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Radiotherapy is increasingly used to treat numerous human malignancies. In addition to
the beneficial anti-cancer effects, there are a series of undesirable effects on normal host
tissues surrounding the target tumor. While the early effects of radiotherapy (desquama-
tion, erythema, and hair loss) typically resolve, the chronic effects persist as unpredictable
and often troublesome sequelae of cancer treatment, long after oncological treatment has
been completed. Plastic surgeons are often called upon to treat the problems subsequently
arising in irradiated tissues, such as recurrent infection, impaired healing, fibrosis, contrac-
ture, and/or lymphedema. Recently, it was anecdotally noted – then validated in more
robust animal and human studies – that fat grafting can ameliorate some of these chronic
tissue effects. Despite the widespread usage of fat grafting, the mechanism of its action
remains poorly understood.This review provides an overview of the current understanding
of: (i) mechanisms of chronic radiation injury and its clinical manifestations; (ii) biological
properties of fat grafts and their key constituent, adipose-derived stem cells (ADSCs); and
(iii) the role of ADSCs in radiotherapy-induced soft-tissue injury.

Keywords: radiotherapy, adipose-derived stem cells, soft-tissue injury, autologous fat grafting, cancer, radiation,
reconstruction

MECHANISMS OF RADIOTHERAPY-INDUCED SOFT-TISSUE
INJURY
Over 50% of patients diagnosed with cancer (excluding non-
melanoma skin cancer) (1, 2) require Radiotherapy (RTX) for
curative or palliative treatment (3–8). While RTX is classified as a
“non-invasive” treatment modality, dose-delivery is limited by the
capacity of surrounding normal tissues to tolerate radiation expo-
sure (Figure 1). The acute/early side-effects (within 10–14 days)
are most obvious in rapidly proliferating cells such as epithelial
surfaces (epidermis and intestinal or respiratory mucosa) and
bone marrow; and include desquamation, swelling, erythema,
and pain (2, 4, 9). These sequelae are followed by more unpre-
dictable and progressively worsening late-onset chronic side-
effects (months/years after treatment) (10–15). Recent advances
in public awareness, early detection, and adjuvant cancer therapies
have led to significant improvements in cancer survival rates (30%
in recent decades) (2, 5, 16, 17). Consequently, more patients are
living longer with a wider range of chronic RTX-related morbidi-
ties that impair their quality of life and increases their burden of
disease (18); as well as leading to potentially life-threatening com-
plications. Furthermore, in the case of cancer recurrence following
RTX, treatment options become higher-risk and reconstructive
surgical options more limited (19).

While acute manifestations of RTX are due to loss of func-
tional cells through either apoptosis or cell death (20, 21), late RTX
effects are less likely to arise due to these mechanisms (22). Instead,
the initial sub-lethal indirect tissue damage results in an evolving
disruption of key cellular repair mechanisms (23). Stewart et al.

suggested that altered molecular signaling and formation of reac-
tive oxygen species (ROS) cause single-stranded DNA breaks that
repair incompletely, activating premature senescence, or acceler-
ated differentiation pathways (21). According to Haubner et al.
and others, these changes result in delayed RTX side-effects by
further eliciting persistent localized cellular dysfunction, well after
the early tissue reactions have subsided (6, 9, 10, 21, 24–31). Stem
cells within the injured area further recruit myofibroblast-like cells,
which in turn contribute to chronic fibrosis (32, 33).

Meanwhile, Stone et al. hypothesized that in addition to losing
reproductive capacity altogether, irradiated cells harbor sub-lethal
injuries that perpetuate cell dysfunction through ongoing tran-
scription of damaged DNA (9, 34, 35). Therefore, the pathogenesis
of RTX-injury is now considered a continuum of events that prop-
agates damage to surrounding normal tissues, rather than a simple
acute injury that creates an area of scarring (21, 36). Emerging
work further suggests that an organized active biological release
of inflammatory chemokines and cytokines may also establish a
chronic inflammatory state in irradiated tissues (1–8, 10, 21, 24).
Additionally, irradiated tissues also fail to regenerate normally
when subsequently injured i.e., RTX-injury is a disease in and
of itself.

