of grasslands (i.e., pastures and rangelands) and croplands shown in the diagram represent current 
land uses by the IPCC (2019), but do not prescribe these relative proportions.

TABLE 1 The key dimensions of agricultural and natural biodiversity 
conservation, and their associated pressures stemming from agriculture.

Type of 
biodiversity

Dimension of 
biodiversity 
conservation

Pressures from 
agriculture

Agricultural biodiversity Habitats and resources 

across agricultural 

landscapes

Landscape and farm-

scale simplification

Ecosystem service 

providers within 

agroecosystems

Landscape and farm-

scale simplification, 

pesticide pollution

Natural biodiversity Natural habitats and 

resources

Agricultural expansion 

and fragmentation of 

natural habitats

Landscape connectivity Landscape and farm-

scale simplification

Changes to the abiotic 

environment

N and P pollution, 

pesticide pollution, 

GHG emissions, water 

withdrawal

We posit that safeguarding these dimensions from the agricultural pressures that affect them 
will ensure effective global biodiversity conservation regarding the agricultural system.
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directly occupied or exploited by humans: croplands taking up 12% of 
the land, pastures, and rangelands (i.e., native ecosystems that are 
grazed) occupying 37%, and managed forests another 22% 
(IPCC, 2019).

The conversion of natural habitats into human land uses, 
predominantly driven by agricultural expansion (Pendrill et al., 2022), 
is considered the strongest driver of biodiversity loss globally (Sala 
et al., 2000; Newbold et al., 2015). Primary vegetation and mature 
secondary vegetation ecosystems generally host the highest levels of 
biodiversity of all land uses across the globe (Newbold et al., 2015), 
and some biomes’ species communities are particularly sensitive to 
human disturbance and will only thrive in primary vegetation (García-
Vega and Newbold, 2020). Indeed, many species rely on their native, 
natural habitat and cannot survive even in the most complex human 
land uses (Phalan, 2018). As such, the world’s remaining intact forests 
host the majority of terrestrial biodiversity, including many rare and 
endangered species that are dependent upon the conservation of large 
contiguous tracts of primary forest (Watson et al., 2018). The loss of 

habitat also leads to its fragmentation which, although may not 
be necessarily negative for biodiversity per se (Fahrig, 2017; Fahrig 
et al., 2019), it can pose additional threats. 70% of remaining forests 
are within 1 km of the forest edge (Haddad et al., 2015), from whence 
physical and biotic pressures may intrude, such as hunting, logging 
(Watson et al., 2018), the proliferation of invasive species (Gibson 
et al., 2013), microclimatic changes along the edges (Meza-Elizalde 
and Armenteras-Pascual, 2021), and exposure to weather variability 
and extreme events (Laurance et  al., 2011). Further, isolation of 
populations in small habitat patches decreases their gene flow and 
increases inbreeding (Honnay et  al., 2005), and prevents species 
occurring at low densities from maintaining viable populations, 
leading to their extinction (Watson et  al., 2018). Evidence from 
around the world shows populations of mammals, birds, reptiles, 
invertebrates, and plants going extinct following the loss of habitat, 
after a time delay that depends strongly on the area of the remaining 
habitat patch (Halley and Iwasa, 2011; Halley et al., 2016).

Well-resourced and managed protected areas have proven effective 
at conserving biodiversity (Gray et al., 2016). Proposed area-based 
protection targets for biodiversity conservation range between 
protecting 30 and 70% of ecologically-representative lands (Noss et al., 
2012; Woodley et  al., 2019). Notably, Jung et  al. (2021) find that 
protecting or implementing effective conservation across the most 
optimal 30% of terrestrial lands would be enough to conserve 81% of 
known, extant vertebrate and plant species represented in global 
databases. Further, Dinerstein et al. (2019) find that a total of 32.6% of 
the terrestrial area would cover the most important habitats for the 
rarest species, those with the narrowest ranges, and those most 
endangered, as well as the most biodiverse ecoregions across all biomes 
in terms of endemism, highest alpha- and beta-diversities, and wide-
ranging species requiring large areas to maintain viable populations. 
However, including other aspects such as migration routes of 
megafauna, connectivity, old-growth forests, freshwater ecosystems, 
and uncertainty, would require a larger area, thought to be around 50% 
(Dinerstein et al., 2019), which meets other proposals (e.g., Wilson, 
2016). The additional 20% of area needed may be managed with other 
effective area-based conservation measures (OECMs), rather than 
protected areas (Dudley et  al., 2018), where sustained, long-term 
conservation of biodiversity and ecosystem functions and services 
should result from their management, which potentially includes 
natural or semi-natural corridors and grasslands (IUCN, 2019).

Therefore, based on the target of protecting 30% of ecologically-
representative and optimally-located natural protected areas, and 
implementing OECMs across a further 20% of land, we  propose 
keeping agricultural lands outside the optimally-distributed 30% of 
protected natural areas, restricting total agricultural area to under 50% 
of the Earth’s ice-free terrestrial surface, and contributing 20% of 
cropland and 100% of grasslands as OECMs (see sections 7.a. on 
within-farms semi-natural habitats, and 8. on grassland management).

2.3 Greenhouse gas emissions

The agricultural production of food is responsible for 12.0 ± 2.9 
GtCO2e.year-1, or 18–29% of global GHG emissions, including 
within-farm-gate crop and livestock production as well as land-cover 
change for food production (Vermeulen et  al., 2012; IPCC, 2019; 
Rosenzweig et al., 2020). Major GHG sources related to agriculture 

TABLE 2 The proposed boundaries for each of the 11 key biodiversity 
pressures and determinants identified in the literature.

Agricultural area Keeping agricultural lands outside the optimally-

distributed 30% of protected natural areas, restricting 

total agricultural area to under 50% of the Earth’s ice-

free terrestrial surface, and contributing 20% of cropland 

and 100% of grasslands as OECMs.

GHG emissions A 24–47% reduction of CH4 emissions relative to 2010, 

between a 21% reduction and stabilization of N2O 

emissions relative to 2010, and neutrality for CO2 

emissions.

Water withdrawal Restricted to the portion of flow available after ensuring 

local environmental flow requirements.

Pesticide pollution Less than 50% of the EU’s average pesticide input per 

hectare, all types together. Additionally, particularly 

harmful compounds are removed, and pesticide use 

efficiency is increased.

N atmospheric 

deposition

N concentration in soil solutions equal or lower than 

3 mg.L-1 for forests and 3.5 mg.L-1 for semi-natural 

vegetation.

N runoff Critical limit of inorganic [N] in freshwater exports of 

2.5 mg.L-1, and 0.5 mg.L-1 for stagnant systems.

P runoff Critical limit of [P] in freshwater exports of 0.32 mg.L-1, 

and 0.024 mg.L-1 for stagnant systems.

Semi-natural habitats 

within croplands

A minimum of 20%.km-2 of croplands covered with 

uncultivated habitat and agroecological infrastructures.

