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Abdominal aortic aneurysms (AAAs) represent a focal dilation of the aorta exceeding 1.5 
times its normal diameter. It is reported that 4–8% of men and 0.5–1% of women above 
50 years of age bear an AAA. Rupture represents the most disastrous complication of 
aneurysmal disease that is accompanied by an overall mortality of 80%. Autopsy data 
have shown that nearly 13% of AAAs with a maximum diameter ≤5 cm were ruptured 
and 60% of the AAAs >5 cm in diameter never ruptured. It is therefore obvious that the 
“maximum diameter criterion,” as a single parameter that fits all patients, is obsolete. 
Investigators have begun a search for more reliable rupture risk markers for AAA expan-
sion, such as the level and change of peak wall stress or AAA geometry. Furthermore, 
it is becoming more and more evident that intraluminal thrombus (ILT), which is present 
in 75% of all AAAs, affects AAA features and promotes their expansion. Though these 
hemodynamic properties of AAAs are significant and seem to better describe rupture 
risk, they are in need of specialized equipment and software and demand time for pro-
cessing making them difficult in use and unattractive to clinicians in everyday practice. In 
the search for the addition of other risk factors or user-friendly tools, which may predict 
AAA expansion and rupture, the use of the asymmetrical ILT deposition index seems 
appealing since it has been reported to identify AAAs that may have an increased or 
decreased growth rate.

Keywords: abdominal aortic aneurysm, indication for aneurysm repair, computational analysis, future prospective 
for AAA repair, aneurysm geometry, aneurysm wall stress, intraluminal aortic thrombus

SiZe: A CRiTiCAL DeTeRMiNANT OF RUPTURe RiSK

Abdominal aortic aneurysm (AAA) is a common encountered pathology in the aging population of 
the developed countries (1, 2). Early enough, it was recognized that the main risk factor to predict 
the catastrophic event of aneurysm rupture was its size, mainly with respect to its maximum diam-
eter. This realization was based on both physical principles, namely the law of Laplace, and clinical 
practice/experience of surgeons dealing with such patients. The law of Laplace is usually pointed as 
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the theoretical basis for using the “maximum diameter criterion” 
to predict AAA rupture risk (3). This “law” was developed about 
200 years ago and provides explanation of the mechanisms of a 
wide range of physiologic phenomena. Regarding the circulatory 
system, it states that the stress exerted on the AAA wall is propor-
tional to its diameter, or in other words, the larger the aneurysm, 
the higher the risk of rupture (4).

As early as from the 60s, the medical literature has recorded 
that small non-operated aneurysms (<6 cm) presented a signifi-
cantly better survival rate than their larger (again non-operated) 
counterparts (>6 cm). Moreover, since the definition of “small” 
employed AAAs <6 cm it is not surprising that even in this cat-
egory, surgery offered a significant survival advantage compared 
to surveillance (5). Thereafter, several reports have confirmed 
the fact that increased size may serve as the most significant risk 
factor to foretell a high risk of rupture (6, 7).

DeFiNiNG CUT-OFF vALUeS TO 
DeTeRMiNe AAA THeRAPeUTiC 
MANAGeMeNT

Landmark Studies
It took several years of research, thousands of patients, and two 
randomized control trials (RCTs) to determine the exact cut-off 
value where the risk of rupture exceeded operative risks from 
open surgical repair and therefore elective surgery would be 
justified. The United Kingdom Small Aneurysm Trial (UKSAT) 
performed in the UK, included 1090 patients the first recruited 
in 1991 (8). The aneurysm detection and management (ADAM) 
trial included 1136 patients the first recruited in 1992 (9). These 
trials presented their results in 1998 and 2002, respectively, and 
both came down to the conclusion that survival is not improved 
by open elective repair of AAAs smaller than 5.5  cm. At this 
diameter, the risk of surgical repair outweighs the risk of rupture 
during surveillance. Therefore, according to these results, surveil-
lance of small AAAs would be safe and advisable compared to 
early surgery.