In terms of the specific molecular signals implicated in the
pathogenesis of RTX-injury, up-regulation of the TGFβ signaling
is a mechanism common to numerous conditions of patholog-
ical fibrosis (2–4, 9), including fibrosis following cancer treat-
ments such as radiotherapy or chemotherapy (5, 7, 10–13). Brush
et al. suggest that the impairment of normal healing results in
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FIGURE 1 | Schematic diagram demonstrating tissue absorption of external beam radiation administered in radiotherapy (RTX). The RTX beam
interacts with living tissues resulting in electron excitation, release of energy, and damage to both tumor and normal tissue cells. Normal tissues can absorb up
to 60% of the total RTX dose targeting the tumor. Measurements in (mm) represent distance from skin surface.

compensatory hyper-activation of fibrotic pathways, in order to
maintain tissue structure and integrity (10, 14, 15). Work by Lee
et al. demonstrated persistent TGFβ-1 over-expression in irradi-
ated tissues, even after 6 months (2, 14, 16); alterations that may
in turn influence the function of fibroblasts, endothelial cells,
lymphocytes, macrophages, and platelets (5, 7, 17). Tibbs et al.
characterized the key cellular functions of TGFβ, including initi-
ation of tissue matrix production and stimulation of chemotactic
migration of fibroblasts and monocytes (12, 18). In contrast, Ran-
dall et al. showed oscillating TGFβ-1 expression – decreased in
the first 3 h after RTX (normalizing by 2–7 days), then steadily
increasing to up to 200% above normal levels more chronically (16,
19). Grose and Werner verified a role for TGFβ in RTX-induced
fibrosis and investigated the modulation of downstream mediators
such as Smad-3 (17, 20, 21). They demonstrated accelerated re-
epithelialization and decreased inflammation in Smad-3−/− mice
compared with control animals (17, 22). Despite this evidence,
however, attributing specific cellular effects of RTX-induced fibro-
sis to such a broad regulator of fibrosis as TGFβ has its limitations.
The TGFβ super-family has multiple effects on numerous tissues
and therefore therapeutic approaches that target this molecule
may have insufficient specificity to ameliorate RTX damage, with-
out jeopardizing other biological processes to which fibrosis is
integral.

The focus of clinical and scientific research investigating RTX
has, therefore, begun to shift from the initial insult to the modu-
lation of subsequent processes such as inflammation (37, 38) and
repair/remodeling (6, 9, 20–26), in order to reduce harmful seque-
lae of RTX-induced soft-tissue injury. Impaired regeneration of
irradiated tissues may also arise through a lack of available stem
cells to mediate the repair process (see below). Finally, microvas-
cular damage and lymphedema are also emerging as key features
of chronic radiation injury; and it is in the light of shifting para-
digms in our understanding of the field that we present a review
of experimental and clinical adipose-derived stem cell (ADSC)-
based approaches to RTX-induced soft-tissue injury to date. NB:
Although, RTX dosage and delivery regimes are related to potential
morbidity, they are beyond the scope of this review.

BIOLOGICAL PROPERTIES OF FAT GRAFT AND ADSCs
Adipose tissue is heterogeneously distributed around the body and
variable between individuals. Fat is mainly composed of lobules of
mature adipocytes, and has mechanical and esthetic functions as
well as roles in metabolism – a highly specialized type of connective
tissue responsible for insulation, protection, and energy regulation
(21, 25, 27). The bulk of the non-adipocyte component, the cells
within the stromal vascular fraction (SVF) are from mesodermal
or mesenchymal origin and include pre-adipocytes, fibroblasts,
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endothelial cells, vascular smooth muscle cells, immune cells, and
ADSCs (Figure 2) (27–31, 39–42).

Plastic surgeons use fat in vascularized tissue flaps, non-
vascularized composite grafts, or stand-alone grafts in fat transfer
(28, 30, 32). The relative abundance of adipose tissue in most
patients and ease of obtaining fat by lipoaspiration/liposuction
with minimal donor morbidity has expanded the range of clinical
indications for fat grafting; such as correcting cosmetic or contour
defects, contractures, and lymphedema (30, 33, 44, 45).

Initially in clinical observation (9, 30, 36), then in animal
models (15, 34, 46); fat grafting was reported to improve the char-
acteristics of overlying skin and soft-tissue in RTX-injury (6, 30,
35, 46, 47). Subsequent clinical analysis verified softening of wrin-
kles or fibrotic tissue and resolution of pigment changes (21, 36,
39, 46, 48). Clinical reports suggested that fat grafting may also
reduce peri-prosthetic capsule contracture, vocal cord damage,
and chronic ulceration; and that it may rejuvenate aging skin (5, 27,
28, 36, 39, 41, 46–52). These clinical benefits were attributed to the
regenerative properties of undifferentiated multi-potent ADSCs
within the SVF of lipoaspirate (36,53). ADSCs are thought to play a
supportive role in adipogenesis and angiogenesis, while also mod-
ulating inflammation and immunity (30, 54–56). Therefore, a role
for ADSCs/fat graft ameliorating RTX-injury would be of interest
to those working in tissue engineering, regenerative medicine, and
clinical plastic surgery.