Crop diversity Intercropping cereal and leguminous crops, growing 

perennial crops in agroforestry systems, and growing 

vegetables and other crops in multi-cropping systems 

that are integrated with agroforestry systems.

Crop rotations Organic crop rotations’ complexity as a minimum, and 

maintaining soil covered year-round with a mix of cover 

crops.

Grassland 

management

Grasslands are not fertilized, and livestock densities in 

grassland-based ruminant systems are limited to the 

ecosystems’ carrying capacities.
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include the clearing of land for agriculture, which emits carbon 
dioxide (CO2) and nitrous oxide (N2O), the methane (CH4) emissions 
from enteric fermentation of ruminant livestock, the CH4 emissions 
from rice paddies, and the CH4 and N2O emissions from livestock 
manure. Further, the manufacture and application of fertilizers, 
pesticides and other agrochemical substances emit CO2, N2O, and 
CH4, and the use of fossil fuel energy for activities related to food 
production emits CO2 (Clark et al., 2020).

Changes in temperatures, precipitation, and the frequency and 
intensity of extreme weather events directly affect organisms and 
biodiversity by affecting their survival (IPBES, 2019). However, it is the 
indirect effects of climate change that are expected to be most important. 
They include, notably, the spatial shift of habitats that are suitable for 
species, which disproportionately affects species with narrow mobility 
ranges, specialized niches, and those isolated by topography (e.g., 
mountains), geography (e.g., islands) or the hostility of surrounding 
landscapes (e.g., intensive farmland) (Foden et al., 2013). The resulting 
shift in the geographic distribution of species across landscapes alters 
species communities and biotic interactions (Bellard et  al., 2012; 
Staudinger et al., 2013), like food webs (e.g., Lucas et al., 2018). The effects 
of shifting climatic suitability across landscapes on the distribution of 
species are predicted to become the main driver of vertebrate diversity loss 
by the end of the century (Newbold, 2018), and a major driver of species 
extinction across taxa (Thomas et al., 2004). Some important agricultural 
biodiversity such as bumblebees (Kerr et al., 2015; Soroye et al., 2020) and 
farmland birds (Birdlife International, 2018) are particularly at risk. Other 
indirect climate impacts include phenological mismatches between 
interacting species (Scranton and Amarasekare, 2017), the proliferation 
of invasive alien species and pathogens, and altered river flow regimes 
(IPBES, 2019), to name a few.

The effects of climate change on biodiversity being nonlinear, 
multivariate, and interacting (IPBES, 2019), there is no simple limit 
that would prevent biodiversity impacts. Thus, we decided to take the 
climate target defined in article 2 of the Paris Agreement, for which 
there is scientific evidence that impacts on biodiversity, ecosystems, 
and nature’s contributions to people would be limited, compared to 
scenarios with higher warming (IPCC, 2018): limiting the increase in 
global average temperatures to well below 2°C above pre-industrial 
levels, and pursue efforts to limit it to 1.5°C (UNFCCC, 2015).

Defining a climate target for the Agriculture, Forestry and Other 
Land Uses (AFOLU) sector depends on the share of the burden 
assumed by other sectors, as well as on the choice of metric used to 
express the various GHGs emitted by agriculture, which differ widely 
in their atmospheric lifespans and radiative efficiencies (Cain et al., 
2019). Given that no common emission metric is widely accepted, 
we propose to define a climate target per GHG type. To integrate 
different decarburization pathways across sectors, we propose using 
the interquartile ranges available to the AFOLU sector resulting from 
the IPCC’s ensemble of integrated 1.5°C scenarios of the Special 
Report on Global Warming of 1.5°C (IPCC, 2018): a 24–47% 
reduction of CH4 emissions, and between a 21% reduction and 
stabilization of N2O emissions, relative to 2010, and neutrality for CO2 
emissions (Huppmann et al., 2019).

2.4 Water withdrawal

In under 1% of the Earth’s surface, freshwater habitats host around 
10% of all known species of animals and vascular plants, including one 

third of all vertebrates, and many endemic species (Balian et al., 2008). 
Primarily driven by pollution (see parts 5. and 6. below on pesticide 
and nutrient pollution), habitat degradation, and altered flow regimes, 
freshwater habitats are witnessing the most rapid decline in 
biodiversity across all ecosystem types (WWF, 2022).

Consuming over 70% of all human withdrawal of freshwater, 
irrigation represents the largest user of freshwater globally (Siebert 
and Döll, 2010). Water withdrawal reduces rivers’ flows, and the 
construction of dams to regulate stream flows, for irrigation and other 
uses, has fragmented 75% of the world’s main rivers (Pastor et al., 
2014). The construction of dikes, levees, and channels threatens 
floodplain ecosystems (Serra-Llobet et al., 2022). The impoundment 
and depletion of river flows have contributed to the widespread 
degradation of aquatic ecosystems around the globe and are significant 
drivers of the collapse of freshwater biodiversity (Vörösmarty 
et al., 2010).

River flow regimes are widely considered the “master variable” 
affecting riverine ecological dynamics. Alterations to streamflow 
include changes in the magnitude, duration, timing, and frequency of 
high and low flows, and of extreme events like flooding and drought 
(Poff and Zimmerman, 2010). They have direct effects on biodiversity, 
as hydrodynamic forces act on organisms and affect their relative 
ecological success (e.g., changes to the energy cost of underwater drag, 
affected dispersal), as well as indirect effects, by modifying biotic and 
abiotic habitats (e.g., distribution of sediment particles, distribution of 
organisms entailing altered biotic interactions) (Hart and Finelli, 
1999). Altered flow regimes tend to shift community compositions 
toward more generalist species, and favor colonization by non-native 
species. Further, the survival of aquatic species usually requires a 
minimum flow to be maintained throughout time, and wetlands and 
floodplains depend upon a stable flooding regime (Pastor et al., 2014).

92% of studies assessed in Poff and Zimmerman’s (2010) meta-
analysis found negative effects of flow alteration on riverine or riparian 
ecosystems. Observed changes in stream ecosystems include, among 
others, the loss of endemic, native and sensitive species, reduced 
reproduction and recruitment, disruption of spawning cues, altered 
species assemblages and dominant taxa, and increases in non-native 
species. In riparian ecosystems, shifts in community composition, 
increases in exotic species, and reduced germination of seeds and 
plant growth are reported. Changes in the average and short-term 
variation of river discharge were found to consistently reduce fish 
abundance and diversity. Moreover, changes in the total river 
discharge or minimum flows were generally associated with a decline 
in macroinvertebrate abundance and diversity. No consistent 
responses of species diversity and abundance to reduced flood peaks 
was found in riparian ecosystems, which may be partially explained 
by changes in species assemblages: in some cases, species numbers 
increased with the terrestrialisation of the riparian community (Poff 
and Zimmerman, 2010).