Technological Progress – The Advent of 
endovascular Repair
Rapid progress in the field of medical technology along with the 
intuitive minds and daring of some very important pioneers in 
the endovascular field, brought treatment modalities in the next 
level with the introduction of endovascular aneurysm repair 
(EVAR). Taking into account that open surgery did not appear to 
be beneficial until the diameter of the aneurysm reached >5.5 cm 
along with data from clinical trials, which confirmed a lower risk 
of operative mortality after EVAR and also suggested that EVAR 
outcome is directly related to aneurysm size being better for smaller 
aneurysms, a clinical trial testing the hypothesis that EVAR is 
beneficial in patients with small AAA was warranted. Two RCTs, 
such as the positive impact of endovascular options for treating 
aneurysms early investigators (PIVOTAL) (728 participants) and 
the comparison of surveillance vs. aortic endografting for small 
aneurysm repair studies (CAESAR) (360 participants), tested 

the hypothesis that early EVAR may be beneficial compared to 
surveillance (10, 11). Their results were published at 2010 in JVS 
and 2011 in EJVES and both studies came down to the conclusion 
that mortality and rupture rates in small AAAs are low and no 
clear advantage could be demonstrated between early or delayed 
EVAR strategy.

PiTFALLS AND FLAwS iN THe 
iNTeRPReTATiON OF RCTs

According to the abovementioned data, someone would 
conclude that there is enough evidence to support a watchful 
waiting for small AAAs and a prompt repair for larger ones using 
the solid criterion of 5.5 cm as the cut-off value. Nevertheless, a 
fact that commonly escapes attention and is definitively worth 
noting, is that landmark studies comparing open surgery vs. 
surveillance took place during the 90s and therefore they were 
hampered by the absence of thin-slice computed tomography 
(CT), digital imaging, and the three-dimensional (3D) recon-
struction of AAA surface, which are currently widely available. 
Subsequently, the UKSAT was based on ultrasonographic meas-
urements of the aneurysm anteroposterior maximum diameter, 
while the ADAM used axial CT measurements (8, 9). On the 
other hand, the more recent studies examining EVAR for small 
AAAs have used orthogonal maximum diameter measurements 
meaning perpendicular to the centerline of flow as currently 
recommended by the SVS guidelines (10–12). Naturally, these 
different modes used to record aneurysm size are not necessarily 
equivalent and may pose inaccuracies in therapeutic manage-
ment of AAA patients. Sprouse et  al. compared between US, 
axial CT and orthogonal CT measurements. These authors not 
only recorded significantly larger diameter when measurements 
were made in an axial plane compared to orthogonal CT and 
US measurements but also indicated that limits of agreement 
between measurements were poor and exceeded clinical accept-
ability (5 mm) and therefore could result in therapeutic inaccu-
racies (13). Others have compared between US and orthogonal 
CT measurements and found a consistently larger recording 
with the latter modality (mean difference 0.21 cm), while again 
the limits of agreement were −0.55 to 0.96 cm, exceeding clinical 
acceptability. Notably, 70% of those patients with a US record-
ing between 5 and 5.5  cm, which would suggest conservative 
management, had CT scans revealing diameters >5.5 cm which 
on the contrary would set the indication for surgical correc-
tion (14). Moreover, a recent study, which compared between 
ultrasound and CT maximum diameter measurements in both 
axial and orthogonal planes, indicated that the mean of each 
series of readings on CT was significantly larger than the mean 
US measurement, and that CT measurements also differed sig-
nificantly from each other. The axial CT diameter resulted in the 
larger recordings, which exceeded orthogonal measurements 
by a mean of 2.4 ± 5 mm, while the US diameter was smaller 
than CT axial by 9.6  ±  8.0  mm and CT orthogonal diameter 
by 7.3  ±  7.0  mm (15). In line with these results, what would 
have been a 4.0–5.5 cm (target group under investigation) AAA 
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according to the UKSAT measurements would be recorded as a 
4.9–6.4 cm according to reporting standards of ADAM and actu-
ally would be a 4.7–6.2 cm aneurysm according to contemporary 
methods. Of course, these discrepancies emerge by the extrapo-
lation of the differences between different modes of diameter 
measurements to the cut-off values and measurement methods 
that the UKSAT and ADAM trials used and therefore provide 
an estimation of possible inaccuracies. Of course, we do not 
suggest that early studies lose their significance but believe that 
their results may not be suitable to be simply applied in current 
clinical practice and should be interpreted with caution. In other 
words, the technological advancements in medical imaging have 
rendered previously described measuring methods out of date, 
in the same time that evidence-based recommendations are still 
based on studies using less sophisticated techniques.