However, despite promising clinical potential, a detailed under-
standing of the putative molecular mechanisms for ADSC-
mediated reversal of RTX-injury remains elusive (36, 44, 57).
Additionally, concerns have been raised that fat grafting following
cancer treatment may enhance tumorigenesis in a former cancer
bed (58–60). If fat grafting is to become a useful and validated
clinical tool, these issues must be addressed. A thorough under-
standing of the molecular interactions and the functional and
sub-cellular alterations caused by RTX-injury to ADSCs them-
selves is also needed. Without such insights, guidelines pertaining
to the safety of fat grafting in these contexts cannot be developed
(43, 60, 61).

ENHANCING FAT GRAFT TAKE USING ADSCs
Due to the clinical origins of the field, the majority of mechanistic
information regarding ADSC-mediated cellular effects has been
derived from research investigating the enhancement of fat grafts.
Therefore, in understanding what pathways may become activated
in ADSC-mediated reversal of RTX soft-tissue injury, it is critical
to first review this more well-established body of data.

A tissue graft is defined as autologous tissue transferred to a
distant site, without its original blood supply. A fat graft there-
fore, must acquire a blood supply and nutrients from the tissue
bed into which it is introduced, with early re-vascularization to
prevent graft necrosis that leads to volume depletion (50, 62, 63).

FIGURE 2 | (A) Schematic diagram depicting liposuction
procedure – lipoaspiration of subcutaneous fat is performed, as previously
described (30), followed by separation into layers of oil (discarded), aspirated
adipose tissue, and infranatant (composed of blood, plasma, and local
anesthetic). (B) The components of adipose tissue and the key constituents of
the SVF pellet are all present in en-bloc in vivo adipose tissue as shown.
Following collagenase digestion, incubation in control medium and

centrifugation, the residual pellet is the so-called stromal vascular fraction
(SVF). (C) SVF can be plated for tissue culture or added to unprocessed
lipoaspirate as in the process of “cell-assisted lipotransfer” (43). The key
surface markers of ADSCs, pericytes, endothelial, and progenitor cells are
shown, demonstrating the unique surface antigen profile of each cell type
that allows their differentiation from ADSCs (smooth muscle cells and
fibroblasts not shown).
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Unfortunately, fat grafts may resorb up to 70–100% of the initial
injected tissue volume (30, 64); a result attributed to poor graft
neo-vascularization, apoptosis, and/or chronic fat necrosis (39–
43, 60, 63–65). While the many technical modifications to enhance
fat graft take are beyond the scope of this review, ADSCs have
emerged as a key focus of graft enhancement, and more recently
as a critical component in reversing soft-tissue injury (66). ADSCs,
first isolated by Zuk et al. over a decade ago (28, 67), were pos-
tulated by Eto et al. to be more robust than mature adipocytes
in resisting mechanical trauma during fat transfer (30, 42, 44,
68), and to have lower metabolic demands (27, 28, 39, 48, 49,
62, 69–72). Others demonstrated improved graft survival through
increased angiogenesis, incorporating either imported endothelial
progenitors or ADSCs into blood vessels (52, 53, 72). In contrast,
Butala et al. suggested that introduced ADSCs may recruit fur-
ther stem cells, particularly from bone marrow (30, 53, 55, 72).
To enhance the relative ADSC abundance within fat grafts (44,
58, 72, 73), Yoshimura et al. proposed “cell-assisted lipotrans-
fer enrichment” (Figure 2), by supplementing lipoaspirate with
additional SVF (23, 43, 60, 62, 64, 74, 75). The SVF [comprised
10% ADSCs (45, 46, 65, 67)], is obtained from a component of
lipoaspirate, surplus to the volume anticipated to be required to
fill a known defect (30). This surplus lipoaspirate is separated
into components by centrifugation (Figure 2). Following collage-
nase digestion, further spinning produces a pellet, referred to as
SVF. Finally, the SVF is re-introduced to the remaining lipoaspi-
rate, in preparation for injecting the ADSC-enriched fat graft
(28, 39, 42, 62, 68, 76–78). Later, Piccinno et al. explored graft
enrichment using in vitro purified and expanded ADSC popu-
lations (69, 79), while Lu et al. and Shoshani et al. performed
co-injection of pro-angiogenic factors IL-8 and VEGF-A (70, 71,
73). These studies collectively suggested that such enrichment may
further increase graft viability, neo-vascularization, and volume
retention, while reducing necrosis/apoptosis rates (69, 71, 80).
Building on this work, Kolle et al. conducted a randomized control
trial to assess lipoaspirate-enrichment with ADSCs concentrations
up to 2000 times above physiological levels (72, 81). ADSC-
enriched groups demonstrated higher volumes of graft retention
on MRI at Day 121 (30, 72), and were associated with reduced
apoptosis (72, 73). Overall, these findings further suggested that
addition of ADSCs may improve graft take by enhancing adipo-
genesis, supporting angiogenesis and reducing cellular apoptosis
(53, 54, 72, 82).