Given the taxonomic and regional variability of ecological 
responses to flow alterations, as well as the paucity of available data, 
and the nonlinearity of ecohydrological relationships, defining simple 
threshold relationships between freshwater biodiversity and flow 
metrics that can be used at large scales has not been possible (Poff and 
Zimmerman, 2010; Pastor et al., 2014). Local environmental flow 
requirements (EFRs), i.e., the amount of water needed by freshwater 
and estuarine ecosystems to maintain their ecological functions and 
services (Bribane Declaration, 2007), are considered the best proxy to 
freshwater biodiversity conservation (Pastor et al., 2014). The variable 
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monthly flow method (VMF) has been shown to be appropriate for 
large-scale assessments, as it correlates strongly with locally-calculated 
EFRs (Pastor et  al., 2014), and has already been used to assess 
maximum water withdrawals allowed for irrigation to stay within 
EFRs (see Jägermeyr et al., 2017). We propose to critically limit water 
withdrawal to the portion of flow available after ensuring local 
environmental flow requirements. Other sectors contributing to water 
withdrawal (i.e., household, industry, and power plants) should 
be accounted for when back-calculating water available for irrigation 
(Jägermeyr et al., 2017).

2.5 Pesticide pollution

Pesticides are toxic bioactive substances including herbicides, 
insecticides, nematicides, fungicides, and soil fumigants. Their effects 
on non-target organisms, populations, and whole communities, both 
within and outside of fields, have become a clear major driver of 
biodiversity loss globally.

A pan-European study assessing the multiple components of 
agricultural intensification in wheat fields found that the use of 
insecticides and fungicides had the most consistent negative effects on 
the diversity of wild plants, ground beetles, and birds (Geiger et al., 
2010). Detrimental effects of insecticides, fungicides, and herbicides 
have also been reported on soil fauna and bacterial communities 
(Bünemann et  al., 2006; Baxter and Cummings, 2008). Systemic 
insecticides, in particular, which have become predominant in 
farmlands around the world in the past 2 decades (DiBartolomeis 
et al., 2019), have proven highly toxic to a broad range of taxa, from 
microbes to insect pollinators, terrestrial and aquatic invertebrates, 
fish, birds, mammals, and amphibians, starting at low and acute doses 
(Pisa et  al., 2021). Indirect effects of pesticides cascading across 
trophic chains and affecting entire populations, communities, and 
ecosystem services have also been reported (Hawes et  al., 2003; 
Boatman et al., 2004; Köhler and Triebskorn, 2013; Gibbons et al., 
2015; Sánchez-Bayo, 2021).

Services and functions of agroecosystems are compromised by the 
application of these compounds, which are consistently found to 
hamper biological pest control (Geiger et al., 2010), pollination (Potts 
et al., 2010), and nutrient recycling and plant nutrition (Giovannetti 
et al. 2021). Before lethal effects happen, lower doses of pesticides can 
produce sub-lethal effects that also affect biodiversity and ecosystem 
services, such as compromising the immune system of honeybees and 
rendering them vulnerable to disease (Potts et al., 2010). Further, 
interaction of different pesticides can cause additive and synergistic 
negative effects on species, lowering critical doses manyfold (e.g., 
Biddinger et al., 2013).

Finally, pesticides’ impacts on biodiversity extend far beyond 
agricultural fields. The rapid collapse of entomofauna that has been 
recently reported around the globe, even within natural protected 
areas, has been largely attributed to the application of pesticides in 
agricultural landscapes (Hallmann et al., 2017; Sánchez-Bayo and 
Wyckhuys, 2019), which travel far and wide across the globe (Lode 
et al., 1995; Simonich and Hites, 1995).

Although clearly proven, the effects of pesticides on biodiversity 
and ecosystem services are non-linear, strongly dependent upon the 
type of compounds, their application regimes, their interactions, 
biogeographical features (Sabatier et al., 2013), and lethal doses vary 

widely even within taxonomic groups (e.g., Pisa et al., 2015). Defining 
a safe critical biodiversity load for pesticides is not possible. While 
current inputs of pesticides (i.e., 100% in high use regions such as the 
EU) are not compatible with biodiversity conservation, their total 
removal (i.e., 0%) is not justified as a necessary condition for effective 
biodiversity conservation.

Given this uncertainty, we therefore propose applying a midpoint: 
a global limit corresponding to less than 50% of the EU’s average 
pesticide input per hectare, all types together. A subsequent, more 
precautionary limit could range lower than the midpoint. Additionally, 
particularly harmful compounds like systemic insecticides would 
be removed, and pesticide use efficiency would be increased through 
the use of more selective and efficient pesticides and application 
equipment, and training farmers on best practices.

2.6 Nutrient pollution

Synthetic and mineral fertilizers have dramatically increased the 
load and changed the stoichiometry of the Earth’s N and P flows 
(Peñuelas et al., 2020). These nutrients are key limiting factors to plant 
growth, so their input can alter ecosystem dynamics at multiple levels.

In aquatic ecosystems, nutrient inputs can cause direct toxicity on 
fauna, water acidification, and can lead to eutrophication and 
consequent algal blooms, proliferation of toxic algae, water turbidity, 
and depletion of deep-water oxygen; which are detrimental to a broad 
range of species across trophic levels and threaten to drive entire 
ecosystems to their collapse (Smith, 2003; Camargo and Alonso, 2006).

In terrestrial ecosystems, ecological niche theory states that 
addition of limiting factors to an ecosystem can decrease the number 
of coexisting species, as it reduces the niche dimensionality (i.e., its 
number of constraints; Tilman and Lehman, 2001). Indeed, 
experimental studies find that nutrient inputs alter plant species 
communities over time: they shift toward ecological dominance by a 
few competitive species and exclude species adapted to low fertility, 
consequently decreasing overall species richness (e.g., Harpole and 
Tilman, 2007; Billeter et  al., 2008; Clark and Tilman, 2008). As 
oligotrophs are rarer, a widespread shift favoring eutrophic species 
may cause a homogenization of communities across landscapes (Roth 
et al., 2013). High concentrations of N gases and of reduced-N forms 
(ammonia and ammonium) in the soil can also cause direct toxicity 
to sensitive plant species and increase their vulnerability to secondary 
stressors, and long-term accumulation of N to soils can cause 
acidification and consequently hamper plant growth (Bobbink 
et al., 2010).

Finally, anthropogenic shifts in the N:P ratios across terrestrial 
and aquatic ecosystems alter species competition across taxa and have 
cascading effects on communities (Peñuelas et al., 2020): while the 
effects on terrestrial communities remain unclear, N:P ratios are 
negatively associated with the diversity of zoo- and phytoplankton in 
marine and freshwater ecosystems, particularly in lakes.

The relative importance of N and P limitation for eutrophication 
is an ongoing controversy. N has long been considered most important 
as a limiting factor in terrestrial and marine ecosystems (Vitousek and 
Howarth, 1991; Soons et al., 2017), while P limitation is considered 
more important in lakes (Schindler et al., 2016). However, although 
some ecosystems respond more strongly to the input of one or the 
other nutrient, co-limitation by both nutrients is found to some extent 
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across all ecosystems (Elser et al., 2007; Bratt et al., 2020). As the 
debate is not yet settled, we propose limiting both N and P for all 
ecosystem types.