Another pitfall that may be reported is the fact that the two 
studies comparing EVAR vs. surveillance for the small AAAs 
refer to different study populations. In fact, the PIVOTAL study 
included AAAs in the range of 4.0–5.0 cm, while the CAESAR 
study recruited subjects with AAA measuring 4.1–5.4  cm. 
Therefore, a subpopulation of patients with AAAs of maximum 
diameter between 5.1 and 5.4 cm were included in the CAESAR, 
but not in the PIVOTAL study. Since this is the subgroup of 
patients where the greater number of ruptures throughout the 
surveillance period would be expected, a surprisingly low rupture 
rate (0.3%) in the PIVOTAL study may not be that surprising 
after all, while the higher rate of subsequent AAA repairs in the 
surveillance group in the CAESAR study (60 vs. 31%) may be 
expected. Overall, the abovementioned data may indicate that the 
results of these studies probably are not absolutely comparable 
to each other, and therefore their interpretation should not be 
generalized (10, 11).

RiSK DeTeRMiNANTS BeYOND THe 
“ONE-SIZE FITS ALL” MAXiMUM 
DiAMeTeR CRiTeRiON

There is now a significant body of evidence to suggest that besides 
maximum diameter other factors may play a significant role in 
the AAAs natural history toward enlargement and rupture (16). 
This may not be so surprising after all, if someone considers that 
diameter matched AAAs may present several differences like in 
geometrical indices (length, angulation, tortuosity, curvature, 
shape), AAA volume, intraluminal thrombus (ILT) thickness/
volume/distribution, wall stress, and wall strength (17–25). It 
would seem naive for someone to expect that none of these fac-
tors would have anything to do with the AAAs rupture risk and 
that the latter could definitively be determined based on the sole 
criterion of maximum diameter. Therefore, several researchers 
have suggested that a greater amount of ILT may pose a greater 
risk of rupture mainly by reducing the O2/nutrient delivery 
and promoting an inflammation process to the arterial wall, 
while a predominantly posterior deposition of ILT has been 
shown to be correlated with an increased growth rate (26–29). 
Others postulated that increased cross-sectional asymmetry 

and decreased tortuosity may foretell a higher rupture risk in 
the same time that the mean annual growth rate may be sig-
nificantly lower in men with an AAA wall calcification >50% 
of its circumference (30, 31). More importantly, currently, it is 
well understood that rupture is a localized phenomenon that 
occurs when and where the local stress exerted to the aneurys-
mal wall due to systemic pressurization exceeds its strength (3, 
16). Accordingly, there are now enough data in the literature 
to suggest that biomechanical indices, i.e., peak wall stress 
and peak wall rupture index are far superior than maximum 
diameter alone in predicting the AAAs rupture risk potential 
(32). Moreover, it now seems that the time when calculation of 
these indices will not to be performed in specialized labs but 
will be widely available and accessible to clinicians, is not far 
away (33, 34). In this context, where a point-wise comparison 
of wall stress and strength will be possible and a mapping of the 
rupture risk along the aneurysmal surface may be performed 
the current gold standard, maximum diameter criterion, will 
probably become obsolete.

iNTRALUMiNAL THROMBUS – THe 
ASYMMeTRiCAL THROMBUS 
DePOSiTiON iNDeX

In the search for more reliable rupture risk markers, ILT is one 
of the most studied AAA features, which has been shown to 
correlate well with AAA expansion and is present in 75% of all 
AAAs (35). Researchers have previously shown that ILT load 
is associated with a higher possibility of AAA expansion (36); 
furthermore, an increase of thrombus cross-sectional area may 
predict AAA rupture better than simple maximum diameter 
increase (37). Additionally, ILT thickness has demonstrated a 
positive correlation with the risk of rupture (38), and it has been 
observed that greater volumes of ILT were noted in ruptured 
as compared to elective AAA cases (39). An extensive list of 
publications on ILT effect on rupture risk currently exist but the 
majority focus on ILT size-related characteristics (35, 38–40). 
These studies’ main focus were on volume/area growth, relative 
sac volumes, and maximum thickness’s. Only a few reports exist 
regarding the effect of ILT spatial distribution on AAA rupture 
risk (35, 38–40).