ADSC CHARACTERISTICS AND IMMUNO-PROFILE
Adult stem cells are uniquely able to differentiate into more spe-
cialized cell types, replenishing damaged cells to maintain tissue
integrity and cellular homeostasis during growth or wound heal-
ing (73, 81). Such properties make mesenchymal stem cells (MSCs)
prime candidates for use in tissue regeneration (23, 60, 74, 83–86).
The clinical use of autologous MSCs for tissue regeneration con-
fers several advantages – chiefly, the ability to avoid host-immune
responses. The benefits of ADSCs, are that the yield of stem cells
from adipose tissue exceeds that from bone marrow by about 500-
fold (75) [5× 105 ADSCs may be isolated from 400 to 600 mg of
adipose tissue (32, 65)], along with superior ease of harvest and
minimal donor site morbidity.

Similar to bone marrow derived stem cells (BMSCs), ADSCs
are capable of differentiating into a diverse variety of mature tis-
sues (32, 42, 83) – skin, fat, cartilage, bone, muscle, endothelial, and
neurogenic cells when cultured with specific induction factors (28,
39, 51, 76, 87).

Apart from this versatile trans-differentiation potential, ADSCs
also exhibit an extensive secretory profile consisting of pro- and
anti-inflammatory cytokines, chemokines, and growth factors (73,
77–79, 88–91). Whereas, it was previously thought that ADSCs
themselves differentiated to replace injured cells [“host replace-
ment” or “building block” repair theories (30, 80, 81, 92, 93)];
secreted paracrine mediators are now thought to perform key
active roles in ameliorating RTX and other injuries (54) by orches-
trating autocrine or trophic paracrine effects on surrounding
tissues (73). The unique secretory profile of ADSCs indicates that
they specifically influence the molecular and biological pathways
of tissue regeneration (67, 81–83, 94–96), angiogenesis (84, 85,
97, 98), and lymphangiogenesis (20, 86); while suppressing local
immune/inflammatory responses (32, 36, 75, 90, 99) and reducing
fibrogenesis (39, 100) (Table 1).

Since their initial description, the cell surface molecular marker
profile of ADSCs has remained controversial (51, 131), predom-
inantly due to differences between post-extraction purification
protocols, culture conditions, and variations in the use of whole
or sub-total SVF (36, 40, 62, 88–90). The International Society for
Cellular Therapy defines ADSCs as cells that demonstrate plastic
adherence in standard tissue culture conditions (91, 132), express a
surface marker profile of CD34+, CD31−, and CD45− (2, 5, 20, 21,
67, 92–95, 98, 133–135) (Figure 2) and demonstrate multi-potent
“tri-lineage” differentiation capabilities – i.e., differentiation into
bone, cartilage, and fat (101).

ONCOLOGICAL SAFETY OF ADSCs IN RTX-TREATED CANCER
BEDS
Questions regarding oncological safety of fat grafting following
cancer clearance have been raised (36, 129, 136). While long-
term tissue changes following fat grafting may impede radiological
surveillance for cancer recurrence (62, 137), Delay et al. state
that experienced breast radiologists should be able to differen-
tiate “post-graft” from malignant calcifications (99). The major
oncological concerns relate to the beneficial properties of ADSCs
in RTX-injury potentially also promoting tumor growth in areas
previously treated for cancer (59, 60, 132–134, 138–140). Mol-
ecular adaptations that promote graft survival include secreting
hypoxia-induced growth factors such as VEGF-A or VEGF-D
(see below) – both of which induce angiogenesis and lymphan-
giogenesis (107, 108, 113, 135, 141) – stimulating breast cancer
growth and metastases (26, 59, 60, 129, 130, 132–140, 142–146).
Krumboeck et al. found that while ADSCs may not necessarily
trigger transformation of quiescent tumor cells to active growth,
they could promote proliferation of residual cells after cancer
resection and/or adjuvant therapy (60, 147). In contrast, pro-
ponents of fat grafting argue that in vitro models may not be
representative of human tumors (144, 145). In light of evidence
to date, Claro et al. and Zimmerlan et al. call for postponement
of “stem-cell enhanced” fat grafting for breast reconstruction until
long-term follow-up data becomes available (42, 44, 60, 132, 145,
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Table 1 |The postulated regenerative mechanisms of ADSCs in clinical and pre-clinical models of tissue injury.

Proposed ADSC regenerative mechanism Experimental findings supporting regenerative mechanism

(1) ADSC adipogenic differentiation Clinical studies demonstrate newly formed adipose tissue at the site of fat injection resulting in

restoration of tissue contour or volume via either (36, 51, 99)

(a) Direct differentiation of injected ADSC to adipocytes (28, 76); or

(b) Paracrine stimulation by injected ADSCs, to influence local stem-cell populations to

differentiate into adipocytes (44, 92, 101, 102).