Agricultural N and P pollution arises when a fraction of the 
nutrients’ surplus (i.e., the nutrients that are not taken up by plants) 
are lost through water or air transport. Sources of reactive N and P 
include synthetic and organic (e.g., compost, green manure) fertilizers, 
livestock manure applied to cropland or deposited in grasslands, and 
livestock manure management in barns and feedlots, and different 
sources vary in their susceptibility to give away nutrients to the air and 
water. The limits identified below do not apply to a specific source, but 
to the cumulative inputs from all sources, minus naturally-occurring 
denitrification in the case of N, and P accumulation in soils. Further, 
they apply and limit all farming systems, including crops and livestock. 
Finally, non-agricultural sources of N and P deposition and runoff 
also exist, including urban losses, industry, food waste, biomass 
burning, or natural vegetation (Morée et al., 2013; Sapek, 2013), and 
should be accounted for in the back-calculation of critical inputs.

2.6.1 Nitrogen

2.6.1.1 Atmospheric deposition of NOx and NH3

N is lost to the atmosphere in the form of nitrous oxide (N2O), 
nitrogen oxides (NOx), and ammonia (NH3). The two latter can then 
be deposited up to thousands of kilometers away from their source 
and affect ecosystems through their fertilization. Research on the 
effects of atmospheric N deposition on terrestrial ecosystems over the 
past four decades has given way to the concept of critical N loads: N 
inputs below which plant species diversity is not significantly affected 
(Bobbink et al., 2010). Critical loads vary across ecosystem types, but 
they remain uncertain for many regions beyond Europe and North 
America. They can be determined empirically, through N-addition 
field experiments or mesocosms, or through modeling, with integrated 
dynamic soil and multi-plant species models (de Vries et al., 2007).

Ideally, we  would back-calculate maximum agricultural N 
volatilization per ecoregion, based on the corresponding critical N 
loads (de Vries et  al., 2007). However, due to methodology being 
variable across sites (de Vries et al., 2007), lack of data for some biomes 
(Bobbink et al., 2010), variability in the distance NOx and NH3 gases 
travel, and potential underestimations of the effects of long-term 
accumulation of chronic low N inputs (Clark and Tilman, 2008), as 
well as synergic effects with P (Schleuss et al., 2020), we propose a 
simplified approach. de Vries et  al. (2021) apply a constant 
precautionary critical load across all ecosystem types in Europe, 
obtained through modeling (de Vries et al., 2007): a N concentration 
in soil solutions equal or lower than 3 mg.L−1 for forests and 3.5 mg.
L−1 for semi-natural vegetation may prevent changes in plant species 
communities. Until finer data are available, we propose to use these 
critical N loads globally, to back-calculate local maximum N 
volatilizations, and deduct critical N inputs depending on the mix of 
nutrient sources used.

2.6.1.2 Runoff of N
N is also lost from the farm through the water in the inorganic 

forms ammonium (NH4
+), nitrite (NO2

−), and nitrate (NO3
−). 

Through surface runoff and underground leaching, a fraction of the 
excess reactive N that is not taken up by plants ends up in surface 
waters of freshwater ecosystems and coastal zones (Bodirsky et al., 

2014). The resulting eutrophication and acidification pose a threat 
to biodiversity.

As for the maximum N volatilization, we  propose to back-
calculate maximum agricultural N inputs based on critical inorganic 
N concentrations [N] (dissolved plus particulate N) (de Vries et al., 
2007). In the largest global assessment of the toxicological and 
ecological effects of inorganic nitrogen pollution in aquatic 
ecosystems, Camargo and Alonso (2006) proposed a critical limit of 
total [N] in surface waters at 0.5–1.0 mg.L−1, below which 
eutrophication, acidification, and direct toxicity of nitrogenous 
compounds may be prevented. In another study reviewing national 
water quality objectives of rivers around the world (Liu et al., 2012), 
2.5 mg.L−1 was identified as the average maximum allowable inorganic 
[N]: about twice the natural concentrations.

We propose applying a global critical limit of inorganic [N] in 
freshwater exports of 2.5 mg.L−1, based on Liu et al. (2012). The limit 
could be 0.5 mg.L−1 for stagnant systems (i.e., lakes, reservoirs), based 
on Camargo and Alonso (2006). These critical limits can be used to 
back-calculate local critical N runoffs and N inputs, depending on 
geographical specificities and the mix of nutrient sources used.

2.6.2 Phosphorus runoff
P is lost to runoff through the erosion of enriched soil and 

circulates mostly in particulate forms (Bennett et al., 2001; Liu et al., 
2012). The availability of P in surface runoff depends on many factors, 
including the exposure of soils to erosion, topography, the state of P 
in different soil compartments, and the lability of different types of 
P. The complexity of the P cycle consequently results in models with 
different levels of complexity (e.g., Carpenter and Bennett, 2011; 
Ringeval et  al., 2017; Lun et  al., 2018), and it poses additional 
difficulties to back-calculate critical P inputs from identified critical 
loads compared to N.

Based on Carlson’s index of eutrophication (Carlson, 1977), 
Carpenter and Bennett (2011) propose a critical [P] of 0.024 mg.L−1 
for lakes and reservoirs, as a boundary between mesotrophy and 
eutrophy. Further, Carpenter and Bennett (2011) estimate a 
pre-industrial [P] for rivers of 0.16 mg.L−1, calculated using 
pre-industrial weathering and discharge rates from Bennett et  al. 
(2001). Liu et al. (2012) propose doubling the natural P concentrations 
in rivers as maximum concentrations, like for [N]. However, they find 
higher natural [P] (0.51 mg.L−1) than Carpenter and Bennett’s (2011) 
pre-industrial estimate.

We propose a global critical [P] in freshwater exports 
corresponding to the double of pre-industrial [P]: 0.32 mg.L−1, based 
on Carpenter and Bennett’s (2011) estimate. For lakes, reservoirs, and 
stationary systems, a lower estimate may be used, such as Carpenter 
and Bennett’s (2011) eutrophication limit at 0.024 mg.L−1. Local 
critical P runoffs and inputs can be back-calculated for any given 
source mix and geographic conditions.

2.7 Landscape complexity

The intensification of agricultural practices has led to a 
simplification of farmed landscapes. Chemical inputs and 
mechanization have allowed for the increasing size of fields, their 
specialization, the shortening of crop rotations, and the loss of 
unfarmed patches within fields and across landscapes (Aguilar et al., 
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2015; White and Roy, 2015). This homogenization has negatively 
impacted farmland biodiversity (Benton et al., 2003; Fahrig et al., 
2010; Kremen and Miles, 2012), indirectly and negatively affecting the 
productivity of agroecosystems through the loss of ecosystem services 
(Dainese et al., 2019), as well as wild species using the agricultural 
matrix for refuge, feeding, nesting, dispersal, or any other need 
(Perfecto and Vandermeer, 2010).