Most AAAs actually present an asymmetrical ILT deposition 
(39). Previous studies have suggested site-specific regional dif-
ferences in wall biochemistry in the aorta (41, 42). Could the 
spatial distribution of ILT have an effect on AAA progression? 
Recently, Metaxa et  al. attempted to answer this question (28). 
They hypothesized that ILT may have a different effect on AAA 
progression depending on its deposition pattern (28). Metaxa 
et al. examined whether asymmetrical ILT deposition is associ-
ated with growth rate (Figure  1). They found that aneurysms 
with negative asymmetrical thrombus deposition index (ATDI) 
(meaning a posteriorly located ILT) had a significantly lower 
growth rate compared to those with positive ATDI (an anteriorly 
located ILT) (28). This result could be useful in clinical practice as 
asymmetrical posterior ILT deposition can be easily determined 
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FiGURe 1 | Definition of asymmetrical thrombus deposition index (ATDi). In this example, ATDI is negative. The black line determines the anterior and 
posterior sides, and the luminal areas at the anterior (ALant) and the posterior (ALpost) sides are measured. Also depicted are three examples of different ADTI 
ranging from +1 to −1 along with their wall stress distribution. Figure modified from Ref. (28).
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qualitatively from a common CT scan without any special com-
puterized modeling. The theoretical basis behind these findings 
may be the fact that thrombus has been shown to lower wall stress 
(43), but at the same time, it is a biologically active laminated 
structure that can influence proteolysis in the underlying wall 
(44). Although thick ILT depositions may not directly cause harm 
to the adjacent AAA wall regions since ILT’s proteolytic activity is 
predominantly located in the luminal layer (44), thick ILT deposi-
tions could cause local hypoxia to the AAA sac wall (45). The 
better oxygenation of the posterior wall via the vasa vasorum that 
originate from the lumbar arteries may protect it from the degen-
erative influence of thrombus, which may not be the case when 
ILT is located anteriorly (46, 47). On the other hand, AAAs with 
anterior ILT deposition tend to present a redistribution of wall 
stress against the posterior wall where regions of high stress are 
observed. Accordingly, one could hypothesize that rupture on the 
anterior wall mainly is due to reduced strength and rupture on the 
posterior wall is due to increased wall stress. Since the majority of 
ruptures occur on the posterior and/or posterolateral wall regions, 
posterior wall stress has been highlighted recently as potentially 
significant in rupture risk estimation (48–52). Accordingly, both 
the degeneration of the anterior wall and the concentration of 
wall stress to the posterior wall may render AAAs with anterior 
ILT more susceptible to rupture. Of course, such conclusions 

need further scientific proof to be established and gain clinical 
applicability. Overall, a low rupture risk marker could increase 
the time intervals between CT scans, reducing health costs to 
providers, and any additional anxiety to the patients (28). It may 
also potentially reduce any unnecessary interventions, cost, and 
perioperative morbidity and mortality that accompany surgical 
treatment of AAAs with a diameter >5.5 cm. Additionally, the 
degree of asymmetrical ILT deposition, measured by the ATDI, 
could be integrated in a multimodal rupture risk model to 
improve rupture risk stratification (28).

CONCLUSiON

Currently, the 5.5-cm criterion is a well-respected threshold to 
set the indication for AAA elective repair, which is widely used to 
determine therapeutic management of these patients. Nevertheless 
and despite the fact that currently SVS recommendations require 
3D reconstruction in order to record maximum diameter in a 
plane perpendicular to the centerline of flow, diameters measured 
in this way have not previously been used in the landmark studies 
and therefore may not be absolutely and correctly correlated with 
current treatment indications. The addition of ILT status into the 
estimation of possible rupture risk seems applicable and needs 
further investigation. Moreover, rapid advancements in medical 
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imaging and post-processing and computational analysis have 
given access to several parameters that may influence AAA 
rupture risk. Hopefully, a pinpoint comparison of wall stress and 
strength throughout the aneurysmal surface will soon become 
possible and widely available which then will make the 5.5-cm 
diameter criterion obsolete or outdated.
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