(2) ADSC injection increases perfusion of injured

tissues through:

(a) Fat grafted sites in murine models of ischemic injury demonstrate GFP or DiI-labeled-ADSCs

differentiating to CD31+ endothelial cells in vivo (103, 104)

(i) Induction of angiogenesis

(ii) Supporting existing vascular structures

(iii) Paracrine promotion of angiogenesis

(b) Increased blood vessel density and co-localization of fluorescently labeled ADSC within/near

capillaries (95, 103, 105)
(c) ADSCs form capillary networks on Matrigel matrix and stain positive for vWF (87, 106)

(d) Release of angiogenic factors by ADSCs promotes re-vascularization and wound healing

including: VEGF-A, VEGF-C, VEGF-D, IGF, PDGF-bb, FGF, TGFβ, HGF, IL-6, IL-8, MMP inhibitor

1 precursor, MCP-1, ANG, and SDF-1 (66, 77, 78, 83, 85, 107–110)

(3) ADSCs exert an anti-oxidant effect (a) Anti-oxidant action provides protection against hypoxia, ischemia reperfusion, and ROS

induced damage (81, 111, 112)

(b) Factors such as hepatocyte growth factor (HGF), G-CSF, GM-CSF, IGFBPs, IL-12, platelet

derived growth factor (PDGF-AA), and Superoxide dismutase may mediate these effects (76)

(4) ADSC modulate immune responses,

inflammation, and improve wound healing

(a) BMSCs and ADSCs suppress T- and B-cell proliferation via NFkB-mediated mechanisms

(32, 66, 113)

(b) Cytokine and adipokine secretion of IL-6 and IL-8 act as chemo-attractants for monocytes and

macrophages, with recruitment to site of injury and promotion of wound healing processes

(83, 114–116)

(5) ADSCs modulate granulation tissue, fibrosis,

ECM remodeling, and improve epithelialization and

wound healing

(a) Alteration of collagen type I and III production by fibroblasts co-cultured with ADSC

conditioned media, mediated by down-regulation of genes such as Col3a1
(b) Up-regulation of type I procollagen a1 mRNA (100, 117)

(c) Effective migration of keratinocyte and fibroblasts treated with ADSC conditioned media

leading to improved re-epithelialization (96, 117–126)

(6) ADSCs secrete lymphangiogenic factors,

improving or reversing lymphedema in damaged

tissues

(a) Lymphatic fluid stasis results in increased TGFβ1, exerting a further anti-lymphangiogenic

effect. Blockade of TGFβ1 along with VEGF-C ADSC stimulation resulted in elevated ADSC

expression of lymphangiogenic factors; VEGF-C, lymphatic endothelial cell markers; podoplanin

and Prox-1 and increased ADSC survival in vitro (86, 127)

(b) Baseline ADSC production of IL-8, IGF-1, VEGF-D all promote lymphangiogenesis (77, 128)

(7) ADSCs mediate recruitment of endogenous

stem cells via a homing chemokine gradient

(a) Murine models have MSC homing to site of injury. Systemic injected human MSCs migrated

and engrafted at the site of ischemic or necrotic injury (44, 48, 123–126, 129)

(b) Stromal derived factor 1α (SDF-1α) secreted by ADSCs is the main chemo-attractant of

systemic stem cells to the area of injury (112, 130)

148). Gutowski et al. proposed screening to exclude high-risk
patients (e.g., with BRACA1/2 mutations) from fat grafting (51,
146). Nevertheless, fat grafting for breast reconstruction has been
reported in over 3,000 patients in published studies (147, 149).
While systematic reviews of current practice examined clinical
efficacy, the lack of randomized controlled trials examining onco-
logic safety and insufficient follow-up of smaller studies mean
that no clear conclusions have been reached (32, 54, 96, 108, 145,
148). Overall, a more detailed understanding of mechanisms by
which fat graft may reverse RTX-injury – and how these path-
ways may cross-talk with the regulation of tumor growth are
required.

ADSCS AND RADIOTHERAPY-INDUCED SOFT-TISSUE INJURY
Adipose-derived stem cell in the setting of RTX soft-tissue injury
raises two broad questions:

(a) The effects of injury on ADSCs.
(b) How ADSCs specifically modulate RTX-Injury.