Restoring the complexity of farmlands can significantly increase 
the biodiversity of both ecosystem service providers as well as species 
of conservation concern, within fields and across the landscape 
(Kremen and Merenlender, 2018; Estrada-Carmona et  al., 2022). 
Increasing the variety of resources and habitats available across time 
and space may benefit species requiring multiple resources throughout 
their life cycles (i.e., landscape complementation), allow species with 
similar requirements to co-exist (i.e., resource partitioning), and host 
more specialist species (Fahrig et al., 2010; Sirami et al., 2019). The 
configuration of fields into a diverse crop mosaic connected through 
corridors of semi-natural habitats is further expected to facilitate the 
colonization, movement, dispersal, and persistence of species across 
the landscape (Perfecto and Vandermeer, 2010), as well as their 
contribution to farming through services like pollination and pest 
control (Alignier et al., 2020).

We consider three variables that encompass agricultural 
landscapes’ spatial and temporal complexity (Estrada-Carmona et al., 
2022): landscape composition, configuration, and heterogeneity. 
Composition and configuration include the extent and spatial 
arrangement of uncultivated vegetation, agroecological infrastructures 
(e.g., hedgerows, ditches, ponds, flower strips, trees, and stone walls), 
and grazed grasslands kept at an animal density equivalent to the 
ecosystem’s carrying capacity (Bengtsson et  al., 2005). Further, 
landscape heterogeneity includes the diversity of cultivated crops 
across space, and their rotations over time.

2.7.1 Semi-natural habitats within croplands
More than half of all species found in agricultural landscapes are 

dependent upon natural or semi-natural habitats, including some 
important groups like bees and wasps that are almost fully dependent 
(Duelli and Obrist, 2003; Lüscher et al., 2016). Increasing the area of 
semi-natural habitat in agricultural landscapes is seen as one of the 
most effective ways of enhancing their biodiversity and is found to 
be a good proxy for overall biodiversity in models (e.g., Hietala-Koivu 
et al., 2004; Montoya et al., 2020).

Semi-natural cover is found to correlate to a multitrophic diversity 
index accounting for vascular plants, bees, butterflies, hoverflies, 
carabids, spiders, and birds (Sirami et al., 2019), to wild plants’ alpha, 
beta, and gamma diversity within fields (Alignier et al., 2020), and to 
species richness and Simpson’s diversity index of vascular plants, 
birds, and arthropods (Billeter et al., 2008). The largest meta-analysis 
conducted to date on the effects of landscape complexity on 
biodiversity found significantly higher diversity of vertebrates, 
invertebrates, and plants in farmland with higher compositional and 
configurational heterogeneity (Estrada-Carmona et  al., 2022). 
However, it is important to note that most of the evidence found 
comes from field studies located in Europe and North America.

Although large tracts of natural or semi-natural vegetation are 
usually considered more important for the conservation of sensitive 
and rare species (Ekroos et al., 2014), smaller patches within fields also 
host rare and threatened species (Wintle et al., 2018) and are most 

important at ensuring biodiversity and provisioning of ecosystem 
services within fields, as most pollinators forage within a range of 1 km 
from their nests (Rands and Whitney, 2011).

A semi-natural vegetation (SNV) area ≥ 20%.km−2 has been found 
as the minimum extent needed for the provisioning of nature’s 
contributions to people, both for pollination and seed dispersal 
(Garibaldi et  al., 2021), and studies on the impacts on other 
contributions are under way. Other studies find that the positive 
effects of crop diversification on biodiversity only arise after 
SNV > 10% and are strongest at SNV up to 20%, as posited by the 
intermediate landscape complexity hypothesis (Hass et  al., 2018; 
Sirami et al., 2019; Montoya et al., 2020).

We propose to keep at least 20%.km−2 of croplands as semi-natural 
vegetation, in the form of both uncultivated patches and agroecological 
infrastructures. For biodiversity to benefit from SNV, it should include 
different habitat types, at least woody (woodland and hedgerows) and 
grassy (permanent and temporary grasslands; Duflot et al., 2014), and 
habitat compositions and structures suitable for native species 
communities (Thies et al., 2011; Garibaldi et al., 2021).

2.7.2 Crop rotations and cover crops
The seasonal variation in the habitats and resources available is 

another important dimension for species, which may have changing 
requirements over time and throughout their life cycles (Benton et al., 
2003). Monocropping systems have shortened or suppressed crop 
rotations, and become spatially uniform at any one time, while 
complex crop rotations (i.e., longer cycles and more different crop 
types) create heterogeneity over time.

Crop rotations have been proven to increase soil microbial 
diversity (Venter et al., 2016) and ground beetle diversity (Gailis et al., 
2017), and cover crops significantly improve biological pest and 
disease control (Beillouin et al., 2021). A meta-synthesis looking at the 
effects of crop diversification on the wildlife associated to farmland 
found that crop rotations and cover crops are, on average, associated 
with 37% [16–62%] and 21% [17–25%] higher biodiversity levels, 
respectively (Beillouin et al., 2021).

As no level of complexity for crop rotations is identified as optimal 
for biodiversity, we propose to use organic crop rotations as a minimal 
target for biodiversity. The average crop rotation for organic systems 
around the globe is described by Barbieri et al. (2017): rotations last 
4.5 ± 1.7 years, include four different crop categories, and are composed 
of more temporary fodder, pulses, and secondary cereals, and fewer 
primary cereals, than conventional rotations. Further, we propose 
planting a mix of cover crops, including legumes, grasses, and forbs, 
everywhere possible between main crops and in field margins, 
maintaining soil covered year-round.

It is important to note, however, that the majority of data 
informing these averages comes from Europe and North America 
(Barbieri et al., 2017), and this target should be revisited as soon as 
data from other regions becomes available.

2.7.3 Crop diversity
Many species living in agricultural landscapes depend on farmed 

fields for foraging and nesting (e.g., Holzschuh et al., 2013; Raymond 
et al., 2014). Heterogeneity within fields created by crop diversity, 
including different species, cultivars, and functional traits (Jones et al., 
2021), can thus provide resources and facilitate resource partitioning 
and a greater co-existence of species (Benton et al., 2003).
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The number of crop types grown simultaneously within a field has 
been found to be associated with significantly higher species richness 
of arthropods, most strongly bees, carabids and bugs (Billeter et al., 
2008), and with a higher multitrophic diversity index (Sirami et al., 
2019). Further, the density of crop-crop borders may be associated 
with higher abundance and movement of pollinators within fields 
(Hass et al., 2018). In their meta-analysis of meta-analyses, Beillouin 
et al. (2021) found that agroforestry systems host 61% [25–105%] 
higher biodiversity levels than monocultures. Further, 7% [3–12%] 
higher biodiversity is found when multiple crops are grown 
simultaneously in intercropping systems (Beillouin et al., 2021).

It may not be  possible to implement intercropping and 
agroforestry everywhere, because it requires having enough of each 
crop to interplant in regional crop mixes. Further, agronomic 
constraints also exist, for instance inundated rice cannot easily 
be mixed with legumes, as none tolerates inundation. We propose 
intercropping as many cereal and leguminous crops as possible 
consistently with regional crop mixes. Perennial crops should 
be grown in agroforestry systems, and vegetables and other crops 
should be grown in multi-cropping systems that are integrated with 
agroforestry systems whenever possible.

2.8 Grassland management

Intensive management of pastures, characterized by the use of 
fertilizers and high livestock densities, have caused important declines 
in plant communities, with cascading effects on arthropods and 
farmland birds (Vickery et  al., 2001). Conversely, non-fertilized 
grasslands and silvopastoral livestock systems, where extensive grazing 
or mowing are needed to avoid the encroachment of trees, can host 
high levels of biodiversity [e.g., in boreal (Herzon et  al., 2021), 
temperate (Pärtel et al., 2005), and tropical (Murgueitio et al., 2011) 
climates].

Studies around the world have found contradictory effects of 
grazing activity on the abundance and diversity of species, as they 
depend upon the studied scale, taxonomic group, climate, and grazing 
intensity (Liang et al., 2021). A global meta-analysis aggregating all 
grazing regimes together found negative effects of grazing on the 
abundance of plants and vertebrates, and the diversity of invertebrates 
(Filazzola et al., 2020). However, when distinguishing between grazing 
intensities, another meta-analysis found significantly positive effects 
on plant and soil microbial diversity at low and moderate grazing 
intensities, followed by a drop at heavy grazing (Wang and Tang, 
2019). This bell-shaped curve of diversity along the gradient of grazing 
intensity is described by the intermediate disturbance hypothesis of 
classical ecological theory, which posits that diversity should peak at 
moderate grazing intensities. Not all taxa followed this trend in Wang 
and Tang’s (2019) results: arthropods consistently declined with 
grazing, which was explained by the reduced shelter resulting from the 
decline in plant biomass and ground cover. Finally, another study 
found positive effects of grazing on arthropods across five European 
countries, when control of wild or domestic herbivore populations in 
rewilding systems led to densities equivalent to less than 1.5 times the 
ecosystems’ carrying capacities (Van Klink and WallisDeVries, 2018).

This evidence suggests that pastures can host high biodiversity 
levels when management mimics natural grassland conditions. 
Therefore, we  propose that grasslands are not fertilized, and that 

livestock densities in grassland-based ruminant systems are limited to 
the ecosystems’ carrying capacities (set to the vegetation’s net primary 
productivity (NPP), multiplied by a utilization rate of aboveground 
biomass through grazing, and possibly modified for slope like done by 
de Leeuw et al. (2019)).

3 Discussion

3.1 The agricultural boundaries framework 
compared to existing agronomic systems

3.1.1 Beyond organic agriculture
The defined system shares some similarities with organic farming 

and draws from its experience. For instance, our boundary for crop 
rotations is based on the functioning of organic systems around the 
world. However, our framework goes beyond organic agriculture in 
terms of biodiversity conservation as well as productive capacity.

While our system is based on the multivariate effects of agriculture 
on biodiversity, organic agriculture is based on the independence from 
synthetic inputs (which our system tolerates under critical limits for 
biodiversity). Thus, the framework of organic farming addresses 
certain biodiversity stressors stemming from agriculture (i.e., nutrient 
and pesticide pollution, landscape homogenization), but others may 
persist in these systems (e.g., agricultural expansion, GHG emissions, 
water withdrawal, livestock overstocking, and lack of fine-scale semi-
natural habitats). Therefore, while organic farms tend to host higher 
biodiversity levels than conventional ones (e.g., Mäder et al., 2002; 
Benton et al., 2003; Bengtsson et al., 2005; Tuck et al., 2014), using the 
organic agronomic system to simulate biodiversity-friendly 
agricultural landscapes (e.g., Hodgson et  al., 2010) overlooks 
important factors and does not explore the full biodiversity potential 
of agroecosystems. Further, higher crop yields can be  obtained 
through ecological intensification (Gurr et al., 2016; Tamburini et al., 
2020), i.e., optimizing yields by maximizing supporting (e.g., soil 
fertility) and regulating (e.g., pollination, pest control) ecosystem 
services within fields while minimizing external inputs (Bommarco 
et  al., 2013), as our framework does, with quantified limits and 
thresholds, and integrating all biodiversity beyond ecosystem 
service providers.

3.1.2 Operationalizing agroecology for 
biodiversity conservation

Our framework fits well within the agronomic principles that 
define agroecology (FAO, 2018; HLPE, 2019). Given our focus on 
biodiversity conservation across farmlands, our conceptualization 
mostly draws from the study of agroecology as a science and practice, 
and leaves out considerations of agroecology as a social movement 
(Wezel et al., 2020).

There have been efforts to characterize agroecological systems, 
operationalize these principles and identify levers that can be used to 
facilitate agroecological transitions. The Characterization of 
Agroecological Transitions (CAET) (FAO, 2019b) presents a set of 
criteria that allow us to assess an abstract agricultural system that 
would be based on our framework on 13 criteria (among the 37 CAET 
criteria) that we consider to be  relevant for agricultural practices. 
Based on our own analysis, resilience score is unknown, use of 
pesticides score is average, five criteria get high scores (crop diversity, 
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diversity of perennials, soil–plant management, integration with trees, 
and connectivity). Five criteria cannot be  directly rated but are 
indirectly taken into account: the three criteria crop-livestock 
integration, management of fertility, and nutrient recycling are 
indirectly considered through limits on fertilizer pollution; the criteria 
on water use efficiency is indirectly in limits on water withdrawal; and 
the criteria on energy use is, to some extent, related to limits on GHG 
emissions. Livestock diversity is not considered in our framework and 
crop-livestock integration is only considered indirectly through its 
effect on fertilizer pollution, but considerations on grassland 
management and area used or yield appear only in our framework. 
Since we are focused on biodiversity, we do not cover all the criteria 
of the CAET framework, but when rating is possible, we consider our 
framework to be consistent with the characterization of Agroecology 
embedded in the CAET criteria.

Further, Côte et al. (2022) presented a list of biotechnical levers, 
referring to the design of agroecosystems, including “mixing of 
plants at the plot scale,” “diverse rotations,” “complementarity 
between trees and annual crops,” “ecological corridors,” and “mosaic 
organization at the landscape level,” which are all included in our 
framework. Our study further operationalizes these levers by 
providing evidence and measurable thresholds for the capacity of 
these practices to guarantee the successful integration of biodiversity 
conservation within agricultural systems. While our framework 
defines clear boundaries for each practice or stressor, it can 
encompass a wide variety of different, contextualized agroecological 
systems, as we recognize that these must be adapted to the local 
conditions and resources, and hybridized with the local knowledge 
systems (Côte et al., 2022).