EFFECTS OF INJURY ON ADSCs
Radiotherapy injury, adipocytes, and the SVF
Injury induced by RTX has previously been explained by rapid,
extensive necrotic, or apoptotic cell death in the stem-cell
and progenitor populations (23). However, as neither of these
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mechanisms fully account for the chronic, progressive, and evolv-
ing nature of RTX-injury in soft-tissues (10, 24), “sub-lethal”
changes such as premature senescence, terminal differentiation,
or reproductive cell death have been implicated (23, 48, 150).
More recent findings suggest that ADSCs display radio-resistance
compared with other components of SVF such as adipocytes
(150). This may be explained by a greater ability of MSCs to
retain their proliferative capacity due to superior DNA dam-
age repair mechanisms compared with those found in terminally
differentiated cells (150). Bill et al. suggested that terminal dif-
ferentiation of cells may correlate with increased G1-cell cycle
arrest and reduced ability to repair RTX-induced double-stranded
DNA breaks (151). Additionally, reduced metabolic demands of
steady-state ADSCs may protect them from hypoxia and subse-
quent apoptosis, enabling their preservation in order to perform
regenerative functions (39, 152).

As ADSCs share many regenerative properties with BMSCs,
much of our understanding of mechanisms by which healthy
ADSCs modulate RTX-injury has been extrapolated from BMSC
studies (54, 153). Ponomaryov et al. demonstrated that sub-lethal
RTX-injury to BMSCs resulted in an increased expression levels
of SDF-1 (also the main chemotactic factor for ADSCs) at both
mRNA and protein level (130). This increased SDF-1 expression
in-turn mediated homing of CXCR4+ uninjured stem cells via
a chemokine gradient (130). This gradient is integral to homing
and importing uninjured ADSCs, as surviving ADSCs originating
within the injured area may be significantly functionally impaired
(32, 77, 86, 96, 106, 108, 114, 118, 119, 127, 154). Poglio et al.
characterized the effects of RTX on murine adipose tissue pri-
marily as decreasing adipocyte size and number, increasing ROS,
and impairing SVF proliferation and adipogenic differentiation
(25). While the overall composition of the SVF was unaltered by
irradiation, the authors concluded that changes to the capacity of
cells within the SVF to proliferate or differentiate could impair
the regenerative properties of fat graft (25), as demonstrated by Li
et al. in irradiated BMSCs, which displayed suppressed prolifera-
tion, osteogenesis, and adipogenesis (155). A further mechanism
of action of ADSCs maybe a similar recruitment of and differen-
tiation toward a fibroblastic phenotype seen in irradiated BMSCs
(32, 156).

Functional cellular analysis performed by Schonmyer et al.
suggested that irradiated murine BMSCs underwent low-level
spontaneous osteoblastic differentiation, in preference to adi-
pogenic or chondrogenic lineages (156). Furthermore, attenuation
of the response of irradiated BMSCs to stimulation with lineage-
specific differentiation media was decreased in irradiated cells and
was associated with down-regulation of bone-specific markers
(ALP and osteocalcin) and adipose-specific markers (lipopro-
tein lipase, C/EBPb, and leptin) (156). These findings further
highlight the altered capacity of stem cells to respond to cues
in their microenvironment to replenish damaged cells, follow-
ing RTX (156). Mechanistically, alterations to paracrine signal-
ing via Wnt10b and Sirtuin-1 (a subset of a family of proteins
that regulate stem-cell differentiation) were also seen to mediate
altered adipogenesis and osteogenic differentiation characteristics
in BMSC (157). Meanwhile, another subset of the same pro-
tein family, Wnt3a and Wnt5a, were found to be up-regulated in

RTX-injury and may additionally induce senescence in irradiated
BMSCs (30).

HOW ADSCs SPECIFICALLY MODULATE RTX-INJURY?
The original “building block” theory that stem cells migrate to
an area of injury to differentiate and replace the injured cell has
been superseded, as only a small number of grafted cells – of which
ADSCs make up an even smaller proportion (44, 154) – survive the
fat transplant injection (42, 77). More recently, paracrine mecha-
nisms such as immune-modulation and the generation of protein
growth factors secreted by surviving grafted ADSCs, have gained
favor (51, 54, 102, 106, 114, 149, 158). Walter et al. demonstrated
modulation of keratinocyte and fibroblast migration in response
to BMSC conditioned media, in which analysis of the paracrine
secretory profile detected increased expression of IL-6, IL-8, MCP-
1, and to a lesser degree RANTES and TGFβ1 proteins (76, 119).
The key differences in the protein growth factor profiles of the two
types of MSCs as shown on cytokine array studies were IL-8, IGF-
1, and VEGF-D, which were secreted by ADSCs but not BMSCs
(77). Given that the mechanisms underlying the overall profile of
RTX-injury appear to involve poor vascularity, hypoxia, and lym-
phedema – and that these three growth factors are implicated in
each – it seems intuitive that ADSCs play a critical role in revers-
ing these micro-environmental changes. This protein secretion
profile indicates that ADSCs may facilitate angiogenesis and lym-
phangiogenesis, in addition to the simple anti-fibrotic effects with
which they have been previously associated with (36, 100, 113,
141). However, further detailed systematic analysis of the secre-
tory expression profiles of ADSCs is required to identify which
specific growth factors are released, under which conditions, and
how they may modulate the wound healing, angiogenesis, and
lymphangiogenesis (81, 103). Such an effect was typified by the
down-regulation in VEGF-A production by ADSCs in response to
irradiation, as shown by Ebrahimian et al. (87).