3.2 Comparison with other modeling 
frameworks

3.2.1 A similar approach to other frameworks
A similar framework is proposed for “soil health” by Yang et al. 

(2020), who review the effects of cropping systems on soil. This 
framework is also confronted with the difficulty of finding indicators 
that encompass the multiple dimensions of “soil health” and, instead, 
focuses on the link with practices, as we do. We go one step beyond, 
however, by proposing a set of boundaries that describe a farming 
system that is compatible with the multiple dimensions of 
biodiversity conservation.

Further, the approach used in this study is also in line with “strong 
sustainability” approaches of ecological economics. These consist of, 
in the context of an environmental assessment, expressing different 
environmental dimensions with different measures (rather than a 
common metric), in order to avoid conflicts of values and problems 
of comparison (Martinez-Alier et al., 1998). In particular, the notion 
of critical natural capital involves defining thresholds to ensure the 
sustainable maintenance of environmental functions (Ekins 
et al., 2003).

3.2.2 Limitations of the biosphere integrity 
planetary boundary for assessing the biodiversity 
impacts of agriculture

The planetary boundaries (PBs) framework is useful for assessing 
the broad, multivariate impacts of human activities on Earth systems 

stability. However, many PBs interact with one another, as is the case 
for biodiversity (Mace et  al., 2014; Lade et  al., 2020), and these 
interactions and cumulative effects on biodiversity are not captured 
by the PBs framework. A scenario may stay within the biosphere 
integrity boundary, but at the same time transgress other boundaries 
that also impact biodiversity (e.g., Foley et al., 2011; Tilman et al., 
2011), therefore only partially addressing the collapse of biodiversity. 
Further, the use of indicators of biosphere integrity like the BII and 
extinction rate makes this planetary boundary blind to the biodiversity 
of farmlands (Steffen et al., 2015). We propose that our framework of 
agricultural boundaries for biodiversity can better account for the 
multiple stressors and dimensions of biodiversity in the context of 
agricultural systems (see Figure 2) than the PBs framework.

3.3 Limits and gaps of our approach

3.3.1 Elements not accounted for in our 
framework

3.3.1.1 Soil disturbance
The pressure of soil disturbance on biodiversity was not 

accounted for in the framework because evidence remains ambiguous 
in the literature and does not allow to identify a boundary. Tillage can 
have direct effects on soil biodiversity through mechanical harm to 
organisms, as well as indirect effects, through the alteration of the soil 
habitat (e.g., reduced structure and soil organic matter in surface soil) 
(de Graaff et al., 2019). A meta-analysis found that tillage significantly 
reduced soil faunal diversity by 22% (de Graaff et al., 2019). Large 
arthropods like earthworms are known to be most affected by tillage, 
however, the effects may still vary widely between species, including 
some that may even benefit (Chan, 2001). De Graaff et al. (2019) also 
found a moderate reduction in bacterial diversity as a response to 
tillage, but no effects on soil fungi, which showed variable responses 
to soil disturbance, ranging from negative to positive effects. Other 
studies have found no effects of tillage intensity on soil microbial 
richness, but a significant shift in their community composition, 
although less important across tillage intensities than across land use 
types (Frøslev et al., 2022). While we can confidently say that tillage 
affects overall soil biodiversity, generally negatively, the literature 
remains ambiguous and does not allow us to identify a clear threshold 
based on the data of biodiversity responses. Moreover, the use of 
heavy machinery in farmlands can cause soil compaction, affecting 
the structure of soil habitats and their biodiversity. However, like for 
tillage, the literature does not find clear effects of compaction on soil 
biodiversity and functions, with both positive and negative effects 
being found across a range of compaction levels, and data from field 
experiments does not allow to identify threshold values for the 
conservation of soil biodiversity (Beylich et al., 2010).

Despite the limitations to finding clear boundaries for soil 
disturbance, because of the intrinsic heterogeneity of soils and their 
species communities, our framework does take into account the 
biological component of soils. Other boundaries proposed, including 
crop diversification, intercropping, rotations, and uncultivated patches 
within agroecosystems, are all key determinants of “soil health” and, 
in particular, create a diversity of microhabitats and enhance soil 
microbial communities and functional complementarity (Yang 
et al., 2020).
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3.3.1.2 Nutrient pollution within fields and on marine 
coastal areas

Although nutrient addition affects the composition and diversity 
of weed species communities in fields (Pyšek and Lepš, 1991) and has 
widely variable effects on soil biodiversity (de Graaff et al., 2019), 
we did not account for the impacts of nutrient inputs on within-farm 
biodiversity. We only considered the impacts of nutrient spillovers 
beyond the fields because available soil space within fields was 
allocated to crops and cover crops in our framework, which are all 
managed (i.e., not subject to ecological competition dynamics).

Further, we only control for the effects of nutrient pollution on 
freshwater biodiversity. The identified critical [N] and [P] limits apply 
only to freshwater ecosystems, as marine coastal ecosystems respond 
differently. Although limiting runoff to freshwater should already have 
a significant effect on coastal waters, this component could 
be explicitly included in the framework in the future.

3.3.1.3 P deposition
As P does not have a stable gaseous phase in the atmosphere, its 

emissions and deposition are mainly limited to aerosols (Mahowald 
et al., 2008). The contribution of agriculture to atmospheric P is low, 
mainly limited to the burning of biomass like crop residues (Wang 
et al., 2015). Further, the impacts of P deposition on biodiversity are 

not mentioned much in the literature. Intentional biomass burning 
has already been banned across much of the world (Huang et al., 
2021), because of its contributions to climate change, hazardous 
particulate pollution (Adam et al., 2021) and loss of nutrients (N'Dri 
et al., 2019). Additional contributions of agriculture to atmospheric P 
could come from fertilizer factories (Mahowald et al., 2008) and from 
dust emissions from land-use change (Wang et  al., 2015), but 
information is lacking to quantify those sources. These potential P 
sources would be highly constrained by the boundaries on P runoff, 
land-use change and cover crops.

3.3.1.4 Fishing and aquaculture
Aquatic systems like fishing and aquaculture were not considered 

because our focus was on terrestrial biodiversity. For fishing, an area-
based conservation boundary could be  proposed, like for the 
agricultural area, at around 30% of marine habitats (O’Leary et al., 
2016). However, as in land, fishing exerts multivariate pressures on 
aquatic biodiversity that should also be  accounted for, including 
particularly destructive fishing practices like bottom trawling (Kaiser 
et al., 2002), overfishing of keystone species, endangered stocks, or 
slow-growing organisms (Daskalov, 2002; Morato et al., 2006), and 
pollution with fishing gear and ghost nets (Richardson et al., 2019). 
Aquaculture also exerts a multitude of biodiversity pressures that 

FIGURE 2

The agricultural boundaries for biodiversity. Red boundaries are pressures that need to be contained under a critical limit, while green boundaries are 
key determinants of biodiversity across farmlands that need to be maintained at or over a minimal threshold or management regime.
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should be accounted for, including nutrient pollution, proliferation of 
diseases and parasites, the application of antibiotics and hormones, 
the escape of farmed fish and the consequent genetic alterations of 
wild populations, or the destruction of multifunctional coastal 
ecosystems like mangroves (Diana, 2009). Therefore, as we did for the 
agricultural system, to define a fishing and fish farming system that 
can ensure the effective conservation of aquatic biodiversity, all key 
multivariate pressures should be accounted for.