ADSCs AND ANGIOGENESIS IN HYPOXIA
Radiotherapy, particularly associated with subsequent surgery,
creates tissue hypoxia by up-regulating expression of inducible
transcription factor HIF-1α, either through generating ROS, Nitric
Oxide, or inducing macrophage recruitment or release of stress
granules (159). In vitro, the constituent components of adipose
tissue each responded differently to hypoxic stress stimuli in a
study by Haubner et al. (44). These authors found that adipocytes,
and to a lesser degree, endothelial cells, underwent apoptosis in
hypoxic conditions, while ADSCs displayed superior cell viability
(44); a finding verified by Frazier et al. in a viability study (160).
Other authors further suggested that the superior survival capacity
of ADSCs facilitates their contribution to active repair of adipose
tissue (44, 48, 85, 161), and that stem cells are maintained in a base-
line state of relative hypoxia, enabling them to derive protection
from cyto- or genotoxic stressor by utilizing anaerobic metabolism
(106, 159). Alternative hypoxic pre-conditioning models such as
mechanical thermal stress or nutrient deprivation have also shown
superior stem cells survival, in addition to a modified paracrine
secretory profile (35, 81, 84, 85, 106, 107, 154, 160, 161). Unsur-
prisingly, much of this hypoxia-induced growth factor expres-
sion profile is pro-angiogenic. Examples include HIF-1α and
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SDF-1a production (84, 160), which in turn increased secretion
of pro-angiogenic and anti-apoptotic cytokines VEGF-A, hepa-
tocyte growth factor (HGF), bFGF, by up to fivefold in spheroid
models (26, 81, 107, 111, 161, 162). Frazier et al. found that ADSC-
conditioned media (ADSC-CM) from cells grown in hypoxic
conditions demonstrated altered protein levels of Fibronectin 1,
TGFβ1-induced protein, Osteonectin, and Collagens (Type 1a1
and 1a2), potentially also facilitating angiogenic sprouts through
the ECM (111, 160). Despite this compelling pre-clinical work,
increased proliferation, migration, or sprouting may not neces-
sarily correlate with the formation of functional vasculature or
enhanced tissue perfusion in vivo, without the vessels first acquir-
ing adequate vessel stability (109, 162). A study investigating
the role of ADSCs in stabilizing endothelial networks attributed
them with properties akin to those of pericytes, which act syn-
ergistically with blood endothelial cells (BECs) to contribute to
neo-angiogenesis. These ADSCs were specifically shown to estab-
lish neo-vessel connections with the pre-existing local vasculature
and conducted blood flow as a stable network (163). In addi-
tion, hypoxia and ischemia have been independently observed to
induce trans-differentiation of ADSCs into CD31+/VWF+ BECs
that may also contribute to the establishment of neo-vasculature
(96, 103, 104, 109). Overall, ADSCs may contribute to angiogen-
esis by promoting paracrine effects that stabilize neo-vasculature,
by supporting existing RTX-damaged blood vessels, or finally, by
differentiation into BECs that integrate into forming vessels (103,
164). Local or systemic injection of labeled-ADSCs following body
wall RTX treatment were associated with increased angiogenesis
consisting of perivascular aggregation of CD31+ ADSCs, which

was interpreted as trans-differentiation of ADSCs to BECs (87,
112, 164).

In addition to pro-angiogenic effects, ADSCs were also shown
to display protective effects on non-vascular cells in hypoxic
conditions. Lee et al. demonstrated anti-apoptotic effects in der-
mal fibroblasts, which developed enhanced resistance to oxida-
tive stress when treated with ADSC-CM (76, 111). Similarly,
anti-oxidants superoxide dismutase and glutathione activity was
enhanced in cell cycle analyses of fibroblasts cultured in ADSC-
CM (111). In a pre-clinical model of ischemia reperfusion injury,
Uysal et al. injected ADSCs into axial flaps, subsequently clamp-
ing then finally unclamping the vascular pedicle to allow reper-
fusion. They showed enhanced flap viability and up-regulated
expression of VEGF-A,TGFβ, and FGF proteins detected immuno-
histochemically (109). Collectively, these findings suggest that
ADSCs produce growth factors that may ameliorate ischemic
insults and can exert a protective effect against reperfusion injury
(76, 109).

MECHANISMS OF ADSC-MEDIATED REVERSAL OF
RADIOTHERAPY-INDUCED SOFT-TISSUE INJURY
In addition to anti-hypoxic effects ADSCs have also been shown to
mediate alternative paracrine responses to RTX-injury including
anti-inflammatory and anti-apoptotic effects (Figure 3).

In an investigation of the effects of irradiation on BECs,
Haubner et al. demonstrated up-regulated expression of inflam-
matory cytokines IL-6, FGF, ICAM1, and VCAM1. Co-culture
with ADSCs in this model demonstrated reversed expression of
all the detected inflammatory cytokines (66). Similarly, Chang

FIGURE 3 | Schematic diagram demonstrating the effects of
radiotherapy (RTX)-injury on individual cellular components, the
resulting clinical manifestations of injury and the mechanisms by
which fat graft may ameliorate this soft-tissue injury. Normal
Human Dermal Fibroblasts (NHDF), extracellular matrix (ECM),

hepatocyte growth factor (HGF), interleukin-12 (IL-12), blood
endothelial cell (BEC), adipose-derived stem cell (ADSC), stromal
derived factor-1 (SDF-1), lymphatic endothelial cell (LEC), interleukin-8
(IL-8), vascular derived growth factor-D (VEGF-D), and insulin-like
growth factor-1 (IGF-1).
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et al. used a model of intra-peritoneal ADSC injection following
abdominal irradiation to demonstrate a significant reduction in
inflammation in ADSC-treated animals, with enhanced intestinal
re-epithelialization and improved survival rates. ADSC injection
was associated with increased serum levels IL10, VEGF-A, bFGF,
and EGF as well as enhanced SDF-1-mediated recruitment of
hematopoetic stem cells to the site of injury (112). Also in the
upper gastrointestinal tract, Lim et al. and Kojima et al. demon-
strated protective and anti-apoptotic effects of ADSC injection in
a model of RTX-induced salivary gland injury (165, 166).

Finally, the dermal and subcutaneous responses to ADSC injec-
tion in animal models of both in chronic RTX-wound healing
and intact irradiated skin, manifested as increased dermal thick-
ness quantified by a reductions in fibrotic marker Smad-3 and a
collagen-based scar index measurement (164, 167). An equivalent
large animal model of ADSC-enriched fat graft injections fol-
lowing localized RTX demonstrated integration of q-dot-labeled-
ADSCs into the dermis, with associated favorable wound healing,
enhanced epithelialization, increased subcutaneous adipose tissue,
and reduced apoptosis; along with recruitment and activation of
lymphoid cells (83, 168).

FUTURE DIRECTIONS AND CONCLUSION
Significant improvements in cancer therapy have lead to improved
cancer survival, meaning that more patients are living longer
with the after-effects of RTX. The resulting fibrosis, lymphedema,
and impaired tissue quality characteristically reduce the patient’s
quality of life and complicate subsequent surgery. Recently,
fat grafting has been added to plastic surgeons’ armamentar-
ium to combat RTX-induced soft-tissue injury. Studies demon-
strate the multifaceted nature of ADSC-driven tissue regeneration
via enhanced angiogenesis and adipogenesis, while also medi-
ating anti-apoptotic, anti-fibrotic, anti-oxidant, and immune-
modulatory properties.

Authors who investigated the effects of injurious stimuli such as
hypoxia and radiotherapy on ADSCs have demonstrated a superior
ADSC survival capacity compared to other cellular components of
fat grafts, through utilization of anaerobic metabolism. However,
the sub-lethal RTX-induced injuries impair ADSC proliferative
capacity, responsiveness to environmental differentiation cues and
alter the ADSC paracrine secretory profile. Such functional alter-
ations in injured ADSCs may account for the inability of local
ADSCs to replenish surrounding tissue following radiotherapy
injury, thus necessitating the introduction of un-irradiated fat
(and ADSCs) in the form of a fat graft. These functional ADSCs
may reverse radiation injury by restoring the normal proliferative
and differentiation capacity of the local ADSC population.

In conclusion, while in vitro and in vivo models demonstrate
the benefits of fat grafting, more comprehensive cellular and mol-
ecular analyses using genome-screening platforms are needed to
elucidate the true mechanism behind ADSC-mediated reversal of
RTX-injury. A detailed understanding of the reaction of individ-
ual cell types in response to RTX-injury is required in order to
treat pathological processes such as fibrosis, lymphedema, and
hypoxia – which contribute to the formation of RTX-induced
soft-tissue injury. ADSCs may possess these characteristics; how-
ever, a targeted molecular therapy that harnesses the beneficial

effects of ADSCs, without raising the potential of enhanced tumor
growth, activation, or metastases is required.
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