3.4 Potential uses of AG boundaries 
framework

3.4.1 To assess the potential of 
biodiversity-friendly agriculture to meet multiple 
needs

This framework can be implemented in biomass-balance models to 
assess the “biophysical option space” to feed the world while effectively 
conserving biodiversity. This will allow to move beyond agricultural 
scenarios that assess the impacts on biodiversity only partially (such as 
the studies mobilized in the land-sparing vs. land-sharing debate), to 
scenarios that tackle the multivariate pressures of agriculture on 
biodiversity. By simulating an agricultural system constrained by the 
identified boundaries, at global or other large scales, the biophysical and 
economic outcomes of transforming agroecosystems to be compatible 
with global terrestrial biodiversity conservation can be evaluated, which 
has not been possible up to this date.

The coherence between the identified boundaries and the capacity 
of the defined system to meet the external constraints put on the food 
and land systems thus remain to be tested, but we can expect both 
trade-offs as well as synergies. Since our approach integrates elements 
from both land sparing and land sharing strategies, some trade-offs 
are expected, mostly through yield. Critical limits to agricultural area, 
pesticide and nutrient inputs, and water withdrawal, as well as the 
expansion of semi-natural habitats within croplands, and natural 
grasslands’ management, may constrain maximum potential yields 
and total food production. However, other boundaries may contribute 
to alleviating the constrained yields, including the significant positive 
effects on yields of crop diversification (Isbell et al., 2017), particularly 
intercropping (Ponisio et al., 2015; Li et al., 2020; Beillouin et al., 2021) 
and cover cropping (Vendig et  al., 2023). Yields may be  further 
enhanced by the increased regulating ecosystem services (i.e., 
pollination and biological pest control) that result from crop 
diversification and the integration of semi-natural habitats within 
croplands (Gurr et al., 2016; Dainese et al., 2019; Tamburini et al., 
2020; Garibaldi et al., 2021). The implementation of the boundaries 
defined in our framework would enhance biological pest control of 
the conservation type (i.e., managing agroecosystems to naturally 
increase the overall occurrence and efficacy of natural enemies) 
(Wyckhuys et al., 2013; Redlich et al., 2018), but additional types of 
pest control such as augmentative (i.e., increasing the population of a 
natural enemy through direct manipulation for the control of a 
targeted pest) and importation (i.e., introducing the desired predator 
of a pest that did not occur naturally) (Bale et al., 2007), as well as 
input substitution with biopesticides (Ayilara et  al., 2023), could 
further contribute to a pesticide phase down while protecting yields, 
if done under strictly best practices to avoid ecological and social side-
effects (Michaud, 2018). Finally, nutrient limitations resulting from 

reducing the use of external fertilization may be partially alleviated by 
increased biological N fixation, achieved by incorporating leguminous 
plants through crop rotations, intercropping and cover crops (Isbell 
et al., 2017; Tamburini et al., 2020).

Moreover, even if food production is affected, achieving the 
availability pillar of food security will depend on additional factors 
including diets, food waste and loss, and allocation of crops to animal 
feed and biofuel products (Bodirsky et al., 2014, Desquilbet et al., 
2017, Springmann et al., 2018, Barbieri et al., 2022).

An additional external pressure put on the land system is climate 
mitigation, as an increasing share of land is being claimed for land-
based C capture through, for instance, BECCS, afforestation and 
reforestation (IPCC, 2018), and there is an increasing demand for 
biomass to substitute fossil-C based energy or material (Searchinger 
et al., 2022). Our boundary on natural grasslands management, which 
proposes to maintain pastures grazed by livestock, is a trade-off with 
climate mitigation compared to other scenarios such as afforestation, 
and could result in CH4 emissions exceeding those of decarbonization 
pathways, as well illustrated by the work of Hof et al. (2018). Further, 
the framework needs to be tested to confirm whether the proposed C 
budget can be achieved. While practices are not defined based on their 
contributions to climate mitigation, they can be expected to contribute 
both positively and negatively. Limits to the use of fertilizers and 
pesticides would significantly reduce GHG production emissions, and 
limits to the agricultural area would significantly reduce land-use 
change GHG emissions, although these limits may be difficult to attain 
simultaneously for a given production if limited inputs reduce yields. 
Further, the expansion of semi-natural vegetation (especially woody), 
ecologically-managed grasslands, and the use of cover crops (Vendig 
et  al., 2023), would increase C storage in soils and vegetation, 
compared to croplands and intensive pastures, although expansion of 
semi-natural vegetation could also add pressure on land conversion 
for production elsewhere, if not followed by changes in demand.

Finally, this framework could be used to explore two additional 
questions. Firstly, simplified, high-input agricultural systems are 
extremely vulnerable to climate variability, while diversified systems like 
the one we have defined are more resilient to perturbations (Lin, 2011). 
Comparing the yield variability of cropping systems based on our 
framework to that of high-input agricultural systems would be  an 
interesting perspective. Secondly, at least 80% of the global arable lands 
are affected by one or several of the five major land degradation processes 
(increasing aridity, soil erosion, salinization, vegetation decline and the 
loss of soil organic C), further threatening global food security and 
biodiversity conservation (Prăvălie et al., 2021). The practices and critical 
limits proposed to enhance agricultural biodiversity may also be key to 
creating more resilient and regenerative systems, as described for 
instance for silvopastoral systems (Murgueitio et  al., 2011). The 
quantitative links of the boundaries to resilience and regeneration could 
be reviewed, and scenarios based on the proposed framework could 
be assessed for their effects on climate adaptation and large-scale soil 
regeneration across the agricultural system, both central questions when 
exploring the possibility of feeding the world in the coming years.

3.4.2 To apply to farmlands as guidelines for 
biodiversity-based management

While this framework can be generalized to the globe or other 
large scales, it would need to be  adapted to local contexts for 
management purposes. For instance, nutrient pollution limits to 
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freshwater ecosystems are relevant for large-scale analysis, but local 
specificities such as other nutrient limitations, other pollutants, 
acidity, water column depth, sedimentation, turbidity, or light 
limitation, should be considered. The framework offers, however, a 
display of the key practices or environmental factors to consider in 
order to enhance biodiversity levels across farmlands, and minimize 
the spillover of pressures beyond their limits. This can be useful for 
regional agricultural landscape planning in the context of biodiversity 
conservation actions.
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